1
|
Qiao C, Tang Y, Li Q, Zhu X, Peng X, Zhao R. ATP-gated P2X7 receptor as a potential target for prostate cancer. Hum Cell 2022; 35:1346-1354. [PMID: 35657562 DOI: 10.1007/s13577-022-00729-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/18/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer is the most common malignancy of the male genitourinary system and is one of the leading causes of male cancer death. The P2X7 receptor is an important member of purine receptor family. It is a gated ion channel with adenosine triphosphate (ATP) as the ligand, which exists in a variety of immune tissues and cells and can be involved in tumorigenesis and tumor progression. Studies have shown that the P2X7 receptor is abnormally expressed in prostate cancer, and is related to the level of prostate-specific antigen, P2X7 receptor may be an early biomarker of prostate cancer. The P2X7 receptor is essential in the occurrence and development of prostate cancer. The P2X7 receptor mainly affects the invasion and metastasis of prostate cancer cells through epithelial mesenchymal transition/invasion-related genes and the PI3K/AKT and ERK1/2 signaling pathways. The P2X7 receptor could be a promising therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Cuicui Qiao
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Yiqing Tang
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Qianqian Li
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xiaodi Zhu
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xiaoxiang Peng
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Ronglan Zhao
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China.
| |
Collapse
|
2
|
P2X7 receptor in multifaceted cellular signalling and its relevance as a potential therapeutic target in different diseases. Eur J Pharmacol 2021; 906:174235. [PMID: 34097884 DOI: 10.1016/j.ejphar.2021.174235] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
P2X7 receptor, a purinergic receptor family member, is abundantly expressed on many cells, including immune, muscle, bone, neuron, and glia. It acts as an ATP-activated cation channel that permits the influx of Ca2+, Na+ and efflux of K+ ions. The P2X7 receptor plays crucial roles in many physiological processes including cytokine and chemokine secretion, NLRP3 inflammasome activation, cellular growth and differentiation, locomotion, wound healing, transcription factors activation, cell death and T-lymphocyte survival. Past studies have demonstrated the up-regulation and direct association of this receptor in many pathophysiological conditions such as cancer, diabetics, arthritis, tuberculosis (TB) and inflammatory diseases. Hence, targeting this receptor is considered a worthwhile approach to lessen the afflictions associated with the disorders mentioned above by understanding the receptor architecture and downstream signalling processes. Here, in the present review, we have dissected the structural and functional aspects of the P2X7 receptor, emphasizing its role in various diseased conditions. This information will provide in-depth knowledge about the receptor and help to develop apt curative methodologies for the betterment of humanity in the coming years.
Collapse
|
3
|
Khalafalla MG, Woods LT, Jasmer KJ, Forti KM, Camden JM, Jensen JL, Limesand KH, Galtung HK, Weisman GA. P2 Receptors as Therapeutic Targets in the Salivary Gland: From Physiology to Dysfunction. Front Pharmacol 2020; 11:222. [PMID: 32231563 PMCID: PMC7082426 DOI: 10.3389/fphar.2020.00222] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Although often overlooked in our daily lives, saliva performs a host of necessary physiological functions, including lubricating and protecting the oral cavity, facilitating taste sensation and digestion and maintaining tooth enamel. Therefore, salivary gland dysfunction and hyposalivation, often resulting from pathogenesis of the autoimmune disease Sjögren's syndrome or from radiotherapy of the head and neck region during cancer treatment, severely reduce the quality of life of afflicted patients and can lead to dental caries, periodontitis, digestive disorders, loss of taste and difficulty speaking. Since their initial discovery in the 1970s, P2 purinergic receptors for extracellular nucleotides, including ATP-gated ion channel P2X and G protein-coupled P2Y receptors, have been shown to mediate physiological processes in numerous tissues, including the salivary glands where P2 receptors represent a link between canonical and non-canonical saliva secretion. Additionally, extracellular nucleotides released during periods of cellular stress and inflammation act as a tissue alarmin to coordinate immunological and tissue repair responses through P2 receptor activation. Accordingly, P2 receptors have gained widespread clinical interest with agonists and antagonists either currently undergoing clinical trials or already approved for human use. Here, we review the contributions of P2 receptors to salivary gland function and describe their role in salivary gland dysfunction. We further consider their potential as therapeutic targets to promote physiological saliva flow, prevent salivary gland inflammation and enhance tissue regeneration.
