1
|
Zhou W, Tang Q, Wang S, Ding L, Chen M, Liu H, Wu Y, Xiong X, Shen Z, Chen W. Local thiamet-G delivery by a thermosensitive hydrogel confers ischemic cardiac repair via myeloid M2-like activation in a STAT6 O-GlcNAcylation-dependent manner. Int Immunopharmacol 2024; 131:111883. [PMID: 38503016 DOI: 10.1016/j.intimp.2024.111883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Infarct healing requires a dynamic and orchestrated inflammatory reaction following myocardial infarction (MI). While an uncontrolled excessive inflammatory response exaggerates ischemic injury post-MI, M2-like reparative macrophages may facilitate inflammation regression and promote myocardial healing. However, how protein post-translational modification regulates post-MI cardiac repair and dynamic myeloid activation remains unknown. Here we show that M2-like reparative, but not M1-like inflammatory activation, is enhanced by pharmacologically-induced hyper-O-GlcNAcylation. Mechanistically, myeloid knockdown of O-GlcNAc hydrolase O-GlcNAcase (Oga), which also results in hyper-O-GlcNAcylation, positively regulates M2-like activation in a STAT6-dependent fashion, which is controlled by O-GlcNAcylation of STAT6. Of note, both systemic and local supplementation of thiamet-G (TMG), an Oga inhibitor, effectively facilitates cardiac recovery in mice by elevating the accumulation of M2-like macrophages in infarcted hearts. Our study provides a novel clue for monocyte/macrophage modulating therapies aimed at reducing post-MI hyperinflammation in ischemic myocardium.
Collapse
Affiliation(s)
- Wenjing Zhou
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China; School of Life Science, Tianjin University, Tianjin, China
| | - Qingsong Tang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China
| | - Shengnan Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China
| | - Liang Ding
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China
| | - Ming Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China
| | - Hongman Liu
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou, China; Department of Cardiovascular Medicine, the Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Yong Wu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China
| | - Xiwen Xiong
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China.
| | - Weiqian Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Yao L, Hou J, Wu X, Lu Y, Jin Z, Yu Z, Yu B, Li J, Yang Z, Li C, Yan M, Zhu Z, Liu B, Yan C, Su L. Cancer-associated fibroblasts impair the cytotoxic function of NK cells in gastric cancer by inducing ferroptosis via iron regulation. Redox Biol 2023; 67:102923. [PMID: 37832398 PMCID: PMC10582581 DOI: 10.1016/j.redox.2023.102923] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
As the predominant immunosuppressive component within the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) inhibit Natural Killer cell (NK cell) activity to promote tumor progression and immune escape; however, the mechanisms of cross-talk between CAFs and NK cells in gastric cancer (GC) remain poorly understood. In this study, we demonstrate that NK cell levels are inversely correlated with CAFs abundance in human GC. CAFs impair the anti-tumor capacity of NK cells by inducing ferroptosis, a cell death process characterized by the accumulation of iron-dependent lipid peroxides. CAFs induce ferroptosis in NK cells by promoting iron overload; conversely, decreased intracellular iron levels protect NK cells against CAF-induced ferroptosis. Mechanistically, CAFs increase the labile iron pool within NK cells via iron export into the TME, which is mediated by the upregulated expression of iron regulatory genes ferroportin1 and hephaestin in CAFs. Moreover, CAF-derived follistatin like protein 1(FSTL1) upregulates NCOA4 expression in NK cells via the DIP2A-P38 pathway, and NCOA4-mediated ferritinophagy is required for CAF-induced NK cell ferroptosis. In a human patient-derived organoid model, functional targeting of CAFs using a combination of deferoxamine and FSTL1-neutralizing antibody significantly alleviate CAF-induced NK cell ferroptosis and boost the cytotoxicity of NK cells against GC. This study demonstrates a novel mechanism of suppression of NK cell activity by CAFs in the TME and presents a potential therapeutic approach to augment the immune response against GC mediated by NK cells.
