1
|
Ogunleye AO, Gayen N, Rauth S, Marimuthu S, Nimmakayala RK, Alsafwani ZW, Cox JL, Batra SK, Ponnusamy MP. PAF1/HIF1α axis rewires the glycolytic metabolism to fuel aggressiveness of pancreatic cancer. Cancer Metab 2024; 12:26. [PMID: 39242538 PMCID: PMC11380429 DOI: 10.1186/s40170-024-00354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND PAF1/PD2 deregulation contributes to tumorigenesis, drug resistance, and cancer stem cell maintenance in Pancreatic Cancer (PC). Recent studies demonstrate that metabolic reprogramming plays a role in PC progression, but the mechanism is poorly understood. Here, we focused on examining the role of PAF1/PD2 in the metabolic rewiring of PC. METHODS Cell lines were transfected with shRNAs to knockdown PAF1/PD2. Metabolic genes regulated by PAF1/PD2 were identified by qPCR/western blot, and metabolic assays were performed. Immunoprecipitations/ChIP were performed to identify PAF1/PD2 protein partners and confirm PAF1/HIF1α sub-complex binding to LDHA. RESULTS PAF1 and LDHA showed progressively increased expression in human pancreatic tumor sections. Aerobic glycolysis genes were downregulated in PAF1-depleted PC cells. Metabolic assays indicated a decreased lactate production and glucose uptake in knockdown cells. Furthermore, PAF1/PD2 depletion showed a reduced glycolytic rate and increased oxidative phosphorylation by ECAR and OCR analysis. Interestingly, we identified that HIF1α interacts and co-localizes with PAF1, specifically in PC cells. We also observed that the PAF1/PD2-HIF1α complex binds to the LDHA promoter to regulate its expression, reprogramming the metabolism to utilize the aerobic glycolysis pathway preferentially. CONCLUSION Overall, the results indicate that PAF1/PD2 rewires PC metabolism by interacting with HIF1α to regulate the expression of LDHA.
Collapse
Affiliation(s)
- Ayoola O Ogunleye
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, 985870, USA
| | - Neelanjana Gayen
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, 985870, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, 985870, USA
| | - Saravanakumar Marimuthu
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, 985870, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, 985870, USA
| | - Zahraa W Alsafwani
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, 985870, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, 985870, USA.
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, NE, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, 985870, USA.
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, NE, USA.
| |
Collapse
|
2
|
Tian Y, Zhao W, Lin C, Chen Y, Lin Q, Liu Y, Gu D, Tian L. A novel signature of seven aging-related genes for risk stratification, prognosis prediction and benefit evaluation of chemotherapy, and immunotherapy in elderly patients with lung adenocarcinoma. Heliyon 2024; 10:e33268. [PMID: 39022075 PMCID: PMC11252982 DOI: 10.1016/j.heliyon.2024.e33268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Background Aging, a multifaceted biological process, is thought to be associated with lung adenocarcinoma (LUAD) development and progression. However, it is unclear whether aging-related genes (ARGs) can predict tumor risk, chemotherapy and immunotherapy benefits, and prognosis in LUAD patients at different ages. Methods Gene expression datasets and clinical information of LUAD patients were downloaded from TCGA and GEO database. Univariate and multivariate Cox regression, and lasso algorithm were employed to identify the ARG signatures. Patients were stratified into high-risk and low-risk groups to evaluate the predictive accuracy using Kaplan-Meier curves, ROC curves, and time-dependent AUC. A nomogram was established to predict the survival probability. GSEA revealed potential pathways, and CIBERSORT indicated different immunologic status. TIDE score was used to predict the potential tumor response to immune checkpoint inhibitors, and GDSC was employed to evaluate the sensitivity of chemotherapeutic drugs. The correlation of TIDE score and patient age, as well as that of ARGs and patient age was investigated. And cell Culture and RT-qPCR for external validation for key gene. Results A novel gene signature based on seven ARGs was established, including BMP15, CD79A, CDKN3, CDX2, COL1A1, DKK1, and GRIK2. Our model demonstrated exceptional prediction accuracy for elderly LUAD patients of 71-90 years old. A nomogram model was constructed to predict the survival probability, and the C-index value was 0.737, indicating our prognostic nomogram model has high accuracy. Through external RT-qPCR validation, we found that CD79A expression in H1299 was higher than that of BEAS-2B. And novel immunotherapy and chemotherapy regimens were accordingly proposed for the elderly LUAD patients. Conclusion We identified a novel gene signature based on seven ARGs for risk stratification, prognosis prediction and benefit evaluation of immunotherapy and chemotherapy in elderly LUAD patients.
