1
|
Husain A, Alouffi S, Khanam A, Akasha R, Farooqui A, Ahmad S. Therapeutic Efficacy of Natural Product 'C-Phycocyanin' in Alleviating Streptozotocin-Induced Diabetes via the Inhibition of Glycation Reaction in Rats. Int J Mol Sci 2022; 23:ijms232214235. [PMID: 36430714 PMCID: PMC9698742 DOI: 10.3390/ijms232214235] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
Diabetes is a long-term metabolic disorder characterized by persistently elevated blood sugar levels. Chronic hyperglycemia enhances glucose-protein interactions, leading to the formation of advanced glycation end products (AGEs), which form irreversible cross-links with a wide variety of macromolecules, and accumulate rapidly in the body tissues. Thus, the objective of this study was to assess the therapeutic properties of C-phycocyanin (C-PC) obtained from Plectonema species against oxidative stress, glycation, and type 2 diabetes mellitus (T2DM) in a streptozotocin (STZ)-induced diabetic Wistar rat. Forty-five days of C-PC administration decreased levels of triglycerides (TGs), blood glucose, glycosylated hemoglobin, (HbA1c), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), liver and kidney function indices, and raised body weight in diabetic rats. C-PC suppressed biochemical glycation markers, as well as serum carboxymethyllysine (CML) and fluorescent AGEs. Additionally, C-PC maintained the redox state by lowering lipid peroxidation and protein-bound carbonyl content (CC), enhancing the activity of high-density lipoprotein cholesterol (HDL-C) and renal antioxidant enzymes, and preserving retinal and renal histopathological characteristics. Thus, we infer that C-PC possesses antidiabetic and antiglycation effects in diabetic rats. C-PC may also act as an antidiabetic and antiglycation agent in vivo that may reduce the risk of secondary diabetic complications.
Collapse
Affiliation(s)
- Arbab Husain
- Department of Biosciences, Faculty of Sciences, Integral University, Lucknow 226026, India
- Department of Biotechnology and Life Sciences, Institute of Biomedical Education and Research, Mangalayatan University, Aligarh 202145, India
| | - Sultan Alouffi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 2440, Saudi Arabia
- Molecular Diagnostic & Personalized Therapeutic Unit, University of Hail, Hail 2440, Saudi Arabia
- Correspondence: (S.A.); (A.F.)
| | - Afreen Khanam
- Department of Biosciences, Faculty of Sciences, Integral University, Lucknow 226026, India
- Department of Biotechnology and Life Sciences, Institute of Biomedical Education and Research, Mangalayatan University, Aligarh 202145, India
| | - Rihab Akasha
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 2440, Saudi Arabia
| | - Alvina Farooqui
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow 226026, India
- Correspondence: (S.A.); (A.F.)
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 2440, Saudi Arabia
- Molecular Diagnostic & Personalized Therapeutic Unit, University of Hail, Hail 2440, Saudi Arabia
| |
Collapse
|
2
|
Koike S, Toriumi K, Kasahara S, Kibune Y, Ishida YI, Dan T, Miyata T, Arai M, Ogasawara Y. Accumulation of Carbonyl Proteins in the Brain of Mouse Model for Methylglyoxal Detoxification Deficits. Antioxidants (Basel) 2021; 10:antiox10040574. [PMID: 33917901 PMCID: PMC8068291 DOI: 10.3390/antiox10040574] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies have shown that carbonyl stress is a causative factor of schizophrenia, categorized as carbonyl stress-related schizophrenia (CS-SCZ). However, the correlation between carbonyl stress and the pathogenesis of this disease is not well established. In this study, glyoxalase 1(Glo1)-knockout and vitamin B6-deficient mice (KO/VB6 (-) mice), which are susceptible to methylglyoxal (MGO)-induced oxidative damages, were used as a CS-SCZ model to analyze MGO-modified protein and the carbonyl stress status in the brain. A comparison between Wild/VB6(+) mice and KO/VB6(−) mice for accumulated carbonyl proteins levels, with several advanced glycation end products (AGEs) in the brain, revealed that carbonyl protein levels with the Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl) ornithine (MG-H1) moiety were significantly increased in the hippocampus, prefrontal cortex, striatum, cerebral cortex, and brainstem regions of the brain in KO/VB6(−) mice. Moreover, two-dimensional electrophoresis and Liquid chromatography-tandem mass spectrometry analysis showed MG-H1-modified arginine residues in mitochondrial creatine kinase, beta-adrenergic receptor kinase 1, and T-complex protein in the hippocampus region of KO/VB6(−) mice, but not in Wild/VB6(+) mice. In particular, MG-H1 modification of mitochondrial creatine kinase was quite notable. These results suggest that further studies focusing on MG-H1-modified and accumulated proteins in the hippocampus may reveal the onset mechanism of CS-SCZ induced by MGO-induced oxidative damages.