Collapse
Affiliation(s)
- Lizhong Yao
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junyi Hou
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiongyan Wu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yifan Lu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhijian Jin
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhenjia Yu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Beiqin Yu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianfang Li
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhongyin Yang
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chen Li
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Min Yan
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhenggang Zhu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bingya Liu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chao Yan
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Liping Su
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
3
|
Abstract
Liver diseases, including viral hepatitis, fatty liver, metabolic-associated fatty liver disease, liver cirrhosis, alcoholic liver disease, and liver neoplasms, are major global health challenges. Despite the continued development of new drugs and technologies, the prognosis of end-stage liver diseases, including advanced liver cirrhosis and liver neoplasms, remains poor. Follistatin-like protein 1 (FSTL1), an extracellular glycoprotein, is secreted by various cell types. It is a glycoprotein that belongs to the family of secreted proteins acidic and rich in cysteine (SPARC). It is also known as transforming growth factor-beta inducible TSC-36 and follistatin-related protein (FRP). FSTL1 plays a key role in cell survival, proliferation, differentiation, and migration, as well as the regulation of inflammation and immunity. Studies have demonstrated that FSTL1 significantly affects the occurrence and development of liver diseases. This article reviews the role and mechanism of FSLT1 in liver diseases.
Collapse
Affiliation(s)
- Chuansha Gu
- Xinxiang Key Laboratory of Tumor
Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical
University, Xinxiang 453003, China
| | - Hua Xue
- The Third Affiliated Hospital of Xinxiang
Medical University, Xinxiang 453000, China
| | - Xiaoli Yang
- Xinxiang Key Laboratory of Tumor
Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical
University, Xinxiang 453003, China
| | - Yu Nie
- School of Basic Medicine, Xinxiang Medical
University, Xinxiang 453003, China
| | - Xinlai Qian
- The Third Affiliated Hospital of Xinxiang
Medical University, Xinxiang 453000, China
| |
Collapse
|
4
|
Horak M, Fairweather D, Kokkonen P, Bednar D, Bienertova-Vasku J. Follistatin-like 1 and its paralogs in heart development and cardiovascular disease. Heart Fail Rev 2022; 27:2251-2265. [PMID: 35867287 PMCID: PMC11140762 DOI: 10.1007/s10741-022-10262-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 11/29/2022]
Abstract
Cardiovascular diseases (CVDs) are a group of disorders affecting the heart and blood vessels and a leading cause of death worldwide. Thus, there is a need to identify new cardiokines that may protect the heart from damage as reported in GBD 2017 Causes of Death Collaborators (2018) (The Lancet 392:1736-1788). Follistatin-like 1 (FSTL1) is a cardiokine that is highly expressed in the heart and released to the serum after cardiac injury where it is associated with CVD and predicts poor outcome. The action of FSTL1 likely depends not only on the tissue source but also post-translation modifications that are target tissue- and cell-specific. Animal studies examining the effect of FSTL1 in various models of heart disease have exploded over the past 15 years and primarily report a protective effect spanning from inhibiting inflammation via transforming growth factor, preventing remodeling and fibrosis to promoting angiogenesis and hypertrophy. A better understanding of FSTL1 and its homologs is needed to determine whether this protein could be a useful novel biomarker to predict poor outcome and death and whether it has therapeutic potential. The aim of this review is to provide a comprehensive description of the literature for this family of proteins in order to better understand their role in normal physiology and CVD.
