1
|
Li Y, Hu J, Au R, Cheng C, Xu F, Li W, Wu Y, Cui Y, Zhu L, Shen H. Therapeutic Effects of Qingchang Tongluo Decoction on Intestinal Fibrosis in Crohn's Disease: Network Pharmacology, Molecular Docking and Experiment Validation. Drug Des Devel Ther 2024; 18:3269-3293. [PMID: 39081706 PMCID: PMC11287763 DOI: 10.2147/dddt.s458811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Background Qingchang Tongluo Decoction (QTF) is clinically used for the treatment of intestinal fibrosis in Crohn's Disease (CD). However, the role of QTF in CD-associated fibrosis and its potential pharmacological mechanism remains unclear. Purpose The objective of this study was to elucidate the potential mechanism of QTF in treating CD-associated fibrosis, employing a combination of bioinformatics approaches - encompassing network pharmacology and molecular docking - complemented by experimental validation. Methods To investigate the material basis and potential protective mechanism of QTF, a network pharmacology analysis was conducted. The core components and targets of QTF underwent molecular docking analysis to corroborate the findings obtained from network pharmacology. In vitro, a colon fibrotic model was established by stimulating IEC-6 cells with 10 ng/mL of transforming growth factor(TGF-β1). In vivo, an intestinal fibrosis model was induced in BALB/c mice by TNBS. The role of QTF in inhibiting the TGF-β1/Smad signaling pathway was investigated through RT-qPCR, Western blotting, immunohistochemistry staining, and immunofluorescence staining. Results Network pharmacology analysis revealed that QTF could exert its protective effect. Bioinformatics analysis suggested that Flavone and Isoflavone might be the key components of the study. Additionally, AKT1, IL-6, TNF, and VEGFA were identified as potential therapeutic targets. Furthermore, experimental validation and molecular docking were employed to corroborate the results obtained from network pharmacology. RT-qPCR, Immunofluorescence, and Western blotting results demonstrated that QTF significantly improved colon function and inhibited pathological intestinal fibrosis in vivo and in vitro. Conclusion Through the application of network pharmacology, molecular docking, and experimental validation, QTF could be confirmed to inhibit the proliferation of intestinal fibroblasts associated with CD and reduce the expression of Collagen I and VEGFA. This effect is achieved through the attenuation of ECM accumulation, primarily via the inhibition of the TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Yanan Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Jingyi Hu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Ryan Au
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
- Academy of Chinese Culture and Health Sciences, Oakland, CA, 94612, USA
| | - Cheng Cheng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Feng Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Weiyang Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Yuguang Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Yuan Cui
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Lei Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Hong Shen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| |
Collapse
|
2
|
Chen G, Lv X, Tang W. Fecal calprotectin as a non-invasive marker for the prediction of post-necrotizing enterocolitis stricture. Pediatr Surg Int 2023; 39:250. [PMID: 37594554 DOI: 10.1007/s00383-023-05534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
PURPOSE This study aimed to evaluate the clinical utility of fecal calprotectin (FC) levels during the necrotizing enterocolitis (NEC) episode to predict the onset of post-NEC intestinal stricture. METHODS The medical records of patients with NEC treated from April 2020 to April 2022 were recorded for this study. FC was quantified at the acute phase of NEC. FC levels were compared in patients with or without intestinal stricture. Receiver operating characteristics (ROC) analysis was constructed to determine optimal cut-offs of FC for post-NEC intestinal stricture. RESULTS A total of 50 infants with NEC were enrolled in this study and 14 (28%) of them eventually developed intestinal stricture. All children with intestinal stricture underwent one-stage surgery and all made it through the follow-up period alive. The median FC level was 1237.55 (741.25, 1378.80) ug/g in patients with intestinal stricture and it was significantly higher than that in the non-stricture group [158.30 (76.23, 349.13) ug/g, P < 0.001]. FC had good diagnostic accuracy for predicting intestinal stricture, according to ROC curve analysis, with an AUC area of 0.911. At an optimal cut-off value of 664.2 ug/g, sensitivity and specificity were 85.71% and 91.67%, respectively. CONCLUSION As a non-invasive parameter, FC has excellent efficacy and accuracy in predicting post-NEC intestinal stricture. Increased FC levels at the acute phase of NEC were associated with the development of intestinal stricture.