Collapse
Affiliation(s)
- Yi Tian
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Wenya Zhao
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Chenjing Lin
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yang Chen
- Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qiaoxin Lin
- Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yiru Liu
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Dianna Gu
- Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ling Tian
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| |
Collapse
|
3
|
Melnick AF, Mullin C, Lin K, McCarter AC, Liang S, Liu YE, Wang Q, Jerome NA, Choe E, Kunnath N, Bodanapu G, Akter F, Magnuson B, Kumar S, Lombard DB, Muntean AG, Ljungman M, Sekiguchi J, Ryan RJH, Chiang MY. Cdc73 protects Notch-induced T-cell leukemia cells from DNA damage and mitochondrial stress. Blood 2023; 142:2159-2174. [PMID: 37616559 PMCID: PMC10733839 DOI: 10.1182/blood.2023020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
ABSTRACT Activated Notch signaling is highly prevalent in T-cell acute lymphoblastic leukemia (T-ALL), but pan-Notch inhibitors showed excessive toxicity in clinical trials. To find alternative ways to target Notch signals, we investigated cell division cycle 73 (Cdc73), which is a Notch cofactor and key component of the RNA polymerase-associated transcriptional machinery, an emerging target in T-ALL. Although we confirmed previous work that CDC73 interacts with NOTCH1, we also found that the interaction in T-ALL was context-dependent and facilitated by the transcription factor ETS1. Using mouse models, we showed that Cdc73 is important for Notch-induced T-cell development and T-ALL maintenance. Mechanistically, chromatin and nascent gene expression profiling showed that Cdc73 intersects with Ets1 and Notch at chromatin within enhancers to activate expression of known T-ALL oncogenes through its enhancer functions. Cdc73 also intersects with these factors within promoters to activate transcription of genes that are important for DNA repair and oxidative phosphorylation through its gene body functions. Consistently, Cdc73 deletion induced DNA damage and apoptosis and impaired mitochondrial function. The CDC73-induced DNA repair expression program co-opted by NOTCH1 is more highly expressed in T-ALL than in any other cancer. These data suggest that Cdc73 might induce a gene expression program that was eventually intersected and hijacked by oncogenic Notch to augment proliferation and mitigate the genotoxic and metabolic stresses of elevated Notch signaling. Our report supports studying factors such as CDC73 that intersect with Notch to derive a basic scientific understanding on how to combat Notch-dependent cancers without directly targeting the Notch complex.
Collapse
Affiliation(s)
- Ashley F. Melnick
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| | - Carea Mullin
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI
| | - Karena Lin
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| | - Anna C. McCarter
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA
| | - Shannon Liang
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA
| | - Yiran E. Liu
- Cancer Biology Program, Stanford University, Stanford, CA
| | - Qing Wang
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI
| | - Nicole A. Jerome
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| | - Elizabeth Choe
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Nicholas Kunnath
- Center for Healthcare Outcomes and Policy, University of Michigan School of Medicine, Ann Arbor, MI
| | - Geethika Bodanapu
- School of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Fatema Akter
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA
| | - Brian Magnuson
- Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Surinder Kumar
- Department of Pathology and Laboratory Medicine and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL
| | - David B. Lombard
- Department of Pathology and Laboratory Medicine and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL
| | - Andrew G. Muntean
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Mats Ljungman
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Radiology Oncology, University of Michigan School of Medicine, Ann Arbor, MI
| | - JoAnn Sekiguchi
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI
| | - Russell J. H. Ryan
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Mark Y. Chiang
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| |
Collapse
|
4
|
Tang B, Dou S. Knockdown of PAF1 reduces cervical cancer cell proliferation, migration and invasion via retarding FLOT2-mediated MEK/ERK1/2 pathway. Cell Adh Migr 2023; 17:1-10. [PMID: 37754347 PMCID: PMC10538450 DOI: 10.1080/19336918.2023.2260641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 05/22/2023] [Indexed: 09/28/2023] Open
Abstract
Cervical cancer (CC) is a very usual reproductive malignant tumor in women. RNA polymerase II-associated factor 1 (PAF1) and flotillin-2 (FLOT2) both have been discovered to key participators in cancers' progression. However, the effects of PAF1/FLOT2 axis on CC development have not been probed. In this study, PAF1 and FLOT2 exhibited higher expression, and silencing of PAF1 down-regulated FLOT2 expression in CC. In addition, the regulatory effects of PAF1 suppression on CC progression were reversed after FLOT2 overexpression. Next, inhibition of PAF1 slowed the tumor growth in vivo through modulating FLOT2. Besides, down-regulation of PAF1 reduced FLOT2 expression to retard the MEK/ERK1/2 pathway. In conclusion, knockdown of PAF1 suppressed CC progression via retarding FLOT2-mediated MEK/ERK1/2 pathway. Our findings illustrated that the PAF1/FLOT2 axis may be useful bio-targets for CC treatment.