Collapse
Affiliation(s)
- Martin Horak
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Piia Kokkonen
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - David Bednar
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Julie Bienertova-Vasku
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| |
Collapse
|
5
|
Xi Y, Hao M, Liang Q, Li Y, Gong DW, Tian Z. Dynamic resistance exercise increases skeletal muscle-derived FSTL1 inducing cardiac angiogenesis via DIP2A-Smad2/3 in rats following myocardial infarction. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:594-603. [PMID: 33246164 PMCID: PMC8500809 DOI: 10.1016/j.jshs.2020.11.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/13/2020] [Accepted: 10/09/2020] [Indexed: 05/16/2023]
Abstract
PURPOSE The aim of this study was to investigate the potential of dynamic resistance exercise to generate skeletal muscle-derived follistatin like-1 (FSTL1), which may induce cardioprotection in rats following myocardial infarction (MI) by inducing angiogenesis. METHODS Male, adult Sprague-Dawley rats were randomly divided into 5 groups (n = 12 in each group): sham group (S), sedentary MI group (MI), MI + resistance exercise group (MR), MI + adeno-associated virus (AAV)-FSTL1 injection group (MA), and MI + AAV-FSTL1 injection + resistance exercise group (MAR). The AAV-FSTL1 vector was prepared by molecular biology methods and injected into the anterior tibialis muscle. The MI model was established by ligation of the left anterior descending coronary artery. Rats in the MR and MAR groups underwent 4 weeks of dynamic resistance exercise training using a weighted climbing-up ladder. Heart function was evaluated by hemodynamic measures. Collagen volume fraction of myocardium was observed and analyzed by Masson's staining. Human umbilical vein vessel endothelial cells culture and recombinant human FSTL1 protein or transforming growth factor-β receptor 1 (TGFβR1) inhibitor treatment were used to elucidate the molecular signaling mechanism of FSTL1. Angiogenesis, cell proliferation, and disco interacting protein 2 homolog A (DIP2A) location were observed by immunofluorescence staining. The expression of FSTL1, DIP2A, and the activation of signaling pathways were detected by Western blotting. Angiogenesis of endothelial cells was observed by tubule experiment. One-way analysis of variance and Student's t test were used for statistical analysis. RESULTS Resistance exercise stimulated the secretion of skeletal muscle FSTL1, which promoted myocardial angiogenesis, inhibited pathological remodeling, and protected cardiac function in MI rats. Exercise facilitated skeletal muscle FSTL1 to play a role in protecting the heart. Exogenous FSTL1 promoted the human umbilical vein vessel endothelial cells proliferation and up-regulated the expression of DIP2A, while TGFβR1 inhibitor intervention down-regulated the phosphorylation level of Smad2/3 and the expression of vascular endothelial growth factor-A, which was not conducive to angiogenesis. FSTL1 bound to the receptor, DIP2A, to regulate angiogenesis mainly through the Smad2/3 signaling pathway. FSTL1-DIP2A directly activated Smad2/3 and was not affected by TGFβR1. CONCLUSION Dynamic resistance exercise stimulates the expression of skeletal muscle-derived FSTL1, which could supplement the insufficiency of cardiac FSTL1 and promote cardiac rehabilitation through the DIP2A-Smad2/3 signaling pathway in MI rats.
Collapse
Affiliation(s)
- Yue Xi
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Meili Hao
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an 710119, China; School of Physical Education, Luoyang Normal University, Luoyang 471934, China
| | - Qiaoqin Liang
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Yongxia Li
- School of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Da-Wei Gong
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
6
|
Follistatin-Like 1 Attenuation Suppresses Intervertebral Disc Degeneration in Mice through Interacting with TNF- α and Smad Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6640751. [PMID: 33936382 PMCID: PMC8055391 DOI: 10.1155/2021/6640751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/23/2020] [Accepted: 03/23/2021] [Indexed: 12/14/2022]
Abstract
Background Inflammation plays an important role in intervertebral disc degeneration (IDD). The protein follistatin-like 1 (FSTL1) plays a proinflammatory role in a variety of inflammatory diseases. Objectives The purpose of this study was to investigate whether IDD could be delayed by inhibiting FSTL-1 expression. Methods We established a puncture-induced IDD model in wild-type and FSTL-1+/- mice and collected intervertebral discs (IVDs) from the mice. Safranin O staining was used to detect cartilage loss of IVD tissue, and HE staining was used to detect morphological changes of IVD tissue. We measured the expression of FSTL-1 and related inflammatory indicators in IVD tissues by immunohistochemical staining, real-time PCR, and Western blotting. Results In the age-induced model of IDD, the level of FSTL-1 increased with the exacerbation of degeneration. In the puncture-induced IDD model, FSTL-1-knockdown mice showed a reduced degree of degeneration compared with that of wild-type mice. Further experiments showed that FSTL-1 knockdown also significantly reduced the level of related inflammatory factors in IVD. In vitro experiments showed that FSTL-1 knockdown significantly reduced TNF-α-induced inflammation. Specifically, the expression levels of the inflammatory factors COX-2, iNOS, MMP-13, and ADAMTS-5 were reduced. Knockdown of FSTL-1 attenuated inflammation by inhibiting the expression of P-Smad1/5/8, P-Erk1/2, and P-P65. Conclusion Knockdown of FSTL-1 attenuated inflammation by inhibiting the TNF-α response and Smad pathway activity and ultimately delayed IDD.
