1
|
Skalka GL, Whyte D, Lubawska D, Murphy DJ. NUAK: never underestimate a kinase. Essays Biochem 2024:EBC20240005. [PMID: 38939918 DOI: 10.1042/ebc20240005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
NUAK1 and NUAK2 belong to a family of kinases related to the catalytic α-subunits of the AMP-activated protein kinase (AMPK) complexes. Despite canonical activation by the tumour suppressor kinase LKB1, both NUAKs exhibit a spectrum of activities that favour tumour development and progression. Here, we review similarities in structure and function of the NUAKs, their regulation at gene, transcript and protein level, and discuss their phosphorylation of specific downstream targets in the context of the signal transduction pathways and biological activities regulated by each or both NUAKs.
Collapse
Affiliation(s)
- George L Skalka
- School of Cancer Sciences, University of Glasgow, Glasgow, U.K
- CRUK Scotland Institute, Garscube Estate, Glasgow G61 1BD, U.K
| | - Declan Whyte
- CRUK Scotland Institute, Garscube Estate, Glasgow G61 1BD, U.K
| | | | - Daniel J Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, U.K
- CRUK Scotland Institute, Garscube Estate, Glasgow G61 1BD, U.K
| |
Collapse
|
2
|
Høgdall D, O'Rourke CJ, Larsen FO, Zarforoushan S, Christensen TD, Ghazal A, Boisen MK, Muñoz-Garrido P, Johansen JS, Andersen JB. Whole blood microRNAs capture systemic reprogramming and have diagnostic potential in patients with biliary tract cancer. J Hepatol 2022; 77:1047-1058. [PMID: 35750139 DOI: 10.1016/j.jhep.2022.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Late diagnosis is a critical factor undermining clinical management of patients with biliary tract cancer (BTC). While biliary tumours display extensive inter-patient heterogeneity, the host immune response may be comparatively homogenous, providing diagnostic opportunities. Herein, we investigated whether cancer-associated systemic reprogramming could be detected non-invasively to improve diagnosis of BTC. METHODS In this prospective Danish study, whole blood (WB) microRNA (miRNA) profiling was performed in samples from 218 patients with BTC, 99 healthy participants, and 69 patients with differential diagnoses split into discovery (small RNA-sequencing) and validation (RT-qPCR) cohorts. miRNA expression and activity were further investigated in 119 and 660 BTC tissues, respectively. RESULTS Four WB miRNAs (let-7a-3p, miR-92b-5p, miR-145-3p, miR-582-3p) were identified and validated as diagnostic of BTC on univariable analysis. Two diagnostic miRNA indexes were subsequently identified that were elevated in patients with BTC and in patients with differential diagnoses, compared to healthy participants. The combination of these miRNA indexes with serum CA 19-9 significantly improved the diagnostic performance of CA 19-9 alone, consistently achieving superior AUC values irrespective of clinical setting (minimum AUC >0.84) or tumour location (minimum AUC >0.87). The diagnostic information captured by miRNA indexes was not recapitulated by routine clinical measurements. Index miRNA expression in BTC tissues was associated with distinct pathobiological and immune features. CONCLUSIONS WB miRNA profiles are altered in patients with BTC. Quantification of miRNA indexes in combination with serum CA 19-9 has the potential to improve early diagnosis of BTC, pending further validation. LAY SUMMARY Surgery is currently the only curative intervention for patients with biliary tract cancer (BTC). However, resection is not possible for most patients who are diagnosed with late-stage disease. With the aim of identifying new early diagnostic opportunities, we analysed circulating microRNAs (small non-coding RNAs whose role in cancer is being increasingly recognised) in whole blood samples. We identified a microRNA signature that could distinguish patients with BTC from healthy participants. These miRNAs significantly improved the diagnostic potential of the routinely measured biomarker, CA 19-9, and were implicated in distinct immune processes in tumour tissues.
Collapse
Affiliation(s)
- Dan Høgdall
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Colm J O'Rourke
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Finn O Larsen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Shahryar Zarforoushan
- Department of Radiology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Troels D Christensen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Awaisa Ghazal
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mogens K Boisen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Patricia Muñoz-Garrido
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Julia S Johansen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Department of Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Department of Clinical Medicine, Department of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
3
|
Zhang H, Gao C, Zhang L, Yu R, Kang C. Homology modeling, virtual screening and MD simulations for identification of NUAK1 and ULK1 potential dual inhibitors. NEW J CHEM 2022. [DOI: 10.1039/d1nj03690d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cancer cells produce more reactive oxygen species (ROS) due to their severe metabolic stress. SNF1 like kinase 1 (NUAK1) is the key part of the cellular antioxidant system. Inhibiting the...