Collapse
Affiliation(s)
- Bin Tang
- Department of Gynecology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Shulan Dou
- Department of Gynecology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
5
|
Zhang B, Zhao B, Han S, Chen S. CNOT4 suppresses nonsmall cell lung cancer progression by promoting the degradation of PAF1. Mol Carcinog 2023; 62:1563-1571. [PMID: 37493105 DOI: 10.1002/mc.23599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/21/2023] [Accepted: 06/09/2023] [Indexed: 07/27/2023]
Abstract
CCR4-NOT transcription complex subunit 4 (CNOT4) and RNA polymerase II-associated factor, homolog (Saccharomyces cerevisiae) (PAF1) are implicated in nonsmall cell lung cancer (NSCLC). However, the molecular mechanism of their interaction in NSCLC progression is unknown. The expression of PAF1 and CNOT4 in human NSCLC tissues was detected by quantitative polymerase chain reaction. A549 cells that stably expressed CNOT4 and/or PAF1 were established. Western blot analysis and co-immunoprecipitation experiments were performed to reveal the interaction between CNOT4 and PAF1. Proliferation, migration, epithelial-mesenchymal transition (EMT), and colony formation assays were performed to determine the effect of CNOT4-PAF1 axis on NSCLC metastasis and stemness. Xenograft mouse tumor model was established, and tumor progression, EMT, and stemness were evaluated. It was found that CNOT4 expression was downregulated, whereas PAF1 expression was upregulated in human NSCLC tissues. CNOT4 facilitated the ubiquitination and degradation of PAF1 via the 26S proteasome. CNOT4 overexpression inhibited NSCLC progression, whereas PAF1 overexpression enhanced the proliferation, migration, and stemness of NSCLC, both in vitro and in vivo. Our results suggest that CNOT4-PAF1 axis modulates NSCLC metastasis and stemness, and may serve as potential therapeutic targets for lung cancer treatment.
Collapse
Affiliation(s)
- Biao Zhang
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Zhao
- Department of Pharmacy, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Song Han
- Department of Thoracic Surgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Shaomu Chen
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
6
|
Li C, Guo Y, Wang L, Yan S. The SMC5/6 complex recruits the PAF1 complex to facilitate DNA double-strand break repair in Arabidopsis. EMBO J 2023; 42:e112756. [PMID: 36815434 PMCID: PMC10068331 DOI: 10.15252/embj.2022112756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
DNA double-strand breaks (DSBs) are one of the most toxic forms of DNA damage, which threatens genome stability. Homologous recombination is an error-free DSB repair pathway, in which the evolutionarily conserved SMC5/6 complex (SMC5/6) plays essential roles. The PAF1 complex (PAF1C) is well known to regulate transcription. Here we show that SMC5/6 recruits PAF1C to facilitate DSB repair in plants. In a genetic screen for DNA damage response mutants (DDRMs), we found that the Arabidopsis ddrm4 mutant is hypersensitive to DSB-inducing agents and is defective in homologous recombination. DDRM4 encodes PAF1, a core subunit of PAF1C. Further biochemical and genetic studies reveal that SMC5/6 recruits PAF1C to DSB sites, where PAF1C further recruits the E2 ubiquitin-conjugating enzymes UBC1/2, which interact with the E3 ubiquitin ligases HUB1/2 to mediate the monoubiquitination of histone H2B at DSBs. These results implicate SMC5/6-PAF1C-UBC1/2-HUB1/2 as a new axis for DSB repair through homologous recombination, revealing a new mechanism of SMC5/6 and uncovering a novel function of PAF1C.