Collapse
Affiliation(s)
- Guanglin Chen
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Xiaofeng Lv
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
3
|
Tang Z, Lin B, Li W, Li X, Liu F, Zhu X. Y-box binding protein 1 promotes chromatin accessibility to aggravate liver fibrosis. Cell Signal 2023:110750. [PMID: 37290675 DOI: 10.1016/j.cellsig.2023.110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Y-box binding protein 1 (YBX1) has been reported to be involved in the transcriptional regulation of various pathophysiological processes, such as inflammation, oxidative stress, and epithelial-mesenchymal transformation. However, its precise role and mechanism in regulating hepatic fibrosis remain unclear. In this study, we aimed to investigate the effects of YBX1 on liver fibrosis and its potential mechanism. The expression of YBX1 in human liver microarray, mice tissues and primary mouse hepatic stellate cells (HSCs) was validated to be upregulated in several hepatic fibrosis models (CCl4 injection, TAA injection, and BDL). Hepatic-specific Ybx1 overexpression exacerbated the liver fibrosis phenotypes in vivo and in vitro. Moreover, the knockdown of YBX1 significantly improved TGF-β-induced fibrosis in the LX2 cell (a hepatic stellate cell line). Assay for Transposase-Accessible Chromatin with high throughput sequencing (ATAC-seq) of hepatic-specific Ybx1 overexpression (Ybx1-OE) mice with CCl4 injection showed increasing chromatin accessibility than CCl4 only group. Functional enrichments of open regions in the Ybx1-OE group indicated that extracellular matrix (ECM) accumulation, lipid purine metabolism, and oxytocin-related pathways were more accessible in the Ybx1-OE group. Accessible regions of the Ybx1-OE group in the promoter also suggested significant activation of genes related to liver fibrogenesis, such as response to oxidative stress and ROS, lipid localization, angiogenesis and vascular development, and inflammatory regulation. Moreover, we screened and validated the expression of candidate genes (Fyn, Axl, Acsl1, Plin2, Angptl3, Pdgfb, Ccl24, and Arg2), which might be potential targets of Ybx1 in the pathogenesis of liver fibrosis.
Collapse
Affiliation(s)
- Zihui Tang
- Department of Gastroenterology, Shanghai East Hospital, Shanghai Tongji University School of Medicine, Shanghai 200120, China
| | - Bowen Lin
- Department of Cardiology, Shanghai East Hospital, Shanghai Tongji University School of Medicine, Shanghai 200120, China
| | - Wei Li
- Department of Gastroenterology, Pinghu Second People's Hospital, Zhejiang 314201, China
| | - Xiaojuan Li
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Fei Liu
- Department of Gastroenterology, Shanghai East Hospital, Shanghai Tongji University School of Medicine, Shanghai 200120, China; Department of Gastroenterology, Ji'an Hospital, Shanghai East Hospital, Ji'an, Jiangxi 343000, China.
| | - Xinyan Zhu
- Department of Gastroenterology, Shanghai East Hospital, Shanghai Tongji University School of Medicine, Shanghai 200120, China; Department of Gastroenterology, Ji'an Hospital, Shanghai East Hospital, Ji'an, Jiangxi 343000, China.