Collapse
Affiliation(s)
- Shin Koike
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan; (S.K.); (S.K.); (Y.K.)
| | - Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (K.T.); (M.A.)
| | - Sakura Kasahara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan; (S.K.); (S.K.); (Y.K.)
| | - Yosuke Kibune
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan; (S.K.); (S.K.); (Y.K.)
| | - Yo-ichi Ishida
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University, Tokyo 204-8588, Japan;
| | - Takashi Dan
- Division of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (T.D.); (T.M.)
| | - Toshio Miyata
- Division of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (T.D.); (T.M.)
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (K.T.); (M.A.)
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan; (S.K.); (S.K.); (Y.K.)
- Correspondence:
| |
Collapse
|
3
|
Guidara W, Messedi M, Naifar M, Maalej M, Grayaa S, Omri S, Ben Thabet J, Maalej M, Charfi N, Ayadi F. Predictive value of oxidative stress biomarkers in drug‑free patients with schizophrenia and schizo-affective disorder. Psychiatry Res 2020; 293:113467. [PMID: 33198042 DOI: 10.1016/j.psychres.2020.113467] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/15/2020] [Indexed: 12/23/2022]
Abstract
Several studies have suggested that oxidative stress may represent one of the primary etiological mechanisms of schizophrenia (SZ) and schizoaffective disorder (SAD) which can be targeted by therapeutic intervention. The present study was conducted over a period of 24 months, between June 2016 and June 2018. All enrolled subjects were Tunisian, forty five drug‑free male patients with SZ (mean age: 37.6 years), twenty one drug‑free male patients with SAD (mean age: 28.8 years) and hundred and one age and gender matched controls (mean age: 34.2 years) were enrolled in the study. Plasma reduced glutathione (GSH) and Total thiols levels were significantly decreased in patients compared to controls (respectively p<0.001; p=0.050). In addition, malondialdehyde (MDA), advanced oxidation protein products (AOPP) and protein carbonyls (PC) concentrations and glutathione peroxidase (GSH-Px) activity were significantly increased in patients compared to controls (p<0.001; p<0.001; p<0.001 and p=0.003 respectively). The binary logistic regression analysis revealed that MDA, AOPP, PC and GSH-Px could be considered as independent risk factors for SZ and SAD. When using ROC analysis, a remarkable increase in the area under the curve (AUC) with higher sensitivity (Se) and specificity (Sp) for MDA, AOPP, PC and GSH-Px combined markers was observed. The present study indicated that the identification of the predictive value of this four-selected biomarkers related to oxidative stress in drug free patients should lead to a better identification of the etiological mechanism of SZ or SAD.
Collapse
Affiliation(s)
- Wassim Guidara
- Laboratory of research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia.
| | - Meriam Messedi
- Laboratory of research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Manel Naifar
- Laboratory of Biochemistry, University of Sfax & Habib Bourguiba Hospital, Sfax, Tunisia
| | - Manel Maalej
- Psychiatry C- department, University of Sfax & Hédi Chaker Hostipal, Sfax, Tunisia
| | - Sahar Grayaa
- Laboratory of research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Sana Omri
- Psychiatry C- department, University of Sfax & Hédi Chaker Hostipal, Sfax, Tunisia
| | - Jihène Ben Thabet
- Psychiatry C- department, University of Sfax & Hédi Chaker Hostipal, Sfax, Tunisia
| | - Mohamed Maalej
- Psychiatry C- department, University of Sfax & Hédi Chaker Hostipal, Sfax, Tunisia
| | - Nada Charfi
- Psychiatry C- department, University of Sfax & Hédi Chaker Hostipal, Sfax, Tunisia
| | - Fatma Ayadi
- Laboratory of research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia; Laboratory of Biochemistry, University of Sfax & Habib Bourguiba Hospital, Sfax, Tunisia
| |
Collapse
|
4
|
Oxidative-Antioxidant Imbalance and Impaired Glucose Metabolism in Schizophrenia. Biomolecules 2020; 10:biom10030384. [PMID: 32121669 PMCID: PMC7175146 DOI: 10.3390/biom10030384] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a neurodevelopmental disorder featuring chronic, complex neuropsychiatric features. The etiology and pathogenesis of schizophrenia are not fully understood. Oxidative-antioxidant imbalance is a potential determinant of schizophrenia. Oxidative, nitrosative, or sulfuric damage to enzymes of glycolysis and tricarboxylic acid cycle, as well as calcium transport and ATP biosynthesis might cause impaired bioenergetics function in the brain. This could explain the initial symptoms, such as the first psychotic episode and mild cognitive impairment. Another concept of the etiopathogenesis of schizophrenia is associated with impaired glucose metabolism and insulin resistance with the activation of the mTOR mitochondrial pathway, which may contribute to impaired neuronal development. Consequently, cognitive processes requiring ATP are compromised and dysfunctions in synaptic transmission lead to neuronal death, preceding changes in key brain areas. This review summarizes the role and mutual interactions of oxidative damage and impaired glucose metabolism as key factors affecting metabolic complications in schizophrenia. These observations may be a premise for novel potential therapeutic targets that will delay not only the onset of first symptoms but also the progression of schizophrenia and its complications.