Collapse
Affiliation(s)
- Cunliang Li
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Yuyu Guo
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Lili Wang
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Shunping Yan
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
7
|
Rauth S, Ganguly K, Atri P, Parte S, Nimmakayala RK, Varadharaj V, Nallasamy P, Vengoji R, Ogunleye AO, Lakshmanan I, Chirravuri R, Bessho M, Cox JL, Foster JM, Talmon GA, Bessho T, Ganti AK, Batra SK, Ponnusamy MP. Elevated PAF1-RAD52 axis confers chemoresistance to human cancers. Cell Rep 2023; 42:112043. [PMID: 36709426 PMCID: PMC10374878 DOI: 10.1016/j.celrep.2023.112043] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/11/2022] [Accepted: 01/13/2023] [Indexed: 01/30/2023] Open
Abstract
Cisplatin- and gemcitabine-based chemotherapeutics represent a mainstay of cancer therapy for most solid tumors; however, resistance limits their curative potential. Here, we identify RNA polymerase II-associated factor 1 (PAF1) as a common driver of cisplatin and gemcitabine resistance in human cancers (ovarian, lung, and pancreas). Mechanistically, cisplatin- and gemcitabine-resistant cells show enhanced DNA repair, which is inhibited by PAF1 silencing. We demonstrate an increased interaction of PAF1 with RAD52 in resistant cells. Targeting the PAF1 and RAD52 axis combined with cisplatin or gemcitabine strongly diminishes the survival potential of resistant cells. Overall, this study shows clinical evidence that the expression of PAF1 contributes to chemotherapy resistance and worse clinical outcome for lethal cancers.
Collapse
Affiliation(s)
- Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Venkatesh Varadharaj
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Ayoola O Ogunleye
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Ramakanth Chirravuri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Mika Bessho
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Jason M Foster
- Department of Surgery, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Geoffrey A Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Tadayoshi Bessho
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Apar Kishor Ganti
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA; Division of Oncology-Hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, NE, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, NE, USA.
| |
Collapse
|
8
|
Melnick A, Liang S, Liu Y, Wang Q, Dean N, Choe E, Kunnath N, Bodanapu G, Mullin C, Akter F, Lin K, Magnuson B, Kumar S, Lombard DB, Muntean AG, Ljungman M, Sekiguchi J, Ryan RJH, Chiang MY. Cdc73 protects Notch-induced T-cell leukemia cells from DNA damage and mitochondrial stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525059. [PMID: 36711472 PMCID: PMC9882378 DOI: 10.1101/2023.01.22.525059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Activated Notch signaling is highly prevalent in T-cell acute lymphoblastic leukemia (T-ALL) but pan-Notch inhibitors were toxic in clinical trials. To find alternative ways to target Notch signals, we investigated Cell division cycle 73 (Cdc73), which is a Notch cofactor and component of transcriptional machinery, a potential target in T-ALL. While we confirmed previous work that CDC73 interacts with NOTCH1, we also found that the interaction in T-ALL was context-dependent and facilitated by the lymphoid transcription factor ETS1. Using mouse models, we showed that Cdc73 is important for Notch-induced T-cell development and T-ALL maintenance. Mechanistically, Cdc73, Ets1, and Notch intersect chromatin at promoters and enhancers to activate oncogenes and genes that are important for DNA repair and oxidative phosphorylation. Consistently, Cdc73 deletion in T-ALL cells induced DNA damage and impaired mitochondrial function. Our data suggests that Cdc73 might promote a gene expression program that was eventually intersected by Notch to mitigate the genotoxic and metabolic stresses of elevated Notch signaling. We also provide mechanistic support for testing inhibitors of DNA repair, oxidative phosphorylation, and transcriptional machinery. Inhibiting pathways like Cdc73 that intersect with Notch at chromatin might constitute a strategy to weaken Notch signals without directly targeting the Notch complex.
Collapse
|
9
|
Park J, Park S, Lee JS. Role of the Paf1 complex in the maintenance of stem cell pluripotency and development. FEBS J 2023; 290:951-961. [PMID: 35869661 DOI: 10.1111/febs.16582] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/26/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
Cell identity is determined by the transcriptional regulation of a cell-type-specific gene group. The Paf1 complex (Paf1C), an RNA polymerase II-associating factor, is an important transcriptional regulator that not only participates in transcription elongation and termination but also affects transcription-coupled histone modifications and chromatin organisation. Recent studies have shown that Paf1C is involved in the expression of genes required for self-renewal and pluripotency in stem cells and tumorigenesis. In this review, we focused on the role of Paf1C as a critical transcriptional regulator in cell fate decisions. Paf1C affects the pluripotency of stem cells by regulating the expression of core transcription factors such as Oct4 and Nanog. In addition, Paf1C directly binds to the promoters or distant elements of target genes, thereby maintaining the pluripotency in embryonic stem cells derived from an early stage of the mammalian embryo. Paf1C is upregulated in cancer stem cells, as compared with that in cancer cells, suggesting that Paf1C may be a target for cancer therapy. Interestingly, Paf1C is involved in multiple developmental stages in Drosophila, zebrafish, mice and even humans, thereby displaying a trend for the correlation between Paf1C and cell fate. Thus, we propose that Paf1C is a critical contributor to cell differentiation, cell specification and its characteristics and could be employed as a therapeutic target in developmental diseases.