Collapse
|
4
|
He J, Yan H, Wei S, Chen G. LncRNA ST8SIA6-AS1 Promotes Cholangiocarcinoma Progression by Suppressing the miR-145-5p/MAL2 Axis. Onco Targets Ther 2021; 14:3209-3223. [PMID: 34040387 PMCID: PMC8139734 DOI: 10.2147/ott.s299634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The tumor-promoting roles of ST8SIA6-AS1 and miR-145-5p have been found in several cancers, but their function in cholangiocarcinoma (CHOL) remains speculative. The purpose of this study was to examine the regulatory functions of the ST8SIA6-AS1/MAL2/miR-145-5p pathway in CHOL progression. METHODS RT-qPCR assay was used to detect ST8SIA6-AS1 expression in CHOL tissues and cell lines. Cell migration, apoptosis, invasion, and proliferation abilities were assessed by RIP, RNA pull-down, and luciferase assays. CCK-8, BrdU, transwell, and FITC assays to investigate the regulatory functions of ST8SIA6-AS1, miR-145-5p, and MAL2 function in CHOL cells. RESULTS Findings revealed the enrichment of ST8SIA6-AS1 in CHOL tissues and cell lines. It was also found that ST8SIA6-AS1 facilitated cell growth and migration, but it reduced the apoptosis level of the CHOL cells. The results of experiments showed that ST8SIA6-AS1 sponged miR-145-5p, thereby allowing MAL2 to exert its biological function on CHOL cells. CONCLUSION This research suggested that the ST8SIA6-AS1/miR-145-5p/MAL2 axis could enhance CHOL progression, which might be useful to improve the clinical outcomes of CHOL patients.
Collapse
Affiliation(s)
- Junchuang He
- Department of Hepatobiliary Pancreatic Surgery, Henan Province People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 45003, Henan, People’s Republic of China
| | - Hongxian Yan
- Department of Hepatobiliary Pancreatic Surgery, Henan Province People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 45003, Henan, People’s Republic of China
| | - Sidong Wei
- Department of Hepatobiliary Pancreatic Surgery, Henan Province People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 45003, Henan, People’s Republic of China
| | - Guoyong Chen
- Department of Hepatobiliary Pancreatic Surgery, Henan Province People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 45003, Henan, People’s Republic of China
| |
Collapse
|
5
|
Mo G, Zhang B, Jiang Q. Role of ARK5 in cancer and other diseases (Review). Exp Ther Med 2021; 22:697. [PMID: 33986861 PMCID: PMC8112134 DOI: 10.3892/etm.2021.10129] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 06/20/2020] [Indexed: 12/14/2022] Open
Abstract
Malignant tumors are often exposed to hypoxic and glucose-starved microenvironments. AMP-activated protein kinase (AMPK) is an energy sensor that is stimulated during energy-deficient conditions and protects cells from hypoxic injury by regulating metabolism. AMPK-related protein kinase 5 (ARK5) is a member of the catalytic sub-unit of the AMPK family and has an important role in energy regulation and hypoxia. ARK5 is regulated by Akt and liver kinase B1 and is associated with numerous tumor-related molecules to exert the negative effects of tumors. Studies have revealed ARK5 overexpression in cases of tumor invasion and metastasis and a positive association with the degree of cancer cell malignancy, which is regarded as a key element in determining cancer prognosis. Furthermore, ARK5 downregulation improves drug sensitivity through the epithelial-mesenchymal transition pathway, indicating that it may be a potential therapeutic target. In other non-cancer conditions, ARK5 has various roles in neurodegenerative diseases (Alzheimer's and Huntington's disease), renal disorders (diabetic nephropathy and renal fibrosis) and physiological processes (striated muscle generation). In the present review, the upstream and downstream molecular pathways of ARK5 in cancer and other diseases are described and potential therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Guoheng Mo
- Department of Neurosurgery, Queen Mary College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bohan Zhang
- First Clinical Medical College, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qunguang Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
6
|
Pan X, Wang G, Wang B. MicroRNA-1182 and let-7a exert synergistic inhibition on invasion, migration and autophagy of cholangiocarcinoma cells through down-regulation of NUAK1. Cancer Cell Int 2021; 21:161. [PMID: 33750398 PMCID: PMC7942015 DOI: 10.1186/s12935-021-01797-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 01/27/2021] [Indexed: 12/17/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) is the second most common primary liver malignancy worldwide. Several microRNAs (miRNAs) have been implicated as potential tumor suppressors in CCA. This study aims to explore the potential effects of miR-1182 and let-7a on CCA development. Methods Bioinformatics analysis was conducted to screen differentially expressed genes in CCA, Western blot analysis detected NUAK1 protein expression and RT-qPCR detected miR-1182, let-7a and NUAK1 expression in CCA tissues and cell lines. Dual luciferase reporter gene assay and RIP were applied to validate the relationship between miR-1182 and NUAK1 as well as between let-7a and NUAK1. Functional experiment was conducted to investigate the role of miR-1182, let-7a and NUAK1 in cell migration, proliferation and autophagy. Then, the CCA cells that received various treatments were implanted to mice to establish animal model, followed by tumor observation and HE staining to evaluate lung metastasis. Results CCA tissues and cells were observed to have a high expression of NUAK1 and poor expression of miR-1182 and let-7a. NUAK1 was indicated as a target gene of miR-1182 and let-7a. Importantly, upregulation of either miR-1182 or let-7a induced autophagy, and inhibited cell progression and in vivo tumor growth and lung metastasis; moreover, combined treatment of miR-1182 and let-7a overexpression presented with enhanced inhibitory effect on NUAK1 expression and CCA progression, but such synergistic effect could be reversed by overexpression of NUAK1. Conclusion Taken together, the findings suggest the presence of a synergistic antitumor effect of miR-1182 and let-7a on the development of CCA via the down-regulation of NUAK1, providing novel insight into the targeted therapy against CCA.