Collapse
|
7
|
Xiao Y, Zhang Y, Chen Y, Li J, Zhang Z, Sun Y, Shen H, Zhao Z, Huang Z, Zhang W, Chen W, Shen Z. Inhibition of MicroRNA-9-5p Protects Against Cardiac Remodeling Following Myocardial Infarction in Mice. Hum Gene Ther 2019; 30:286-301. [PMID: 30101604 DOI: 10.1089/hum.2018.059] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Follistatin-like 1 (Fstl1) protects cardiomyocytes from a broad spectrum of pathologic injuries including myocardial infarction (MI). It is worthy of note that although cardiac Fstl1 is elevated in post-MI microenvironment, its cardioprotective role is still restricted to a limited extent considering the frequency and severity of adverse cardiac remodeling following MI. We therefore propose that intrinsic Fstl1-suppressing microRNA (miRNA) may exist in the heart and its neutralization may further facilitate post-MI recovery. Here, miR-9-5p is predicted as one of the potential Fstl1-targeting miRNAs whose expression is decreased in ischemic myocardium and reversely correlated with Fstl1. Luciferase activity assay further validated Fstl1 as a direct target of miR-9-5p. In addition, forced expression of miR-9-5p in H9c2 cells is concurrent with diminished expression of Fstl1 and vice versa. Importantly, transfection of miR-9-5p mimics in hypoxic H9c2 cells exacerbates cardiac cell death, lactate dehydrogenase release, reactive oxygen species accumulation, and malonyldialdehyde concentration. More importantly, in vivo silencing of miR-9-5p by a specific antagomir in a murine acute MI model effectively preserves post-MI heart function with attenuated fibrosis and inflammatory response. Further studies demonstrated that antagomir treatment stabilizes Fstl1 expression as well as blocks cardiac cell death and reactive oxygen species generation in both ischemia-challenged hearts and hypoxia-treated cardiomyoblasts. Finally, cytoprotection against hypoxic challenge by miR-9-5p inhibitor is partially reversed by knockdown of Fstl1, indicating a novel role of miR-9-5p/Fstl1 axis in survival defense against hypoxic challenge. In summary, these findings identified miR-9-5p as a mediator of hypoxic injury in cardiomyoblasts and miR-9-5p suppression prevents cardiac remodeling after acute MI, providing a potential strategy for early treatment against MI.
Collapse
Affiliation(s)
- Yimin Xiao
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
- 2 Department of Cardiovascular Surgery, Shanghai Yoda Cardiothoracic Hospital, Shanghai, China
| | - Yanxia Zhang
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yueqiu Chen
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Jingjing Li
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Zihan Zhang
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yimin Sun
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Han Shen
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Zhenao Zhao
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Zan Huang
- 3 Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Wencheng Zhang
- 4 The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China
| | - Weiqian Chen
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Zhenya Shen
- 1 Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Shen H, Cui G, Li Y, Ye W, Sun Y, Zhang Z, Li J, Xu G, Zeng X, Zhang Y, Zhang W, Huang Z, Chen W, Shen Z. Follistatin-like 1 protects mesenchymal stem cells from hypoxic damage and enhances their therapeutic efficacy in a mouse myocardial infarction model. Stem Cell Res Ther 2019; 10:17. [PMID: 30635025 PMCID: PMC6330478 DOI: 10.1186/s13287-018-1111-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cell therapy remains the most promising approach against ischemic heart injury. However, poor survival of engrafted cells in ischemic sites diminishes its therapeutic efficacy. Follistatin-like 1 (Fstl1) is documented as a novel pro-survival cardiokine for cardiomyocytes, and it is protective during ischemic heart injury. In the present study, we characterize the potential of Fstl1 as an effective strategy to enhance hypoxia resistance of donor cells and optimize stem cell-based therapy. METHODS Murine bone marrow-derived mesenchymal stem cells (MSCs) were expanded in monolayer culture and characterized by flow cytometry. MSCs were subjected to hypoxia to mimic cardiac ischemic environment. Expression of Fstl1 was monitored 0, 24, and 48 h following hypoxia. Constitutive