Collapse
Affiliation(s)
- Jiyeon Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon-si, Korea
| | - Shinae Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon-si, Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon-si, Korea
| |
Collapse
|
10
|
Jiao L, Liu Y, Yu XY, Pan X, Zhang Y, Tu J, Song YH, Li Y. Ribosome biogenesis in disease: new players and therapeutic targets. Signal Transduct Target Ther 2023; 8:15. [PMID: 36617563 PMCID: PMC9826790 DOI: 10.1038/s41392-022-01285-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 01/10/2023] Open
Abstract
The ribosome is a multi-unit complex that translates mRNA into protein. Ribosome biogenesis is the process that generates ribosomes and plays an essential role in cell proliferation, differentiation, apoptosis, development, and transformation. The mTORC1, Myc, and noncoding RNA signaling pathways are the primary mediators that work jointly with RNA polymerases and ribosome proteins to control ribosome biogenesis and protein synthesis. Activation of mTORC1 is required for normal fetal growth and development and tissue regeneration after birth. Myc is implicated in cancer development by enhancing RNA Pol II activity, leading to uncontrolled cancer cell growth. The deregulation of noncoding RNAs such as microRNAs, long noncoding RNAs, and circular RNAs is involved in developing blood, neurodegenerative diseases, and atherosclerosis. We review the similarities and differences between eukaryotic and bacterial ribosomes and the molecular mechanism of ribosome-targeting antibiotics and bacterial resistance. We also review the most recent findings of ribosome dysfunction in COVID-19 and other conditions and discuss the consequences of ribosome frameshifting, ribosome-stalling, and ribosome-collision. We summarize the role of ribosome biogenesis in the development of various diseases. Furthermore, we review the current clinical trials, prospective vaccines for COVID-19, and therapies targeting ribosome biogenesis in cancer, cardiovascular disease, aging, and neurodegenerative disease.
Collapse
Affiliation(s)
- Lijuan Jiao
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Yuzhe Liu
- grid.452829.00000000417660726Department of Orthopedics, the Second Hospital of Jilin University, Changchun, Jilin 130000 P. R. China
| | - Xi-Yong Yu
- grid.410737.60000 0000 8653 1072Key Laboratory of Molecular Target & Clinical Pharmacology and the NMPA State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 511436 P. R. China
| | - Xiangbin Pan
- grid.506261.60000 0001 0706 7839Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China ,Key Laboratory of Cardiovascular Appratus Innovation, Beijing, 100037 P. R. China
| | - Yu Zhang
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Junchu Tu
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, P. R. China. .,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China.
| | - Yangxin Li
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
11
|
Ren S, Jin Y, Chen Y, Shen B. CRPMKB: a knowledge base of cancer risk prediction models for systematic comparison and personalized applications. Bioinformatics 2022; 38:1669-1676. [PMID: 34927675 DOI: 10.1093/bioinformatics/btab850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 02/05/2023] Open
Abstract
MOTIVATION In the era of big data and precision medicine, accurate risk assessment is a prerequisite for the implementation of risk screening and preventive treatment. A large number of studies have focused on the risk of cancer, and related risk prediction models have been constructed, but there is a lack of effective resource integration for systematic comparison and personalized applications. Therefore, the establishment and analysis of the cancer risk prediction model knowledge base (CRPMKB) is of great significance. RESULTS The current knowledge base contains 802 model data. The model comparison indicates that the accuracy of cancer risk prediction was greatly affected by regional differences, cancer types and model types. We divided the model variables into four categories: environment, behavioral lifestyle, biological genetics and clinical examination, and found that there are differences in the distribution of various variables among different cancer types. Taking 50 genes involved in the lung cancer risk prediction models as an example to perform pathway enrichment analyses and the results showed that these genes were significantly enriched in p53 Signaling and Aryl Hydrocarbon Receptor Signaling pathways which are associated with cancer and specific diseases. In addition, we verified the biological significance of overlapping lung cancer genes via STRING database. CRPMKB was established to provide researchers an online tool for the future personalized model application and developing. This study of CRPMKB suggests that developing more targeted models based on specific demographic characteristics and cancer types will further improve the accuracy of cancer risk model predictions. AVAILABILITY AND IMPLEMENTATION CRPMKB is freely available at http://www.sysbio.org.cn/CRPMKB/. The data underlying this article are available in the article and in its online supplementary material. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shumin Ren