| |
Collapse
|
4
|
Monteleone G, Franzè E, Troncone E, Maresca C, Marafini I. Interleukin-34 Mediates Cross-Talk Between Stromal Cells and Immune Cells in the Gut. Front Immunol 2022; 13:873332. [PMID: 35529879 PMCID: PMC9073079 DOI: 10.3389/fimmu.2022.873332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/25/2022] [Indexed: 12/18/2022] Open
Abstract
Initially known as a cytokine produced by and regulating the function of monocytes and macrophages, interleukin-34 (IL-34) can be synthesized by many cell types and interacts with receptors expressed by multiple immune and non-immune cells. IL-34 is constitutively expressed in the healthy human small intestine and colon and its production is markedly increased in damaged gut of patients with Crohn's disease and patients with ulcerative colitis, the main forms of chronic inflammatory bowel diseases (IBD) in human beings. Circumstantial evidence suggests that, in these pathologies, IL-34 plays a crucial role in mediating cross-talk between immune cells and stromal cells, thereby promoting activation of signalling pathways, which amplify the ongoing mucosal inflammation as well as production of fibrogenic molecules. In this article, we summarize the available data supporting the multiple effects of IL-34 in human IBD with particular attention to the role of the cytokine in immune and stromal cell interactions.
Collapse
Affiliation(s)
- Giovanni Monteleone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- *Gastroenterology Unit, Policlinico Tor Vergata, Rome, Italy
| | - Eleonora Franzè
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Edoardo Troncone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- *Gastroenterology Unit, Policlinico Tor Vergata, Rome, Italy
| | - Claudia Maresca
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Irene Marafini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- *Gastroenterology Unit, Policlinico Tor Vergata, Rome, Italy
| |
Collapse
|
5
|
Rybalkina EY, Moiseeva NI. Role of YB-1 Protein in Inflammation. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S94-S202. [PMID: 35501989 DOI: 10.1134/s0006297922140085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
This review discusses the role of the multifunctional DNA/RNA-binding protein YB-1 in inflammation. YB-1 performs multiple functions in the cell depending on its location: it acts as transcriptional factor for many genes in the nucleus, regulates translation and stability of mRNA in the cytoplasm, and becomes a paracrine factor when secreted from the cells. The review presents the data on the YB-1-mediated regulation of inflammation-associated genes, as well as results of studies on the YB-1 role in animal model of various inflammatory diseases, such as glomerulonephritis, tubulointerstitial fibrosis, and bacterial sepsis, and on the YB-1 expression in different human diseases associated with inflammatory processes in kidney, liver, and endometrium. The last section of the review presents several approaches to the regulation of YB-1 with small molecules in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Ekaterina Yu Rybalkina
- Blokhin National Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Natalia I Moiseeva
- Blokhin National Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia.
| |
Collapse
|
6
|
Franzè E, Dinallo V, Laudisi F, Di Grazia A, Di Fusco D, Colantoni A, Ortenzi A, Giuffrida P, Di Carlo S, Sica GS, Di Sabatino A, Monteleone G. Interleukin-34 Stimulates Gut Fibroblasts to Produce Collagen Synthesis. J Crohns Colitis 2020; 14:1436-1445. [PMID: 32271873 DOI: 10.1093/ecco-jcc/jjaa073] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM The mechanisms underlying the formation of intestinal fibrostrictures [FS] in Crohn's disease [CD] are not fully understood, but activation of fibroblasts and excessive collagen deposition are supposed to contribute to the development of FS. Here we investigated whether interleukin-34 [IL-34], a cytokine that is over-produced in CD, regulates collagen production by gut fibroblasts. METHODS IL-34 and its receptor macrophage colony-stimulating factor receptor 1 [M-CSFR-1] were evaluated in inflammatory [I], FS CD, and control [CTR] ileal mucosal samples by real-time polymerase chain reaction [RT-PCR], western blotting, and immunohistochemistry. IL-34 and M-CSFR-1 expression was evaluated in normal and FS CD fibroblasts. Control fibroblasts were stimulated with IL-34 in the presence or absence of a MAP kinase p38 inhibitor, and FS CD fibroblasts were cultured with a specific IL-34 antisense oligonucleotide, and collagen production was evaluated by RT-PCR, western blotting, and Sircol assay. The effect of IL-34 on the wound healing capacity of fibroblasts was evaluated by scratch test. RESULTS We showed enhanced M-CSFR-1 and IL-34 RNA and protein expression in FS CD mucosal samples as compared with ICD and CTR samples. Immunohistochemical analysis showed that stromal cells were positive for M-CSFR-1 and IL-34. Enhanced M-CSFR-1 and IL-34 RNA and protein expression was seen in FS CD fibroblasts as compared with CTR. Stimulation of control fibroblasts with IL-34 enhanced COL1A1 and COL3A1 expression and secretion of collagen through a p38 MAP kinase-dependent mechanism, and wound healing. IL-34 knockdown in FS CD fibroblasts was associated with reduced collagen production and wound repair. CONCLUSIONS Data indicate a prominent role of IL-34 in the control of intestinal fibrogenesis.