Collapse
Affiliation(s)
- Mahmoud G. Khalafalla
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lucas T. Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Kimberly J. Jasmer
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Kevin Muñoz Forti
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Jean M. Camden
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Janicke L. Jensen
- Institute of Clinical Dentistry, Section of Oral Surgery and Oral Medicine, University of Oslo, Oslo, Norway
| | - Kirsten H. Limesand
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Hilde K. Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Gary A. Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
4
|
Shin Y, Kim M, Won J, Kim J, Oh SB, Lee JH, Park K. Epigenetic Modification of CFTR in Head and Neck Cancer. J Clin Med 2020; 9:jcm9030734. [PMID: 32182826 PMCID: PMC7141320 DOI: 10.3390/jcm9030734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/29/2020] [Accepted: 03/06/2020] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), a cyclic AMP (cAMP)-regulated chloride channel, is critical for secretion and absorption across diverse epithelia. Mutations or absence of CFTR result in pathogeneses, including cancer. While CFTR has been proposed as a tumor suppressing gene in tumors of the intestine, lung, and breast cancers, its effects in head and neck cancer (HNC) have yet to be investigated. This study aimed to define expression patterns and epigenetic modifications of CFTR in HNC. CFTR was expressed in normal but not in HNC cells and tissues. Treatment with 5-aza-2'-deoxycytidine (5-Aza-CdR) was associated with rescued expression of CFTR, whose function was confirmed by patch clamp technique. Further experiments demonstrated that CFTR CpG islands were hypermethylated in cancer cells and tissues and hypomethylated in normal cells and tissue. Our results suggest that CFTR epigenetic modifications are critical in both down-regulation and up-regulation of CFTR expression in HNC and normal cells respectively. We then investigated the impact of CFTR on expressions and functions of cancer-related genes. CFTR silencing was closely associated with changes to other cancer-related genes, suppressing apoptosis while enhancing proliferation, cell motility, and invasion in HNC. Our findings demonstrate that hypermethylation of CFTR CpG islands and CFTR deficiency is closely related to HNC.
Collapse
Affiliation(s)
- Yonghwan Shin
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul 110-749, Korea; (Y.S.); (M.K.); (J.K.)
| | - Minkyoung Kim
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul 110-749, Korea; (Y.S.); (M.K.); (J.K.)
| | - Jonghwa Won
- Department of Neurobiology and Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul 110-749, Korea; (J.W.); (S.B.O.)
| | - Junchul Kim
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul 110-749, Korea; (Y.S.); (M.K.); (J.K.)
| | - Seog Bae Oh
- Department of Neurobiology and Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul 110-749, Korea; (J.W.); (S.B.O.)
| | - Jong-Ho Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul 110-749, Korea;
| | - Kyungpyo Park
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul 110-749, Korea; (Y.S.); (M.K.); (J.K.)
- Correspondence: ; Tel.: +82-02-740-8658
| |
Collapse
|
5
|
Ribeiro DE, Casarotto PC, Staquini L, Pinto E Silva MA, Biojone C, Wegener G, Joca S. Reduced P2X receptor levels are associated with antidepressant effect in the learned helplessness model. PeerJ 2019; 7:e7834. [PMID: 31656696 PMCID: PMC6812674 DOI: 10.7717/peerj.7834] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022] Open
Abstract
Purinergic receptors, especially P2RX, are associated to the severity of symptoms in patients suffering from depressive and bipolar disorders, and genetic deletion or pharmacological blockade of P2RX7 induces antidepressant-like effect in preclinical models. However, there is scarce evidence about the alterations in P2RX7 or P2RX4 levels and in behavioral consequences induced by previous exposure to stress, a major risk factor for depression in humans. In the present study, we evaluated the effect of imipramine (IMI) on P2RX7 and P2RX4 levels in dorsal and ventral hippocampus as well as in the frontal cortex of rats submitted to the pretest session of learned helplessness (LH) paradigm. Repeated, but not acute administration of IMI (15 mg/kg ip) reduced the levels of both P2RX7 and P2RX4 in the ventral, but not in dorsal hippocampus or frontal cortex. In addition, we tested the effect of P2RX7/P2RX4 antagonist brilliant blue G (BBG: 25 or 50 mg/kg ip) on the LH paradigm. We observed that repeated (7 days) but not acute (1 day) treatment with BBG (50 mg) reduced the number of failures to escape the shocks in the test session, a parameter mimicked by the same regimen of IMI treatment. Taken together, our data indicates that pharmacological blockade or decrease in the expression of P2RX7 is associated to the antidepressant-like behavior observed in the LH paradigm after repeated drug administration.
Collapse
Affiliation(s)
- Deidiane Elisa Ribeiro
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark.,Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, Brazil
| | | | - Laura Staquini
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Augusta Pinto E Silva
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Caroline Biojone
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Gregers Wegener
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Samia Joca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Bae JY, Lee SW, Shin YH, Lee JH, Jahng JW, Park K. P2X7 receptor and NLRP3 inflammasome activation in head and neck cancer. Oncotarget 2018; 8:48972-48982. [PMID: 28430665 PMCID: PMC5564741 DOI: 10.18632/oncotarget.16903] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/29/2017] [Indexed: 12/24/2022] Open
Abstract
In this study, we investigated purinergic receptor P2X7 and NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome expressions, and their role in head and neck cancer. We found upregulation of purinergic receptor P2X7 and all NLRP3 inflammasome components in biopsied head and neck squamous cell carcinoma tissues. Similarly, the expression of purinergic receptor P2X7, apoptosis-associated speck-like protein containing CARD, and pro-form caspase 1 in A253 cells derived from epidermoid carcinoma were highly upregulated in comparison to normal Human Salivary Gland cell line. Active caspase-1 and its final product, active interleukin-1β, both increased in primed A253 cells stimulated with purinergic receptor P2X7 agonists, while this elevated NLRP3 inflammasome activity was suppressed by purinergic receptor P2X7 antagonists. However, we observed none of these effects in Human Salivary Gland cells. Inhibition of both NLRP3 inflammasome and purinergic receptor P2X7 led to the significant cell death of primed A253 cells, but had no effect on the viability of primed HSG cells or the primary cultured human fibroblast cells. Furthermore, inhibition of either purinergic receptor P2X7 or NLRP3 inflammasome decreased invasiveness of A253, and this effect became more evident when both purinergic receptor P2X7 and NLRP3 inflammasome were simultaneously blocked. Therefore, it is concluded that the purinergic receptor P2X7 and the activation of NLRP3 inflammasome play important roles in the survival and invasiveness of head and neck squamous cell carcinoma in humans.