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610212, China
| | - Yanwen Jin
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Yalan Chen
- Department of Medical Informatics, School of Medicine, Nantong University, Nantong 226001, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610212, China
| |
Collapse
|
12
|
Transcription recycling assays identify PAF1 as a driver for RNA Pol II recycling. Nat Commun 2021; 12:6318. [PMID: 34732721 PMCID: PMC8566496 DOI: 10.1038/s41467-021-26604-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/17/2021] [Indexed: 11/20/2022] Open
Abstract
RNA Polymerase II (Pol II) transcriptional recycling is a mechanism for which the required factors and contributions to overall gene expression levels are poorly understood. We describe an in vitro methodology facilitating unbiased identification of putative RNA Pol II transcriptional recycling factors and quantitative measurement of transcriptional output from recycled transcriptional components. Proof-of-principle experiments identified PAF1 complex components among recycling factors and detected defective transcriptional output from Pol II recycling following PAF1 depletion. Dynamic ChIP-seq confirmed PAF1 silencing triggered defective Pol II recycling in human cells. Prostate tumors exhibited enhanced transcriptional recycling, which was attenuated by antibody-based PAF1 depletion. These findings identify Pol II recycling as a potential target in cancer and demonstrate the applicability of in vitro and cellular transcription assays to characterize Pol II recycling in other disease states. RNA Polymerase II (Pol II) recycling can influence transcription efficiency. Here the authors describe an approach aimed at facilitating the identification of factors involved in Pol II recycling and identify PAF1 complex components as mediators of recycling.
Collapse
|
13
|
Zheng JJ, He Y, Liu Y, Li FS, Cui Z, Du XM, Wang CP, Wu YM. Novel role of PAF1 in attenuating radiosensitivity in cervical cancer by inhibiting IER5 transcription. Radiat Oncol 2020; 15:131. [PMID: 32471508 PMCID: PMC7257241 DOI: 10.1186/s13014-020-01580-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/20/2020] [Indexed: 01/16/2023] Open
Abstract
Background Radiosensitivity is limited in cervical cancer (CC) patients due to acquired radiation resistance. In our previous studies, we found that immediate-early response 5 (IER5) is upregulated in CC cells upon radiation exposure and decreases cell survival by promoting apoptosis. The details on the transcriptional regulation of radiation-induced IER5 expression are unknown. Studies in recent years have suggested that Pol II-associated factor 1 (PAF1) is a pivotal transcription factor for certain genes “induced” during tumor progression. In this study, we investigated the role of PAF1 in regulating IER5 expression during CC radiotherapy. Methods PAF1 expression in CC cells was measured by western blotting, immunohistochemistry, and qRT-PCR, and the localization of PAF1 and IER5 was determined by immunofluorescence. The effect of PAF1 and IER5 knockdown by siRNA in Siha and Hela cells was studied by western blotting, qRT-PCR, CCK-8 assay, and flow cytometry. The physical interaction of PAF1 with the IER5 promoter and enhancers was confirmed using chromatin immunoprecipitation and qPCR with or without enhancers knockout by CRISPR/Cas9. Results We confirmed that PAF1 was highly expressed in CC cells and that relatively low expression of IER5 was observed in cells with highly expressed PAF1 in the nucleus. PAF1 knockdown in Siha and Hela cells was associated with increased expression of IER5, reduced cell viability and higher apoptosis rate in response to radiation exposure, while simultaneous PAF1 and IER5 knockdown had little effect on the proportion of apoptotic cells. We also found that PAF1 hindered the transcription of IER5 by promoting Pol II pausing at the promoter-proximal region, which was primarily due to the binding of PAF1 at the enhancers. Conclusions PAF1 reduces CC radiosensitivity by inhibiting IER5 transcription, at least in part by regulating its enhancers. PAF1 might be a potential therapeutic target for overcoming radiation resistance in CC patients.