Collapse
Affiliation(s)
- Xin Pan
- Interventional Department, The Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, People's Republic of China.
| | - Gang Wang
- Interventional Department, The Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, People's Republic of China
| | - Baoming Wang
- Interventional Department, The Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, People's Republic of China
| |
Collapse
|
7
|
Faisal M, Kim JH, Yoo KH, Roh EJ, Hong SS, Lee SH. Development and Therapeutic Potential of NUAKs Inhibitors. J Med Chem 2020; 64:2-25. [PMID: 33356242 DOI: 10.1021/acs.jmedchem.0c00533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NUAK isoforms, NUAK1 (ARK5) and NUAK2 (SNARK), are important members of the AMPK family of protein kinases. They are involved in a broad spectrum of physiological and cellular events, and sometimes their biological roles overlap. NUAK isoform dysregulation is associated with numerous pathological disorders, including neurodegeneration, metastatic cancer, and diabetes. Therefore, they are promising therapeutic targets in metabolic diseases and cancers; consequently, various NUAK-targeted inhibitors have been disclosed. The first part of this review comprises a brief discussion of the homology, expression, structure, and characteristics of NUAK isoforms. The second part focuses on NUAK isoforms' involvement in crucial biological operations, including mechanistic findings, highlighting how their abnormal functioning contributes to disease progression and quality of life. The third part summarizes the key findings and applications of targeting NUAK isoforms for treating multiple cancers and neurodegenerative disorders. The final part systematically presents a critical review and analysis of the literature on NUAK isoform inhibitions through small molecules.
Collapse
Affiliation(s)
- Muhammad Faisal
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jae Ho Kim
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Kyung Ho Yoo
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Eun Joo Roh
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.,Chemical Kinomics Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Soon Sun Hong
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - So Ha Lee
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
8
|
Qiongna D, Jiafeng Z, Yalin H, Ping H, Chuan Z, Xiaojie J, Miaomiao Z, Yiting S, Hui Z. Implication of hsa_circ_0028007 in reinforcing migration, invasion, and chemo-tolerance of nasopharyngeal carcinoma cells. J Clin Lab Anal 2020; 34:e23409. [PMID: 32524687 PMCID: PMC7521330 DOI: 10.1002/jcla.23409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background Given the reliability of circRNAs in symbolizing cancer progression, this investigation was designed to expound the involvement of hsa_circ_0028007 in regulating chemosensitivity of nasopharyngeal carcinoma (NPC) cells. Methods Altogether, 241 pairs of NPC tissues and para‐cancerous normal tissues were collected to identify NPC‐symbolic circRNAs, which have been screened by circRNA microarray in advance. Expressions of the circRNAs were determined by means of real‐time polymerase chain reaction (PCR). Besides, human NPC cell lines (ie, CNE2 and HONE1) were transfected by si‐hsa_circ_0028007 and si‐NC. Scratch assay, transwell assay, and MTT assay were performed to assess migration, invasion, and paclitaxel/cisplatin‐resistance of NPC cell lines. Results Hsa_circ_0028007 expression was abnormally heightened within NPC tissues in comparison with matched non‐tumor tissues (P < .05). Over‐expressed hsa_circ_0028007 was strongly associated with advanced (III‐IV) tumor stage, aggressive infiltration, and metastatic lymph nodes of NPC patients (P < .05). Regarding in vitro experiments, hsa_circ_0028007 expression was elevated in CNE2 and HONE1 cell lines as compared with HENE cell line (P < .05). Silencing of hsa_circ_0028007 not merely sensitized CNE2 and HONE1 cells against paclitaxel and cisplatin (P < .05), but also significantly repressed migration and invasion of the cell lines (P < .05). Conclusion Hsa_circ_0028007 was involved in facilitating progression and chemo‐resistance of NPC, which might offer an alternative for NPC treatment.
Collapse
Affiliation(s)
- Dong Qiongna
- Department of Otorhinolaryngology (South Campus), Ren Ji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhang Jiafeng
- Department of Otorhinolaryngology (South Campus), Ren Ji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hao Yalin
- Department of Otorhinolaryngology (South Campus), Ren Ji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - He Ping
- Department of Otorhinolaryngology (South Campus), Ren Ji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhou Chuan
- Department of Otorhinolaryngology (South Campus), Ren Ji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jin Xiaojie
- Department of Otorhinolaryngology (South Campus), Ren Ji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhao Miaomiao
- Department of Otorhinolaryngology (South Campus), Ren Ji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shao Yiting
- Department of Otorhinolaryngology (South Campus), Ren Ji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhao Hui