Collapse
|
5
|
Venkataramaiah C. Modulations in the ATPases during ketamine-induced schizophrenia and regulatory effect of "3-(3, 4-dimethoxy phenyl) -1- (4-methoxyphenyl) prop-2-en-1-one": an in vivo and in silico studies. J Recept Signal Transduct Res 2020; 40:148-156. [PMID: 32009493 DOI: 10.1080/10799893.2020.1720242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Schizophrenia is a devastating illness and displays a wide range of psychotic symptoms. Accumulating evidence indicate impairment of bioenergetic pathways including energy storage and usage in the pathogenesis of schizophrenia. Although well-established synthetic drugs are being used for the management of schizophrenia, most of them have several adverse effects. Hence, natural products derived from medicinal plants represent a continuous major source for ethnomedicine-derived pharmaceuticals for different neurological disorders including schizophrenia. In the present study, we have investigated the neuroprotective effect of the novel bioactive compound i.e. "3-(3,4-dimethoxy phenyl) -1- (4-methoxyphenyl) prop-2-en-1-one" of Celastrus paniculata against ketamine-induced schizophrenia with particular reference to the activities of ATPase using in vivo and in silico methods. Ketamine-induced schizophrenia caused significant reduction in the activities of all three ATPases (Na+/K+, Ca2+ and Mg2+) in different regions of brain which reflects the decreased turnover of ATP, presumably due to the inhibition of oxidoreductase system and uncoupling of the same from the electron transport system. On par with the reference compound, clozapine, the activity levels of all three ATPases were restored to normal after pretreatment with the compound suggesting recovery of energy loss that was occurred during ketamine-induced schizophrenia. Besides, the compound has shown strong interaction and exhibited highest binding energies against all the three ATPases with a lowest inhibition constant value than the clozapine. The results of the present study clearly imply that the compound exhibit significant neuroprotective and antischizophrenic effect by modulating bioenergietic pathways that were altered during induced schizophrenia.
Collapse
Affiliation(s)
- Chintha Venkataramaiah
- Division of Molecular Biology, Department of Zoology, Sri Venkateswara University, Tirupati, India
| |
Collapse
|
6
|
Toyoshima M, Jiang X, Ogawa T, Ohnishi T, Yoshihara S, Balan S, Yoshikawa T, Hirokawa N. Enhanced carbonyl stress induces irreversible multimerization of CRMP2 in schizophrenia pathogenesis. Life Sci Alliance 2019; 2:2/5/e201900478. [PMID: 31591136 PMCID: PMC6781483 DOI: 10.26508/lsa.201900478] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/31/2022] Open
Abstract
Enhanced carbonyl stress results in neurodevelopmental deficits by affecting microtubule function through the formation of irreversible dysfunctional multimer of carbonylated CRMP2. Enhanced carbonyl stress underlies a subset of schizophrenia, but its causal effects remain elusive. Here, we elucidated the molecular mechanism underlying the effects of carbonyl stress in iPS cells in which the gene encoding zinc metalloenzyme glyoxalase I (GLO1), a crucial enzyme for the clearance of carbonyl stress, was disrupted. The iPS cells exhibited significant cellular and developmental deficits, and hyper-carbonylation of collapsing response mediator protein 2 (CRMP2). Structural and biochemical analyses revealed an array of multiple carbonylation sites in the functional motifs of CRMP2, particularly D-hook (for dimerization) and T-site (for tetramerization), which are critical for the activity of the CRMP2 tetramer. Interestingly, carbonylated CRMP2 was stacked in the multimer conformation by irreversible cross-linking, resulting in loss of its unique function to bundle microtubules. Thus, the present study revealed that the enhanced carbonyl stress stemmed from the genetic aberrations results in neurodevelopmental deficits through the formation of irreversible dysfunctional multimer of carbonylated CRMP2.