Collapse
Affiliation(s)
- Jing-Jie Zheng
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Present address: Dong-Cheng District, Qi-He-Lou Street No.17, Beijing, 100006, China
| | - Yue He
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Present address: Dong-Cheng District, Qi-He-Lou Street No.17, Beijing, 100006, China
| | - Yang Liu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Present address: Dong-Cheng District, Qi-He-Lou Street No.17, Beijing, 100006, China
| | - Feng-Shuang Li
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Present address: Dong-Cheng District, Qi-He-Lou Street No.17, Beijing, 100006, China
| | - Zhen Cui
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Present address: Dong-Cheng District, Qi-He-Lou Street No.17, Beijing, 100006, China
| | - Xiao-Meng Du
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Present address: Dong-Cheng District, Qi-He-Lou Street No.17, Beijing, 100006, China
| | - Chun-Peng Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Present address: Dong-Cheng District, Qi-He-Lou Street No.17, Beijing, 100006, China
| | - Yu-Mei Wu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Present address: Dong-Cheng District, Qi-He-Lou Street No.17, Beijing, 100006, China.
| |
Collapse
|
14
|
Goodman LD, Bonini NM. New Roles for Canonical Transcription Factors in Repeat Expansion Diseases. Trends Genet 2019; 36:81-92. [PMID: 31837826 DOI: 10.1016/j.tig.2019.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022]
Abstract
The presence of microsatellite repeat expansions within genes is associated with >30 neurological diseases. Of interest, (GGGGCC)>30-repeats within C9orf72 are associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). These expansions can be 100s to 1000s of units long. Thus, it is perplexing how RNA-polymerase II (RNAPII) can successfully transcribe them. Recent investigations focusing on GGGGCC-transcription have identified specific, canonical complexes that may promote RNAPII-transcription at these GC-rich microsatellites: the DSIF complex and PAF1C. These complexes may be important for resolving the unique secondary structures formed by GGGGCC-DNA during transcription. Importantly, this process can produce potentially toxic repeat-containing RNA that can encode potentially toxic peptides, impacting neuron function and health. Understanding how transcription of these repeats occurs has implications for therapeutics in multiple diseases.
Collapse
Affiliation(s)
- Lindsey D Goodman
- Department of Molecular and Human Genetics, Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Old Sonic Hedgehog, new tricks: a new paradigm in thoracic malignancies. Oncotarget 2018; 9:14680-14691. [PMID: 29581874 PMCID: PMC5865700 DOI: 10.18632/oncotarget.24411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/25/2018] [Indexed: 01/06/2023] Open
Abstract
The Sonic Hedgehog (Shh) pathway is physiologically involved during embryogenesis, but is also activated in several diseases, including solid cancers. Previous studies have demonstrated that the Shh pathway is involved in oncogenesis, tumor progression and chemoresistance in lung cancer and mesothelioma. The Shh pathway is also closely associated with epithelial-mesenchymal transition and cancer stem cells. Recent findings have revealed that a small proportion of lung cancer cells expressed an abnormal full-length Shh protein, associated with cancer stem cell features. In this paper, we review the role of the Shh pathway in thoracic cancers (small cell lung cancer, non-small cell lung cancer, and mesothelioma) and discuss the new perspectives of cancer research highlighted by the recent data of the literature.
Collapse
|
16
|
Karmakar S, Dey P, Vaz AP, Bhaumik SR, Ponnusamy MP, Batra SK. PD2/PAF1 at the Crossroads of the Cancer Network. Cancer Res 2018; 78:313-319. [PMID: 29311159 DOI: 10.1158/0008-5472.can-17-2175] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/29/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
Abstract
Pancreatic differentiation 2 (PD2)/RNA polymerase II-associated factor 1 (PAF1) is the core subunit of the human PAF1 complex (PAF1C) that regulates the promoter-proximal pausing of RNA polymerase II as well as transcription elongation and mRNA processing and coordinates events in mRNA stability and quality control. As an integral part of its transcription-regulatory function, PD2/PAF1 plays a role in posttranslational histone covalent modifications as well as regulates expression of critical genes of the cell-cycle machinery. PD2/PAF1 alone, and as a part of PAF1C, provides distinct roles in the maintenance of self-renewal of embryonic stem cells and cancer stem cells, and in lineage differentiation. Thus, PD2/PAF1 malfunction or its altered abundance is likely to affect normal cellular functions, leading to disease states. Indeed, PD2/PAF1 is found to be upregulated in poorly differentiated pancreatic cancer cells and has the capacity for neoplastic transformation when ectopically expressed in mouse fibroblast cells. Likewise, PD2/PAF1 is upregulated in pancreatic and ovarian cancer stem cells. Here, we concisely describe multifaceted roles of PD2/PAF1 associated with oncogenic transformation and implicate PD2/PAF1 as an attractive target for therapeutic development to combat malignancy. Cancer Res; 78(2); 313-9. ©2018 AACR.