- Department of Otorhinolaryngology (South Campus), Ren Ji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Qin X, Song Y. Bioinformatics Analysis Identifies the Estrogen Receptor 1 (ESR1) Gene and hsa-miR-26a-5p as Potential Prognostic Biomarkers in Patients with Intrahepatic Cholangiocarcinoma. Med Sci Monit 2020; 26:e921815. [PMID: 32435051 PMCID: PMC7257878 DOI: 10.12659/msm.921815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Intrahepatic cholangiocarcinoma arises from the epithelial cells of the bile ducts and is associated with poor prognosis. This study aimed to use bioinformatics analysis to identify molecular biomarkers of intrahepatic cholangiocarcinoma and their potential mechanisms. Material/Methods MicroRNA (miRNA) and mRNA microarrays from GSE53870 and GSE32879 were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs (DEMs) associated with prognosis were identified using limma software and Kaplan-Meier survival analysis. Predictive target genes of the DEMs were identified using miRWalk, miRTarBase, miRDB, and TargetScan databases of miRNA-binding sites and targets. Target genes underwent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Hub genes were analyzed by constructing the protein-protein interaction (PPI) network using Cytoscape. DEMs validated the hub genes, followed by construction of the miRNA-gene regulatory network. Results Twenty-five DEMs were identified. Fifteen DEMs were upregulated, and ten were down-regulated. Kaplan-Meier survival analysis identified seven upregulated DEMs and nine down-regulated DEMs that were associated with the overall survival (OS), and 130 target genes were selected. GO analysis showed that target genes were mainly enriched for metabolism and development processes. KEGG analysis showed that target genes were mainly enriched for cancer processes and some signaling pathways. Fourteen hub genes identified from the PPI network were associated with the regulation of cell proliferation. The overlap between hub genes and DEMs identified the estrogen receptor 1 (ESR1) gene and hsa-miR-26a-5p. Conclusions Bioinformatics analysis identified ESR1 and hsa-miR-26a-5p as potential prognostic biomarkers for intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Xianzheng Qin
- Queen Mary School of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Yuning Song
- Queen Mary School of Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
10
|
Orlandella FM, Mariniello RM, Mirabelli P, De Stefano AE, Iervolino PLC, Lasorsa VA, Capasso M, Giannatiempo R, Rongo M, Incoronato M, Messina F, Salvatore M, Soricelli A, Salvatore G. miR-622 is a novel potential biomarker of breast carcinoma and impairs motility of breast cancer cells through targeting NUAK1 kinase. Br J Cancer 2020; 123:426-437. [PMID: 32418991 PMCID: PMC7403386 DOI: 10.1038/s41416-020-0884-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 04/03/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Aberrant expression of microRNAs (miR) has been proposed as non-invasive biomarkers for breast cancers. The aim of this study was to analyse the miR-622 level in the plasma and in tissues of breast cancer patients and to explore the role of miR-622 and its target, the NUAK1 kinase, in this context. METHODS miR-622 expression was analysed in plasma and in tissues samples of breast cancer patients by q-RT-PCR. Bioinformatics programs, luciferase assay, public dataset analysis and functional experiments were used to uncover the role of miR-622 and its target in breast cancer cells. RESULTS miR-622 is downregulated in plasma and in tissues of breast cancer patients respect to healthy controls and its downregulation is significantly associated with advanced grade and high Ki67 level. Modulation of miR-622 affects the motility phenotype of breast cancer cells. NUAK1 kinase is a functional target of miR-622, it is associated with poor clinical outcomes of breast cancer patients and is inversely correlated with miR-622 level. CONCLUSIONS miR-622/NUAK1 axis is deregulated in breast cancer patients and affects the motility phenotype of breast cancer cells. Importantly, miR-622 and NUAK1 hold promises as biomarkers and as targets for breast cancers.
Collapse
Affiliation(s)
| | - Raffaela Mariarosaria Mariniello
- Dipartimento di Scienze Motorie e del Benessere, Universita' degli Studi di Napoli "Parthenope", Via Medina 40, 80133, Naples, Italy.,CEINGE - Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145, Naples, Italy
| | | | - Anna Elisa De Stefano
- Dipartimento di Scienze Motorie e del Benessere, Universita' degli Studi di Napoli "Parthenope", Via Medina 40, 80133, Naples, Italy.,CEINGE - Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Paola Lucia Chiara Iervolino
- CEINGE - Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145, Naples, Italy.,Dipartimento di Scienze Biomediche Avanzate, Universita' "Federico II", Via Pansini 5, 80131, Napoli, Italy
| | - Vito Alessandro Lasorsa
- CEINGE - Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Mario Capasso
- IRCCS SDN, Via Emanuele Gianturco 113, 80143, Naples, Italy.,CEINGE - Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | | | - Maria Rongo
- IRCCS SDN, Via Emanuele Gianturco 113, 80143, Naples, Italy
| | | | | | | | - Andrea Soricelli
- IRCCS SDN, Via Emanuele Gianturco 113, 80143, Naples, Italy.,Dipartimento di Scienze Motorie e del Benessere, Universita' degli Studi di Napoli "Parthenope", Via Medina 40, 80133, Naples, Italy
| | - Giuliana Salvatore
- IRCCS SDN, Via Emanuele Gianturco 113, 80143, Naples, Italy. .,Dipartimento di Scienze Motorie e del Benessere, Universita' degli Studi di Napoli "Parthenope", Via Medina 40, 80133, Naples, Italy. .,CEINGE - Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145, Naples, Italy.
| |
Collapse
|
11
|
Hao S, Cong L, Qu R, Liu R, Zhang G, Li Y. Emerging roles of circular RNAs in colorectal cancer. Onco Targets Ther 2019; 12:4765-4777. [PMID: 31354303 PMCID: PMC6590902 DOI: 10.2147/ott.s208235] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/14/2019] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) are a newly discovered class of endogenous non-coding RNAs. Owing to the development of high-throughput sequencing, researchers have identified thousands of circRNAs. Emerging evidence suggests that circRNAs are involved in various tumor cell processes, including proliferation, apoptosis, invasion and migration. Because of their high stability and abundance, tissue-specific expression, and easy detection, circRNAs are considered ideal biomarkers for cancer diagnosis and prognosis. An increasing number of studies have recently demonstrated that circRNAs are closely associated with colorectal cancer (CRC). CRC is the third most common cancer and the second leading cause of cancer-related death globally. Thus, understanding the molecular mechanisms involved in the development and progression of CRC is vital. In this review, we summarize the current literature regarding human circRNAs related to CRC and present an overview of the potential clinical implications of circRNAs with respect to CRC.