Collapse
Affiliation(s)
- Manabu Toyoshima
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Japan
| | - Xuguang Jiang
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tadayuki Ogawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tetsuo Ohnishi
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Japan
| | - Shogo Yoshihara
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Shabeesh Balan
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Tokyo, Japan .,Center of Excellence in Genome Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Serum galectin-3, but not galectin-1, levels are elevated in schizophrenia: implications for the role of inflammation. Psychopharmacology (Berl) 2017; 234:2919-2927. [PMID: 28698921 DOI: 10.1007/s00213-017-4683-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/27/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND Previous studies have reported that galectin-3 is involved in inflammatory processes in the central nervous system and that neuroinflammation may play a role in the pathogenesis of schizophrenia. However, the link between schizophrenia and various galectins is unclear. OBJECTIVE The objective of the present study is to determine whether galectin, a well-known lectin protein that binds to μ-galactoside, is associated with chronic schizophrenia. METHODS Thirty-six patients with schizophrenia and 36 healthy controls participated in this study. Schizophrenia symptoms were assessed using the Brief Psychiatry Rating Scale (BPRS). Serum galectin-1 and galectin-3 levels were evaluated using ELISA and compared between the participant groups. Correlation analyses were also performed to examine the relationship between BPRS scores and each galectin level. RESULTS Serum galectin-3 levels were significantly higher in patients with schizophrenia than they were in controls (p = 0.009, d = 0.640); however, serum galectin-1 levels were not significantly different between the groups (p = 0.513). No significant correlation was identified between serum galectin-3 level and the total BPRS score; however, a significant positive correlation was found between the serum galectin-3 level and the positive symptom score of the BPRS (ρ = 0.355; p = 0.033). Additionally, a significant negative correlation was identified between serum galectin-3 levels and the negative symptom score of the BPRS (ρ = -0.387; p = 0.020). CONCLUSIONS Given the high serum levels of galectin-3 found in patients with schizophrenia compared with that in controls, these findings may support the inflammation hypothesis of schizophrenia.
Collapse
|
8
|
Ishida YI, Kayama T, Kibune Y, Nishimoto S, Koike S, Suzuki T, Horiuchi Y, Miyashita M, Itokawa M, Arai M, Ogasawara Y. Identification of an argpyrimidine-modified protein in human red blood cells from schizophrenic patients: A possible biomarker for diseases involving carbonyl stress. Biochem Biophys Res Commun 2017; 493:573-577. [PMID: 28867194 DOI: 10.1016/j.bbrc.2017.08.150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022]
Abstract
Argpyrimidine (ARP) is an advanced glycation end product thought to be generated from a reaction between methylglyoxal and arginine residues in proteins. In this study, we observed marked accumulation of an approximately 56 kD protein, reactive to anti-ARP antibodies, in the red blood cells (RBCs) of some patients with refractory schizophrenia. This ARP-modified protein was purified from the blood of schizophrenic patients and identified as selenium binding protein 1 (SBP1) by LC-MS/MS. This is the first report of ARP-modified proteins accumulating in RBCs of patients with diseases involving carbonyl stress. We also observed high accumulation of ARP-modified SBP1 in the RBCs of patients with chronic kidney disease. Therefore, this modified protein may be a novel marker of carbonyl stress.
Collapse
Affiliation(s)
- Y I Ishida
- Department of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Nishitokyo, Tokyo 204-8588, Japan
| | - T Kayama
- Department of Analytical Biohemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Nishitokyo, Tokyo 204-8588, Japan
| | - Y Kibune
- Department of Analytical Biohemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Nishitokyo, Tokyo 204-8588, Japan
| | - S Nishimoto
- Department of Analytical Biohemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Nishitokyo, Tokyo 204-8588, Japan
| | - S Koike
- Department of Analytical Biohemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Nishitokyo, Tokyo 204-8588, Japan
| | - T Suzuki
- Department of Analytical Biohemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Nishitokyo, Tokyo 204-8588, Japan
| | - Y Horiuchi
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - M Miyashita
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - M Itokawa
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - M Arai
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Y Ogasawara
- Department of Analytical Biohemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Nishitokyo, Tokyo 204-8588, Japan.