Collapse
Affiliation(s)
- Saswati Karmakar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Parama Dey
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Arokia P Vaz
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.,Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska. .,Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
17
|
A Digital Microfluidics Platform for Loop-Mediated Isothermal Amplification Detection. SENSORS 2017; 17:s17112616. [PMID: 29144379 PMCID: PMC5713054 DOI: 10.3390/s17112616] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 12/18/2022]
Abstract
Digital microfluidics (DMF) arises as the next step in the fast-evolving field of operation platforms for molecular diagnostics. Moreover, isothermal schemes, such as loop-mediated isothermal amplification (LAMP), allow for further simplification of amplification protocols. Integrating DMF with LAMP will be at the core of a new generation of detection devices for effective molecular diagnostics at point-of-care (POC), providing simple, fast, and automated nucleic acid amplification with exceptional integration capabilities. Here, we demonstrate for the first time the role of coupling DMF and LAMP, in a dedicated device that allows straightforward mixing of LAMP reagents and target DNA, as well as optimum temperature control (reaction droplets undergo a temperature variation of just 0.3 °C, for 65 °C at the bottom plate). This device is produced using low-temperature and low-cost production processes, adaptable to disposable and flexible substrates. DMF-LAMP is performed with enhanced sensitivity without compromising reaction efficacy or losing reliability and efficiency, by LAMP-amplifying 0.5 ng/µL of target DNA in just 45 min. Moreover, on-chip LAMP was performed in 1.5 µL, a considerably lower volume than standard bench-top reactions.
Collapse
|
18
|
Ferdoush J, Karmakar S, Barman P, Kaja A, Uprety B, Batra SK, Bhaumik SR. Ubiquitin–Proteasome System Regulation of an Evolutionarily Conserved RNA Polymerase II-Associated Factor 1 Involved in Pancreatic Oncogenesis. Biochemistry 2017; 56:6083-6086. [PMID: 29023102 DOI: 10.1021/acs.biochem.7b00865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The evolutionarily conserved RNA polymerase II-associated factor 1 (Paf1) from yeast to humans regulates transcription and associated processes, and thus, malfunctions and/or misregulations of Paf1 are associated with cellular pathologies. Indeed, Paf1 (also known as PD2 or pancreatic differentiation 2) is found to be upregulated in poorly differentiated cancer cells, and such upregulation is involved in cellular transformation or oncogenesis. However, the basis for Paf1 upregulation in these cells remains largely unknown. In light of this, we have tested here the idea that the ubiquitin-proteasome system (UPS) regulates the cellular abundance of Paf1. In this direction, we analyzed the role of UPS in regulation of Paf1's abundance in yeast. We find that Paf1 undergoes ubiquitylation and is degraded by the 26S proteasome in yeast, thus deciphering UPS regulation of an evolutionarily conserved factor, Paf1, involved in various cellular processes at the crossroads of the cancer networks. Likewise, Paf1 undergoes proteasomal degradation in well-differentiated, but not poorly differentiated, pancreatic cancer cells, hence pointing to the UPS in upregulation of Paf1 in poorly differentiated cancers. Collectively, our results reveal UPS regulation of Paf1 and suggest downregulation of UPS in elevating Paf1's abundance in poorly differentiated cancers.
Collapse
Affiliation(s)
- Jannatul Ferdoush
- Department
of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901, United States
| | - Saswati Karmakar
- Department
of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Priyanka Barman
- Department
of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901, United States
| | - Amala Kaja
- Department
of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901, United States
| | - Bhawana Uprety
- Department
of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901, United States
| | - Surinder K. Batra
- Department
of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Sukesh R. Bhaumik
- Department
of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901, United States
| |
Collapse
|
19
|
Van Oss SB, Cucinotta CE, Arndt KM. Emerging Insights into the Roles of the Paf1 Complex in Gene Regulation. Trends Biochem Sci 2017; 42:788-798. [PMID: 28870425 PMCID: PMC5658044 DOI: 10.1016/j.tibs.2017.08.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022]
Abstract
The conserved, multifunctional Polymerase-Associated Factor 1 complex (Paf1C) regulates all stages of the RNA polymerase (Pol) II transcription cycle. In this review, we examine a diverse set of recent studies from various organisms that build on foundational studies in budding yeast. These studies identify new roles for Paf1C in the control of gene expression and the regulation of chromatin structure. In exploring these advances, we find that various functions of Paf1C, such as the regulation of promoter-proximal pausing and development in higher eukaryotes, are complex and context dependent. As more becomes known about the role of Paf1C in human disease, interest in the molecular mechanisms underpinning Paf1C function will continue to increase.
Collapse
Affiliation(s)
- S Branden Van Oss
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Christine E Cucinotta
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|