Collapse
Affiliation(s)
- Shuhong Hao
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Liang Cong
- Department of Digestive Endoscopy, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Rongfeng Qu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Rui Liu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Guizhen Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yarong Li
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
12
|
|
13
|
MicroRNAs and extracellular vesicles in cholangiopathies. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1293-1307. [PMID: 28711597 DOI: 10.1016/j.bbadis.2017.06.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/22/2022]
|
14
|
Lan X, Liu X. LncRNA SNHG1 functions as a ceRNA to antagonize the effect of miR-145a-5p on the down-regulation of NUAK1 in nasopharyngeal carcinoma cell. J Cell Mol Med 2018; 23:2351-2361. [PMID: 29575772 PMCID: PMC6434074 DOI: 10.1111/jcmm.13497] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022] Open
Abstract
How lncRNA SNHG1 influences the aggressiveness of nasopharyngeal carcinoma cells as well as the underlying mechanism was studied. The lncRNA differences were analysed by GSE12452 gene microarray. The expression of SNHG1, MiR‐145‐5p and NUAK1 was identified by qRT‐PCR and western blot. Transfection was conducted to construct nasopharyngeal carcinoma cells with different expressions of SNHG1, miR‐145‐5p and NUAK1. Dual‐luciferase reporter assay was performed to explore the relationship between SNHG1, miR‐145‐5p and NUAK1. Wound‐healing assay and transwell invasion experiments were employed to study changes in cell migration capacity and cell invasion, respectively. Tumour xenografts were performed to observe lung metastasis of nude mice inoculated with transfected CNE cells. SNHG1 is highly expressed in nasopharyngeal carcinoma tissues and in cell lines. Down‐regulation of SNHG1 facilitated the expression of miR‐145‐5p and further suppressed the level of NAUK1 in CNE and HNE‐1 cells. Silencing of SNHG1, up‐regulation of miR‐145‐5p and inhibition of NAUK1 by relative transfection all attenuated the aggressiveness of CNE and HNE‐1 cells both in vivo and in vitro. Moreover, the impaired cell migration and invasion by SNHG1 siRNA could be rescued by cotransfection of miR‐145‐5p in CNE and HNE‐1 cells. LncRNA SNHG1 promoted the expression of NUAK1 by down‐regulating miR‐145‐5p and thus promoted the aggressiveness of nasopharyngeal carcinoma cells through AKT signalling pathway and induced epithelial‐mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Xintang Lan
- Department of Otolaryngology Head and Neck Surgery, Weihai Municipal Hospital, Weihai, China
| | - Xiuling Liu
- Department of Otolaryngology Head and Neck Surgery, Weihai Municipal Hospital, Weihai, China
| |
Collapse
|
15
|
Monteverde T, Tait-Mulder J, Hedley A, Knight JR, Sansom OJ, Murphy DJ. Calcium signalling links MYC to NUAK1. Oncogene 2018; 37:982-992. [PMID: 29106388 PMCID: PMC5815498 DOI: 10.1038/onc.2017.394] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/17/2017] [Accepted: 09/15/2017] [Indexed: 12/18/2022]
Abstract
NUAK1 is a member of the AMPK-related family of kinases. Recent evidence suggests that NUAK1 is an important regulator of cell adhesion and migration, cellular and organismal metabolism, and regulation of TAU stability. As such, NUAK1 may play key roles in multiple diseases ranging from neurodegeneration to diabetes and metastatic cancer. Previous work revealed a crucial role for NUAK1 in supporting viability of tumour cells specifically when MYC is overexpressed. This role is surprising, given that NUAK1 is activated by the tumour suppressor LKB1. Here we show that, in tumour cells lacking LKB1, NUAK1 activity is maintained by an alternative pathway involving calcium-dependent activation of PKCα. Calcium/PKCα-dependent activation of NUAK1 supports engagement of the AMPK-TORC1 metabolic checkpoint, thereby protecting tumour cells from MYC-driven cell death, and indeed, MYC selects for this pathway in part via transcriptional regulation of PKCα and ITPR. Our data point to a novel role for calcium in supporting tumour cell viability and clarify the synthetic lethal interaction between NUAK1 and MYC.
Collapse
Affiliation(s)
- T Monteverde
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - J Tait-Mulder
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - A Hedley
- CRUK Beatson Institute, Garscube Estate, Glasgow, UK
| | - J R Knight
- CRUK Beatson Institute, Garscube Estate, Glasgow, UK
| | - O J Sansom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
- CRUK Beatson Institute, Garscube Estate, Glasgow, UK
| | - D J Murphy
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
- CRUK Beatson Institute, Garscube Estate, Glasgow, UK
| |
Collapse
|
16
|
Xie H, Ren X, Xin S, Lan X, Lu G, Lin Y, Yang S, Zeng Z, Liao W, Ding YQ, Liang L. Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget 2018; 7:26680-91. [PMID: 27058418 PMCID: PMC5042007 DOI: 10.18632/oncotarget.8589] [Citation(s) in RCA: 361] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/07/2016] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs), a large class of RNAs, have recently shown huge capabilities as gene regulators in mammals. Some of them bind with microRNAs (miRNAs) and act as natural miRNA sponges to inhibit related miRNAs’ activities. Here we showed that hsa_circ_001569 acted as a positive regulator in cell proliferation and invasion of colorectal cancer (CRC). Moreover, hsa_circ_001569 was identified as a sponge of miR-145 and up-regulated miR-145 functional targets E2F5, BAG4 and FMNL2. In CRC tissues, circ_001569 negatively correlated with miR-145, and miR-145 correlated negatively with E2F5, BAG4 and FMNL2 expressions. Our study reveals a novel regulatory mechanism of circ_001569 in cell proliferation and invasion in CRC, provides a comprehensive landscape of circ_001569 that will facilitate further biomarker discoveries in the progression of CRC.