Collapse
Affiliation(s)
- Eleonora Franzè
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Vincenzo Dinallo
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Federica Laudisi
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Antonio Di Grazia
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Alfredo Colantoni
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Angela Ortenzi
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Paolo Giuffrida
- Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Sara Di Carlo
- Department of Surgery, University 'TOR VERGATA' of Rome, Rome, Italy
| | - Giuseppe S Sica
- Department of Surgery, University 'TOR VERGATA' of Rome, Rome, Italy
| | - Antonio Di Sabatino
- Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| |
Collapse
|
7
|
Imai J, Yahata T, Ichikawa H, Ibrahim AA, Yazawa M, Sumiyoshi H, Inagaki Y, Matsushima M, Suzuki T, Mine T, Ando K, Miyata T, Hozumi K. Inhibition of plasminogen activator inhibitor-1 attenuates against intestinal fibrosis in mice. Intest Res 2020; 18:219-228. [PMID: 32050315 PMCID: PMC7206341 DOI: 10.5217/ir.2019.00037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022] Open
Abstract
Background/Aims Intestinal fibrosis is a major complication of Crohn’s disease (CD). The profibrotic protein transforming growth factor-β (TGF-β) has been considered to be critical for the induction of the fibrotic program. TGF-β has the ability to induce not only the expression of extracellular matrix (ECM) including collagen, but also the production of plasminogen activator inhibitor-1 (PAI-1) that prevents enzymatic degradation of the ECM during the onset of fibrotic diseases. However, the significance of PAI-1 in the developing intestinal fibrosis has not been fully understood. In the present study, we examined the actual expression of PAI-1 in fibrotic legion of intestinal inflammation and its correlation with the abnormal ECM deposition. Methods Chronic intestinal inflammation was induced in BALB/c mice using 8 repeated intrarectal injections of 2,4,6-trinitrobenzene sulfonic acid (TNBS). TM5275, a PAI-1 inhibitor, was orally administered as a carboxymethyl cellulose suspension each day for 2 weeks after the sixth TNBS injection. Results Using a publicly available dataset (accession number, GSE75214) and TNBS-treated mice, we observed increases in PAI-1 transcripts at active fibrotic lesions in both patients with CD and mice with chronic intestinal inflammation. Oral administration of TM5275 immediately after the onset of intestinal fibrosis upregulated MMP-9 (matrix metalloproteinase 9) and decreased collagen accumulation, resulting in attenuation of the fibrogenesis in TNBS-treated mice. Conclusions PAI-1-mediated fibrinolytic system facilitates collagen degradation suppression. Hence, PAI-1 inhibitor could be applied as an anti-fibrotic drug in CD treatment.