Collapse
Affiliation(s)
- Ju Young Bae
- Department of Physiology, School of Dentistry, Seoul National University, Seoul 110-749, Korea
| | - Sang-Woo Lee
- Department of Physiology, School of Dentistry, Seoul National University, Seoul 110-749, Korea
| | - Yong-Hwan Shin
- Department of Physiology, School of Dentistry, Seoul National University, Seoul 110-749, Korea
| | - Jong-Ho Lee
- Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul 110-749, Korea
| | | | - Kyungpyo Park
- Department of Physiology, School of Dentistry, Seoul National University, Seoul 110-749, Korea
| |
Collapse
|
7
|
Cruickshank B, Giacomantonio M, Marcato P, McFarland S, Pol J, Gujar S. Dying to Be Noticed: Epigenetic Regulation of Immunogenic Cell Death for Cancer Immunotherapy. Front Immunol 2018; 9:654. [PMID: 29666625 PMCID: PMC5891575 DOI: 10.3389/fimmu.2018.00654] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/16/2018] [Indexed: 12/13/2022] Open
Abstract
Immunogenic cell death (ICD) activates both innate and adaptive arms of the immune system during apoptotic cancer cell death. With respect to cancer immunotherapy, the process of ICD elicits enhanced adjuvanticity and antigenicity from dying cancer cells and consequently, promotes the development of clinically desired antitumor immunity. Cancer ICD requires the presentation of various "hallmarks" of immunomodulation, which include the cell-surface translocation of calreticulin, production of type I interferons, and release of high-mobility group box-1 and ATP, which through their compatible actions induce an immune response against cancer cells. Interestingly, recent reports investigating the use of epigenetic modifying drugs as anticancer therapeutics have identified several connections to ICD hallmarks. Epigenetic modifiers have a direct effect on cell viability and appear to fundamentally change the immunogenic properties of cancer cells, by actively subverting tumor microenvironment-associated immunoevasion and aiding in the development of an antitumor immune response. In this review, we critically discuss the current evidence that identifies direct links between epigenetic modifications and ICD hallmarks, and put forward an otherwise poorly understood role for epigenetic drugs as ICD inducers. We further discuss potential therapeutic innovations that aim to induce ICD during epigenetic drug therapy, generating highly efficacious cancer immunotherapies.
Collapse
Affiliation(s)
| | | | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Sherri McFarland
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, United States
- Department of Chemistry, Acadia University, Wolfville, NS, Canada
| | - Jonathan Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Centre for Innovative and Collaborative Health Services Research, IWK Health Centre, Halifax, NS, Canada
| |
Collapse
|
8
|
Morandini AC, Santos CF, Yilmaz Ö. Role of epigenetics in modulation of immune response at the junction of host-pathogen interaction and danger molecule signaling. Pathog Dis 2016; 74:ftw082. [PMID: 27542389 DOI: 10.1093/femspd/ftw082] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2016] [Indexed: 12/17/2022] Open
Abstract
Epigenetic mechanisms have rapidly and controversially emerged as silent modulators of host defenses that can lead to a more prominent immune response and shape the course of inflammation in the host. Thus, the epigenetics can both drive the production of specific inflammatory mediators and control the magnitude of the host response. The epigenetic actions that are predominantly shown to modulate the host defense against microbial pathogens are DNA methylation, histone modification and the activity of non-coding RNAs. There is also growing evidence that opportunistic chronic pathogens, such as Porphyromonas gingivalis, as a microbial host subversion strategy, can epigenetically interfere with the host DNA machinery for successful colonization. Similarly, the novel involvement of small molecule 'danger signals', which are released by stressed or infected cells, at the center of host-pathogen interplay and epigenetics is developing. In this review, we systematically examine the latest knowledge within the field of epigenetics in the context of host-derived danger molecule and purinergic signaling, with a particular focus on host microbial defenses and infection-driven chronic inflammation.
Collapse
Affiliation(s)
- Ana Carolina Morandini
- Department of Biological Sciences, Bauru School of Dentistry - University of São Paulo, Bauru, SP, Brazil Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA 94103, USA Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carlos F Santos
- Department of Biological Sciences, Bauru School of Dentistry - University of São Paulo, Bauru, SP, Brazil
| | - Özlem Yilmaz
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|