Collapse
Affiliation(s)
- Huijun Xie
- Department of Pathology, Nanfang Hospital, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Xiaoli Ren
- Department of Pathology, Nanfang Hospital, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Sainan Xin
- Department of Pathology, Nanfang Hospital, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Xiaoliang Lan
- Department of General Surgery, Nanfang Hospital, Guangzhou, Guangdong, China
| | - Guifeng Lu
- Department of Pathology, Nanfang Hospital, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yuan Lin
- Department of Pathology, Nanfang Hospital, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Shaoshan Yang
- Department of Pathology, Nanfang Hospital, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Zhicheng Zeng
- Department of Pathology, Nanfang Hospital, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Wenting Liao
- Department of Pathology, Nanfang Hospital, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
LncRNA TUG1 sponges miR-145 to promote cancer progression and regulate glutamine metabolism via Sirt3/GDH axis. Oncotarget 2017; 8:113650-113661. [PMID: 29371936 PMCID: PMC5768353 DOI: 10.18632/oncotarget.21922] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/08/2017] [Indexed: 01/17/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are important regulators in cancer progression. Deregulation of the lncRNA taurine upregulated gene 1 (TUG1) predicts poor prognosis and is implicated in the development of several cancers. In this study, we investigated the role of TUG1 in the pathogenesis of intrahepatic cholangiocarcinoma (ICC). We found that TUG1 is upregulated in ICC samples, which correlates with poor prognosis and adverse clinical pathological characteristics. Knockdown of TUG1 inhibited the proliferation, motility, and invasiveness of cultured ICC cells, and decreased tumor burden in a xenograft mouse model. When we explored the mechanisms underlying these effects, we found that TUG1 acts as an endogenous competing RNA (ceRNA) that ‘sponges’ miR-145, thereby preventing the degradation of Sirt3 mRNA and increasing expression of Sirt3 and GDH proteins. Accordingly, glutamine consumption, α-KG production, and ATP levels were dramatically decreased by TUG1 knockdown in ICC cells, and this effect was reversed by miR-145 inhibition. These findings indicate that the TUG1/miR-145/Sirt3/GDH regulatory network may provide a novel therapeutic strategy for treatment of ICC.
Collapse
|
18
|
Puik JR, Meijer LL, Le Large TY, Prado MM, Frampton AE, Kazemier G, Giovannetti E. miRNA profiling for diagnosis, prognosis and stratification of cancer treatment in cholangiocarcinoma. Pharmacogenomics 2017; 18:1343-1358. [PMID: 28832247 DOI: 10.2217/pgs-2017-0010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a lethal malignancy originating from the biliary tract epithelium. Most patients are diagnosed at an advanced stage. Even after resection with curative intent, prognosis remains poor. Previous studies have reported the evolving role of miRNAs as novel biomarkers in cancer diagnosis, prognostication and chemotherapy response. Various miRNAs, such as miR-21, miR-26, miR-122 and miR-150, have been identified as possible blood-based biomarkers for noninvasive diagnosis of CCA. Moreover, epithelial-mesenchymal transition (EMT)- and angiogenesis-associated miRNAs have been implicated in tumor cell dissemination and are able to determine clinical outcome. In fact, miRNAs involved in cell survival might even determine chemotherapy response. This review provides an overview of known miRNAs as CCA-specific biomarkers.
Collapse
Affiliation(s)
- Jisce R Puik
- Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Laura L Meijer
- Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Tessa Ys Le Large
- Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.,Laboratory of Experimental Oncology & Radiobiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Mireia Mato Prado
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital Campus, London, UK
| | - Adam E Frampton
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital Campus, London, UK
| | - Geert Kazemier
- Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.,Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| |
Collapse
|
19
|
Yu Z, Cheng H, Zhu H, Cao M, Lu C, Bao S, Pan Y, Li Y. Salinomycin enhances doxorubicin sensitivity through reversing the epithelial-mesenchymal transition of cholangiocarcinoma cells by regulating ARK5. ACTA ACUST UNITED AC 2017; 50:e6147. [PMID: 28832761 PMCID: PMC5561806 DOI: 10.1590/1414-431x20176147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 06/27/2017] [Indexed: 12/31/2022]
Abstract
Chemotherapy response rates in patients with cholangiocarcinoma remain low, primarily due to the development of drug resistance. Epithelial-mesenchymal transition (EMT) of cancer cells is widely accepted to be important for metastasis and progression, but it has also been linked to the development of chemoresistance. Salinomycin (an antibiotic) has shown some potential as a chemotherapeutic agent as it selectively kills cancer stem cells, and has been hypothesized to block the EMT process. In this study, we investigated whether salinomycin could reverse the chemoresistance of cholangiocarcinoma cells to the chemotherapy drug doxorubicin. We found that combined salinomycin with doxorubicin treatment resulted in a significant decrease in cell viability compared with doxorubicin or salinomycin treatment alone in two cholangiocarcinoma cell lines (RBE and Huh-28). The dosages of both drugs that were required to produce a cytotoxic effect decreased, indicating that these two drugs have a synergistic effect. In terms of mechanism, salinomycin reversed doxorubicin-induced EMT of cholangiocarcinoma cells, as shown morphologically and through the detection of EMT markers. Moreover, we showed that salinomycin treatment downregulated the AMP-activated protein kinase family member 5 (ARK5) expression, which regulates the EMT process of cholangiocarcinoma. Our results indicated that salinomycin reversed the EMT process in cholangiocarcinoma cells by inhibiting ARK5 expression and enhanced the chemosensitivity of cholangiocarcinoma cells to doxorubicin. Therefore, a combined treatment of salinomycin with doxorubicin could be used to enhance doxorubicin sensitivity in patients with cholangiocarcinoma.