Collapse
Affiliation(s)
- Jin Imai
- Center for Matrix Biology and Medicine, Tokai University School of Medicine, Kanagawa, Japan.,Department of Gastroenterology, Tokai University School of Medicine, Kanagawa, Japan
| | - Takashi Yahata
- Research Center for Regenerative Medicine, Tokai University School of Medicine, Kanagawa, Japan.,Department of Cell Transplantation and Regenerative Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Hitoshi Ichikawa
- Department of Gastroenterology, Tokai University School of Medicine, Kanagawa, Japan
| | - Abd Aziz Ibrahim
- Research Center for Regenerative Medicine, Tokai University School of Medicine, Kanagawa, Japan.,Department of Hematology and Oncology, Tokai University School of Medicine, Kanagawa, Japan
| | - Masaki Yazawa
- Department of Immunology, Tokai University School of Medicine, Kanagawa, Japan
| | - Hideaki Sumiyoshi
- Center for Matrix Biology and Medicine, Tokai University School of Medicine, Kanagawa, Japan.,Department of Regenerative Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Tokai University School of Medicine, Kanagawa, Japan.,Department of Regenerative Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Masashi Matsushima
- Department of Gastroenterology, Tokai University School of Medicine, Kanagawa, Japan
| | - Takayoshi Suzuki
- Department of Gastroenterology, Tokai University School of Medicine, Kanagawa, Japan
| | - Tetsuya Mine
- Department of Gastroenterology, Tokai University School of Medicine, Kanagawa, Japan
| | - Kiyoshi Ando
- Research Center for Regenerative Medicine, Tokai University School of Medicine, Kanagawa, Japan.,Department of Hematology and Oncology, Tokai University School of Medicine, Kanagawa, Japan
| | - Toshio Miyata
- Division of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Katsuto Hozumi
- Center for Matrix Biology and Medicine, Tokai University School of Medicine, Kanagawa, Japan.,Research Center for Regenerative Medicine, Tokai University School of Medicine, Kanagawa, Japan.,Department of Immunology, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
8
|
Brandt S, Mertens PR. A remedy for kidney disease successfully alters the cold shock protein response during inflammation. Kidney Int 2019; 90:1148-1150. [PMID: 27884304 DOI: 10.1016/j.kint.2016.07.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 12/18/2022]
Abstract
Kidneys undergoing acute inflammatory responses are characterized by cell infiltration and a cytokinergic milieu. The hazard resides in the perpetuation of inflammation and ensuing fibrosis. In this issue of Kidney International, Wang et al.4 identify the cold shock Y-box binding protein-1 as the key orchestrator of cell infiltration in experimental tubulointerstitial nephritis following ureteral obstruction. Intriguingly, a small molecule previously designed to interfere with Y-box binding protein-1 interactions mediates an anti-inflammatory response and halts fibrogenesis.
Collapse
Affiliation(s)
- Sabine Brandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Germany
| | - Peter R Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Germany.
| |
Collapse
|
9
|
Liu M, Zhang X, Hao Y, Ding J, Shen J, Xue Z, Qi W, Li Z, Song Y, Zhang T, Wang N. Protective effects of a novel probiotic strain, Lactococcus lactis ML2018, in colitis: in vivo and in vitro evidence. Food Funct 2019; 10:1132-1145. [DOI: 10.1039/c8fo02301h] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Multiple articles have confirmed that an imbalance of the intestinal microbiota is closely related to aberrant immune responses of the intestines and to the pathogenesis of inflammatory bowel diseases (IBDs).
Collapse
|
10
|
Lindquist JA, Mertens PR. Cold shock proteins: from cellular mechanisms to pathophysiology and disease. Cell Commun Signal 2018; 16:63. [PMID: 30257675 PMCID: PMC6158828 DOI: 10.1186/s12964-018-0274-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cold shock proteins are multifunctional RNA/DNA binding proteins, characterized by the presence of one or more cold shock domains. In humans, the best characterized members of this family are denoted Y-box binding proteins, such as Y-box binding protein-1 (YB-1). Biological activities range from the regulation of transcription, splicing and translation, to the orchestration of exosomal RNA content. Indeed, the secretion of YB-1 from cells via exosomes has opened the door to further potent activities. Evidence links a skewed cold shock protein expression pattern with cancer and inflammatory diseases. In this review the evidence for a causative involvement of cold shock proteins in disease development and progression is summarized. Furthermore, the potential application of cold shock proteins for diagnostics and as targets for therapy is elucidated.