| |
Collapse
|
9
|
Ketamine potentiates oxidative stress and influences behavior and inflammation in response to lipolysaccharide (LPS) exposure in early life. Neuroscience 2017; 353:17-25. [DOI: 10.1016/j.neuroscience.2017.04.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023]
|
10
|
Lo LH, Shiea J, Huang TL. Rapid detection of alteration of serum IgG in patients with schizophrenia after risperidone treatment by matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:2645-2649. [PMID: 27699909 DOI: 10.1002/rcm.7753] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/22/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE The aim of the study was to use a technique that combines acid hydrolysis and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF MS) in order to detect the serum biomarkers of patients diagnosed with schizophrenia both before and after four-week antipsychotic treatment with risperidone. METHODS During this study's two-year period, inpatients were diagnosed with schizophrenia using the Structured Clinical Interview for DSM-IV Axis I Disorders. Severity was then evaluated using the Positive and Negative Syndrome Scale both at baseline and at endpoint following four-week treatment with risperidone. The patients' serum biomarkers were quickly measured using acid hydrolysis and MALDI-TOF MS. The resulting peptides were then analyzed using MALDI-TOF MS. We constructed a receiver operating characteristic (ROC) curve for the evaluated biomarkers. RESULTS We recruited 20 pairs of participants for this study. The experimental group was treated with serum protein with HCl for 10 minutes to effectively hydrolyze abundant proteins. The target peptide, the immunoglobulin gamma chain (IgG), was then rapidly detected using this manner. A significant difference was found in the IgG levels of patients with schizophrenia before and after antipsychotic treatment. We constructed a ROC curve based on the IgG, and the area under said curve was 0.969. In comparison to conventional detection protocols, this method takes only minutes to complete and is also less costly. CONCLUSIONS This study found that applying acid hydrolysis with MALDI-TOF MS technology could rapidly differentiate serum IgG levels in patients with schizophrenia before and after being treated with risperidone. This IgG difference may enhance the understanding of mechanism of antipsychotic treatment of schizophrenia. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Li-Hua Lo
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
- National Sun Yat-Sen University-Kaohsiung Medical University Joint Research Center, Taiwan
| | - Tiao-Lai Huang
- Department of Psychiatry, Chang Gung Memorial Hospital-Kaohsiung Medical Center and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Genomic and Proteomic Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Determination of methylglyoxal in human blood plasma using fluorescence high performance liquid chromatography after derivatization with 1,2-diamino-4,5-methylenedioxybenzene. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1029-1030:102-105. [DOI: 10.1016/j.jchromb.2016.07.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 12/27/2022]
|
12
|
Polysulfides protect SH-SY5Y cells from methylglyoxal-induced toxicity by suppressing protein carbonylation: A possible physiological scavenger for carbonyl stress in the brain. Neurotoxicology 2016; 55:13-19. [PMID: 27163164 DOI: 10.1016/j.neuro.2016.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/01/2016] [Accepted: 05/05/2016] [Indexed: 12/25/2022]
Abstract
The formation of advanced glycation end products (AGEs) is associated with various neurological disorders, such as Alzheimer's disease, Parkinson's disease and schizophrenia. Methylglyoxal (MG), a highly reactive dicarbonyl compound, is known to be a major precursor for AGEs in modified proteins. Thus, a scavenger of MG might provide beneficial effects by suppressing the accumulation of AGEs and the occurrence of diseases induced by carbonyl stress. Meanwhile, polysulfides, one of the typical bound sulfur species, are oxidized forms of hydrogen sulfide (H2S) and may play a variety of roles in the brain. Herein, we assessed the scavenging ability of polysulfides against neuronal carbonyl stress induced by MG. First, we showed that polysulfides could protect differentiated (df)-SH-SY5Y cells from MG-induced cytotoxicity. When cells were pretreated with polysulfides, MG-induced cytotoxicity was attenuated with a rapid decrease in intracellular MG levels. Moreover, we found that polysulfides significantly suppressed the formation of MG-modified proteins in df-SH-SY5Y cells. Although polysulfide treatment increased endogenous GSH levels in the neuronal cells, its effects on MG-induced cytotoxicity were not affected by GSH concentration. Our results demonstrated that polysulfides had the direct potentials to protect neuronal cells against MG separate to the enzymatic detoxification system that required GSH.
Collapse
|