Collapse
Affiliation(s)
- Z Yu
- Department of General Surgery, Qingdao Clinic Medical College, Nanjing Medical University, Qingdao, China.,Department of General Surgery, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - H Cheng
- Department of General Surgery, The Afflicted Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - H Zhu
- Department of Gastroenterology, The Afflicted Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - M Cao
- Department of General Surgery, The Afflicted Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - C Lu
- Department of General Surgery, The Afflicted Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - S Bao
- Department of General Surgery, The Afflicted Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Y Pan
- Department of General Surgery, The Afflicted Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Y Li
- Department of General Surgery, Qingdao Clinic Medical College, Nanjing Medical University, Qingdao, China
| |
Collapse
|
20
|
Additional N-glycosylation mutation in the major hydrophilic region of hepatitis B virus S gene is a risk indicator for hepatocellular carcinoma occurrence in patients with coexistence of HBsAg/anti-HBs. Oncotarget 2017; 8:61719-61730. [PMID: 28977899 PMCID: PMC5617459 DOI: 10.18632/oncotarget.18682] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/08/2017] [Indexed: 12/11/2022] Open
Abstract
The study aimed to determine the association of additional N-glycosylation mutations in the major hydrophilic region (MHR) of hepatitis B virus (HBV) S gene with hepatocellular carcinoma (HCC) occurrence in HBsAg/anti-HBs coexistent patients. A total of 288 HBsAg/anti-HBs coexistent patients and 490 single HBsAg-positive patients were enrolled, including 193 with HCC, 433 with chronic hepatitis B (CHB), and 152 with acute-on-chronic liver failure (ACLF). The HBV S genes were amplified from serum and sequenced. The frequency of additional N-glycosylation mutations was significantly higher in HCC patients (12.37%) than in CHB patients (4.39%) and ACLF patients (2.63%). The frequency escalated by an order of single HBsAg-positive non-HCC (1.61%), single HBsAg-positive HCC (5.98%), HBsAg/anti-HBs coexistent non-HCC (8.01%), and HBsAg/anti-HBs coexistent HCC (22.36%). Twelve kinds of mutations/mutation patterns were detected, five of which have not been reported. Multivariate analysis showed that age > 40 years [OR, 3.005; 95% CI, 1.177−7.674; P = 0.021], alpha-fetoprotein > 10 ng/mL [OR, 4.718; 95% CI, 2.406−9.251; P <0.001], cirrhosis [OR, 6.844; 95% CI, 2.773−16.891, P < 0.001], Hepatitis B e antigen negativity [OR, 2.218; 95% CI, 4.335, P = 0.020], and additional N-glycosylation mutation [OR, 2.831; 95% CI, 1.157−6.929; P = 0.023] were independent risk factors for HCC in HBsAg/anti-HBs coexistent patients. Dynamical analysis showed that the additional N-glycosylation mutations existed 1-4 years prior to HCC occurrence in eight of 18 patients observed. In conclusion, the dditional N-glycosylation mutations together with HBsAg/anti-HBs coexistence might serve as a predictive indicator for HCC occurrence in chronic HBV-infected patients.
Collapse
|
21
|
Li YW, Chiang KY, Li YH, Wu SY, Liu W, Lin CR, Wu JL. MiR-145 mediates zebrafish hepatic outgrowth through progranulin A signaling. PLoS One 2017; 12:e0177887. [PMID: 28531199 PMCID: PMC5439702 DOI: 10.1371/journal.pone.0177887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/04/2017] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRs) are mRNA-regulatory molecules that fine-tune gene expression and modulate both processes of development and tumorigenesis. Our previous studies identified progranulin A (GrnA) as a growth factor which induces zebrafish hepatic outgrowth through MET signaling. We also found that miR-145 is one of potential fine-tuning regulators of GrnA involved in embryonic hepatic outgrowth. The low level of miR-145 seen in hepatocarinogenesis has been shown to promote pathological liver growth. However, little is known about the regulatory mechanism of miR-145 in embryonic liver development. In this study, we demonstrate a significant decrease in miR-145 expression during hepatogenesis. We modulate miR-145 expression in zebrafish embryos by injection with a miR-145 mimic or a miR-145 hairpin inhibitor. Altered embryonic liver outgrowth is observed in response to miR-145 expression modulation. We also confirm a critical role of miR-145 in hepatic outgrowth by using whole-mount in situ hybridization. Loss of miR-145 expression in embryos results in hepatic cell proliferation, and vice versa. Furthermore, we demonstrate that GrnA is a target of miR-145 and GrnA-induced MET signaling is also regulated by miR-145 as determined by luciferase reporter assay and gene expression analysis, respectively. In addition, co-injection of GrnA mRNA with miR-145 mimic or MO-GrnA with miR-145 inhibitor restores the liver defects caused by dysregulation of miR-145 expression. In conclusion, our findings suggest an important role of miR-145 in regulating GrnA-dependent hepatic outgrowth in zebrafish embryonic development.