Collapse
Affiliation(s)
- Jonathan A Lindquist
- Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Peter R Mertens
- Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| |
Collapse
|
11
|
YB-1 increases glomerular, but decreases interstitial fibrosis in CNI-induced nephropathy. Clin Immunol 2018; 194:67-74. [DOI: 10.1016/j.clim.2018.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022]
|
12
|
Walana W, Ye Y, Li M, Wang J, Wang B, Cheng JW, Gordon JR, Li F. IL-8 antagonist, CXCL8(3-72)K11R/G31P coupled with probiotic exhibit variably enhanced therapeutic potential in ameliorating ulcerative colitis. Biomed Pharmacother 2018; 103:253-261. [PMID: 29655167 DOI: 10.1016/j.biopha.2018.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) remains a major health challenge due in part to unsafe and limited treatment options, hence there is the need for alternatives. CXCL8/interleukin 8 (IL-8) is elevated in inflammation, and binds preferentially to G protein-couple receptors (GPCRs) CXCR1/2 of the CXC chemokine family to initiate cascades of downstream inflammatory signals. A mutant CXCL8 protein, CXCL8(3-72)K11R/G31P (G31P), competitively and selectively binds to CXCR1/2, making CXCL8 redundant. We explore the therapeutic potential of G31P in dextran sulfate sodium (DSS) induced ulcerative colitis (UC), and the corresponding effect if G31P treatment is augmented with Lactobacillus acidophilus (LACT). The treatment options administered significantly reduced TNF-α, IFN-γ, IL-1β, IL-6, and IL-8, but maintained elevated levels of IL-10. CD68 and F4/80 expressions were down-regulated and showed restricted infiltration to inflamed colon, while IL-17F levels were insignificantly different from the DSS treated mice. Also, we observed up-regulation of IL-17A in G31P + LACT but not G31P treated mice if compared with Control group. The treatments ameliorated colonic fibrosis by reducing VEGF, TGF-β, MMP-2 and MMP-9. In addition, we observed elevated levels of E-cadherin, and marginal up-regulation of occludin, suggesting the role of the treatments in regulating tight intestinal junction and adherence proteins. Mechanism-wise, G31P interferes with AKT and ERK signaling pathways. Our study suggests that G31P confers protection in IBD, particularly UC, and when G31P treatment is augmented with Lactobacillus acidophilus, the protection is variably enhanced.
Collapse
Affiliation(s)
- Williams Walana
- Department of Immunology, Dalian Medical University, Dalian, Liaoning, China.
| | - Ying Ye
- Department of Immunology, Dalian Medical University, Dalian, Liaoning, China.
| | - Ming Li
- Department of Microecology, Dalian Medical University, Dalian, Liaoning, China.
| | - Jingjing Wang
- Department of Immunology, Dalian Medical University, Dalian, Liaoning, China.
| | - Bing Wang
- Department of Immunology, Dalian Medical University, Dalian, Liaoning, China.
| | - Jya-Wei Cheng
- Institute of Biotechnology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| | - John R Gordon
- The Division of Respirology, Critical Care and Sleep Medicine, Royal University Hospital, University of Saskatchewan, Saskatoon, Canada.
| | - Fang Li
- Department of Immunology, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
13
|
Curciarello R, Docena GH, MacDonald TT. The Role of Cytokines in the Fibrotic Responses in Crohn's Disease. Front Med (Lausanne) 2017; 4:126. [PMID: 28824915 PMCID: PMC5545939 DOI: 10.3389/fmed.2017.00126] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/18/2017] [Indexed: 12/11/2022] Open
Abstract
Crohn’s disease is an idiopathic disorder of the gut thought to be caused by a combination of environmental and genetic factors in susceptible individuals. It is characterized by chronic transmural inflammation of the terminal ileum and colon, with typical transmural lesions. Complications, including fibrosis, mean that between 40 and 70% of patients require surgery in the first 10 years after diagnosis. Presently, there is no evidence that the current therapies which dampen inflammation modulate or reverse intestinal fibrosis. In this review, we focus on cytokines that may lead to fibrosis and stenosis and the contribution of experimental models for understanding and treatment of gut fibrosis.