Collapse
Affiliation(s)
- Ya-Wen Li
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Keng-Yu Chiang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Department of Life science, National Taiwan University, Taipei, Taiwan
| | - Yen-Hsing Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Sung-Yu Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Ray Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jen-Leih Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
22
|
Chen Y, Liu D, Liu P, Chen Y, Yu H, Zhang Q. Identification of biomarkers of intrahepatic cholangiocarcinoma via integrated analysis of mRNA and miRNA microarray data. Mol Med Rep 2017; 15:1051-1056. [PMID: 28098904 PMCID: PMC5367350 DOI: 10.3892/mmr.2017.6123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/07/2016] [Indexed: 01/06/2023] Open
Abstract
The present study aimed to identify potential therapeutic targets of intrahepatic cholangiocarcinoma (ICC) via integrated analysis of gene (transcript version) and microRNA (miRNA/miR) expression. The miRNA microarray dataset GSE32957 contained miRNA expression data from 16 ICC, 7 mixed type of combined hepatocellular-cholangiocarcinoma (CHC), 2 hepatic adenoma, 3 focal nodular hyperplasia (FNH) and 5 healthy liver tissue samples, and 2 cholangiocarcinoma cell lines. In addition, the mRNA microarray dataset GSE32879 contained mRNA expression data from 16 ICC, 7 CHC, 2 hepatic adenoma, 5 FNH and 7 healthy liver tissue samples. The datasets were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) and miRNAs (DEMs) in ICC samples compared with healthy liver tissues were identified via the limma package, following data preprocessing. Genes that exhibited alternative splicing (AS) in ICC samples were identified via AltAnalyze software. Functional enrichment analysis of DEGs was performed using the Database for Annotation, Visualization and Integrated Analysis. Target genes of DEMs were identified using the TargetScan database. The regulatory association between DEMs and any overlaps among DEGs, alternative splicing genes (ASGs) and target genes of DEMs were retrieved, and a network was visualized using the Cytoscape software. A total of 2,327 DEGs, 70 DEMs and 623 ASGs were obtained. Functional enrichment analysis indicated that DEGs were primarily enriched in biological processes and pathways associated with cell activity or the immune system. A total of 63 overlaps were obtained among DEGs, ASGs and target genes of DEMs, and a regulation network that contained 243 miRNA-gene regulation pairs was constructed between these overlaps and DEMs. The overlapped genes, including sprouty-related EVH1 domain containing 1, protein phosphate 1 regulatory subunit 12A, chromosome 20 open reading frame 194, and DEMs, including hsa-miR-96, hsa-miR-1 and hsa-miR-25, may be potential therapeutic targets for the future treatment of ICC.
Collapse
Affiliation(s)
- Yaqing Chen
- Department of VIP Ward, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Dan Liu
- Department of Ultrasonic Imaging, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Pengfei Liu
- Department of Lymphoma, Sino‑US Center of Lymphoma and Leukemia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Yajing Chen
- Department of Internal Medicine, Baoding Xiongxian County Hospital, Baoding, Hebei 071000, P.R. China
| | - Huiling Yu
- Department of Gastroenterology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Quan Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| |
Collapse
|
23
|
Huang SB, Zheng CX. Gene alterations and epigenetic changes in intrahepatic cholangiocarcinoma. Expert Rev Anticancer Ther 2016; 17:89-96. [PMID: 27893290 DOI: 10.1080/14737140.2017.1266261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shao-Bin Huang
- Department of Pancreato-biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chao-Xu Zheng
- Department of Pancreato-biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
24
|
Liang Z, Liu X, Zhang Q, Wang C, Zhao Y. Diagnostic value of microRNAs as biomarkers for cholangiocarcinoma. Dig Liver Dis 2016; 48:1227-32. [PMID: 27476468 DOI: 10.1016/j.dld.2016.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND It has been reported that microRNAs might serve as biomarkers for cholangiocarcinoma (CCA) detection, but their diagnostic accuracy are unclear and controversial. AIM To evaluate the diagnostic accuracy of microRNAs for CCA. MATERIALS AND METHODS PubMed, Embase, Web of Science and Cochrane Library were systematically searched to identify relevant articles by using the key words "cholangiocarcinoma" and "microRNA". The methodological quality of each study was assessed by QUADAS-2. According to the inclusive and exclusive criteria, 11 articles were identified and analyzed by Meta-disc software v.1.4 and STATA 12.0 software package. RESULTS 11 articles with 430 CCA patients and 406 controls were identified. The results showed that the pooled sensitivity was 0.756 (95% CI: 0.693-0.810), specificity was 0.914 (95% CI: 0.861-0.947), positive likelihood ratio was 8.747 (95% CI: 5.320-14.381), negative likelihood ratio was 0.267 (95% CI: 0.208-0.341) and diagnostic odds ratio was 32.791 (95% CI: 17.327, 62.060). In addition, the area under the summary ROC cure (AUC) was 0.90 (95% CI: 0.87-0.93). CONCLUSION MicroRNAs have great potential as biomarkers for the diagnosis of CCA patients. However, the clinical application of microRNA assays for CCA diagnosis still needs further validation by more prospective studies.
Collapse
Affiliation(s)
- Zhenzhen Liang
- Dept. Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xin Liu
- Dept. Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Qian Zhang
- Dept. Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Chunpeng Wang
- School of Mathematics and Statistics, Northeast Normal University, Changchun, Jilin, China.
| | - Yinlong Zhao
- Dept. Nuclear Medicine, 2nd Hospital, Jilin University, Changchun, China.
| |
Collapse
|