Collapse
Affiliation(s)
- Renata Curciarello
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Instituto de Estudios Inmunológicos y Fisiopatológicos -IIFP-CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Guillermo H Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos -IIFP-CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Thomas T MacDonald
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
14
|
Zhang H, Chen J, Wang Y, Deng C, Li L, Guo C. Predictive factors and clinical practice profile for strictures post-necrotising enterocolitis. Medicine (Baltimore) 2017; 96:e6273. [PMID: 28272242 PMCID: PMC5348190 DOI: 10.1097/md.0000000000006273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Intestinal stricture is a severe and common complication of necrotizing enterocolitis (NEC), causing severe and prolonged morbidity. Our goal was to investigate the clinical predictors for strictures developing after NEC and evaluate the management outcome of the post-NEC strictures to better orient their medicosurgical care.A total of 188 patients diagnosed with NEC with identical treatment protocols throughout the period under study were retrospectively reviewed from 4 academic neonatal centers between from January 1, 2011, and October 31, 2016. Clinical predictive factors and clinical outcomes, including demographic information, clinical management, laboratory data, histopathology of resected bowel segment, and discharge summaries, were evaluated on the basis of with post-NEC strictures or not.Of the involved variables examined, the late-onset NEC [risk ratio (RR), 0.56; 95% confidence interval (95% CI), 0.41-0.92; P < 0.001], cesarean delivery (RR, 1.42; 95% CI, 0.98-2.29; P = 0.026), and first procalcitonin (PCT) (onset of symptoms) (RR, 1.82; 95% CI, 0.98-3.15; P = 0.009) were the independent predictive factors for the post-NEC strictures. C-reactive protein (CRP), white blood cell (WBC), and plateletcrit levels were markedly higher on infants with stricture and elevated levels were maintained until the stricture was healed. Infants with intestinal stricture had significantly longer times to beginning enteral feeds (23.9 ± 12.1), than infants without intestinal stricture (18.6 ± 8.8) (P = 0.023). The median age at discharge was also significantly higher in the group with stricture (P = 0.014).This retrospective and multicenter study demonstrates that the early-onset NEC and cesarean delivery conferred protection over the post-NEC stricture. Infants with post-NEC stricture need prolonged hospitalization.
Collapse
Affiliation(s)
- Han Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing
- Department of Neonatology, Jinan Maternity and Child Care Hospital, Shandong Province
| | - Jiaping Chen
- Department of Neonatology, Yongchuan Hospital, Chongqing Medical University
| | - Yan Wang
- Department of Pediatric Surgery, Sanxia Hospital, Chongqing, P.R. China
| | - Chun Deng
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing
- Department of Neonatology, Jinan Maternity and Child Care Hospital, Shandong Province
| | - Lei Li
- Department of Neonatology, Jinan Maternity and Child Care Hospital, Shandong Province
| | - Chunbao Guo
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing
| |
Collapse
|
15
|
Wang J, Gibbert L, Djudjaj S, Alidousty C, Rauen T, Kunter U, Rembiak A, Enders D, Jankowski V, Braun GS, Floege J, Ostendorf T, Raffetseder U. Therapeutic nuclear shuttling of YB-1 reduces renal damage and fibrosis. Kidney Int 2016; 90:1226-1237. [PMID: 27591085 DOI: 10.1016/j.kint.2016.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 12/15/2022]
Abstract
Virtually all chronic kidney diseases progress towards tubulointerstitial fibrosis. In vitro, Y-box protein-1 (YB-1) acts as a central regulator of gene transcription and translation of several fibrosis-related genes. However, it remains to be determined whether its pro- or antifibrotic propensities prevail in disease. Therefore, we investigated the outcome of mice with half-maximal YB-1 expression in a model of renal fibrosis induced by unilateral ureteral obstruction. Yb1+/- animals displayed markedly reduced tubular injury, immune cell infiltration and renal fibrosis following ureteral obstruction. The increase in renal YB-1 was limited to a YB-1 variant nonphosphorylated at serine 102 but phosphorylated at tyrosine 99. During ureteral obstruction, YB-1 localized to the cytoplasm, directly stabilizing Col1a1 mRNA, thus promoting fibrosis. Conversely, the therapeutic forced nuclear compartmentalization of phosphorylated YB-1 by the small molecule HSc025 mediated repression of the Col1a1 promoter and attenuated fibrosis following ureteral obstruction. Blunting of these effects in Yb1+/- mice confirmed involvement of YB-1. HSc025 even reduced tubulointerstitial damage when applied at later time points during maximum renal damage. Thus, phosphorylation and subcellular localization of YB-1 determines its effect on renal fibrosis in vivo. Hence, induced nuclear YB-1 shuttling may be a novel antifibrotic treatment strategy in renal diseases with the potential of damage reversal.
Collapse
Affiliation(s)
- Jialin Wang
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Lydia Gibbert
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Sonja Djudjaj
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Christina Alidousty
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Thomas Rauen
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Uta Kunter
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Andreas Rembiak
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Dieter Enders
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Vera Jankowski
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Gerald S Braun
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Jürgen Floege
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Tammo Ostendorf
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Ute Raffetseder
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany.
| |
Collapse
|
16
|
Jacob N, Targan SR, Shih DQ. Cytokine and anti-cytokine therapies in prevention or treatment of fibrosis in IBD. United European Gastroenterol J 2016; 4:531-40. [PMID: 27536363 DOI: 10.1177/2050640616649356] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022] Open
Abstract
The frequency of fibrosing Crohn's disease (CD) is significant, with approximately 40% of CD patients with ileal disease developing clinically apparent strictures throughout their lifetime. Although strictures may be subdivided into fibrotic, inflammatory, or mixed forms, despite immunosuppressive therapy in CD patients in the form of steroids or immunomodulators, the frequency of fibrostenosing complications has still remained significant. A vast number of genetic and epigenetic variables are thought to contribute to fibrostenosing disease, including those that affect cytokine biology, and therefore highlight the complexity of disease, but also shed light on targetable pathways. Exclusively targeting fibrosis may be difficult, however, because of the relatively slow evolution of fibrosis in CD, and the potential adverse effects of inhibiting pathways involved in tissue repair and mucosal healing. Acknowledging these caveats, cytokine-targeted therapy has become the mainstay of treatment for many inflammatory conditions and is being evaluated for fibrotic disorders. The question of whether anti-cytokine therapy will prove useful for intestinal fibrosis is, therefore, acutely relevant. This review will highlight some of the current therapeutics targeting cytokines involved in fibrosis.
Collapse
Affiliation(s)
- Noam Jacob
- F. Widjaja Foundation, Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Digestive Diseases, Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Stephan R Targan
- F. Widjaja Foundation, Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David Q Shih
- F. Widjaja Foundation, Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
17
|
Rieder F, Bettenworth D, Imai J, Inagaki Y. Intestinal Fibrosis and Liver Fibrosis: Consequences of Chronic Inflammation or Independent Pathophysiology? Inflamm Intest Dis 2016; 1:41-49. [PMID: 29922656 DOI: 10.1159/000445135] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/02/2016] [Indexed: 02/06/2023] Open
Abstract
Background Intestinal fibrosis and liver fibrosis represent a significant burden for our patients and health-care systems. Despite the severe clinical problem and the observation that fibrosis is reversible, no specific antifibrotic therapies exist. Summary In this review, using an 'East-West' scientific collaboration, we summarize the current knowledge on principal mechanisms shared by intestinal fibrosis and liver fibrosis. We furthermore discuss inflammation as the cause of fibrogenesis in both entities, depict unique features of intestinal and hepatic fibrosis, and provide a future outlook on the development of antifibrotic therapies. Key Messages A collaborative effort in the field of fibrosis, covering multiple organ systems, will have the highest chance of leading to the development of a successful antifibrotic intervention.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland, Ohio, USA.,Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | - Jin Imai
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan.,Department of Gastroenterology, Tokai University School of Medicine, Isehara, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan.,Department of Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|