expression of Fstl1 in MSCs was achieved by lentivirus-mediated Fstl1 overexpression. Genetically modified MSCs were further collected for cell death and proliferation assay following 48 h of hypoxic treatment. Acute myocardial infarction (MI) model was created by ligating the left anterior descending coronary artery, while control MSCs (MSCs-mCherry) or Fstl1-overexpressing MSCs (MSCs-Fstl1) were injected into the peri-infarct zone simultaneously. Subsequently, retention of the donor cells was evaluated on post-therapy 1, 3, & 7 days. Finally, myocardial function, infarct size, inflammation, and neovascularization of the infarcted hearts were calculated thereafter. RESULTS Expression of Fstl1 in hypoxic MSCs declines dramatically in a time-dependent manner. In vitro study further demonstrated that Fstl1 promotes survival and proliferation of hypoxic MSCs. Moreover, Fstl1 significantly prolongs MSC survival/retention after implantation. Finally, transplantation with Fstl1-overexpressing MSCs significantly improves post-MI cardiac function by limiting scar formation, reducing inflammatory response, and enhancing neovascularization. CONCLUSIONS Our results suggest Fstl1 is an intrinsic cardiokine promoting survival and proliferation of MSCs, thereby optimizing their engraftment and therapeutic efficacy during cell therapy.
Collapse
Affiliation(s)
- Han Shen
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215006 China
| | - Guanghao Cui
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215006 China
| | - Yanqiong Li
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215006 China
| | - Wenxue Ye
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215006 China
| | - Yimin Sun
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215006 China
| | - Zihan Zhang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
| | - Jingjing Li
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
| | - Guiying Xu
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
| | - Xiansheng Zeng
- Department of Cardiology of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
| | - Yanxia Zhang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215006 China
| | - Wencheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China
| | - Zan Huang
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, 210000 China
| | - Weiqian Chen
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215006 China
| | - Zhenya Shen
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215006 China
| |
Collapse
|
9
|
Follistatin-Like 1 Is Downregulated in Morbidly and Super Obese Central-European Population. DISEASE MARKERS 2018; 2018:4140815. [PMID: 30595761 PMCID: PMC6282119 DOI: 10.1155/2018/4140815] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/29/2018] [Accepted: 11/01/2018] [Indexed: 12/25/2022]
Abstract
Follistatin-like 1 (FSTL1) is a secreted adipomyokine with a possible link to obesity; however, its connection to extreme obesity currently remains unknown. In order to analyze such association for the very first time, we employed a unique cohort of morbidly and super obese individuals with a mean BMI of 44.77 kg/m2 and measured the levels of circulating FSTL1. We explored the 3′ UTR of FSTL1 to locate a genetic variant which impairs microRNA binding. We located and investigated such SNP (rs1057231) in relation to the FSTL1 protein level, obesity status, and other body composition parameters. We observed a significant decline in FSTL1 level in obese subjects in comparison to nonobese ones. The evaluated SNP was found to correlate with FSTL1 only in nonobese subjects. The presented results were not affected by sex since both males and females expressed FSTL1 equally. We suggest that the FSTL1 decrease observed in extremely obese subjects is a result of adipogenesis reduction accompanied by a senescence of preadipocytes which otherwise willingly express FSTL1, increased adipocyte apoptosis, and epigenetic FSTL1 silencing.
Collapse
|
10
|
Ni X, Cao X, Wu Y, Wu J. FSTL1 suppresses tumor cell proliferation, invasion and survival in non-small cell lung cancer. Oncol Rep 2017; 39:13-20. [PMID: 29115636 PMCID: PMC5783594 DOI: 10.3892/or.2017.6061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/18/2017] [Indexed: 01/07/2023] Open
Abstract
Follistatin like-1 (FSTL1) is a secreted glycoprotein involved in a series of physiological and pathological processes. However, its contribution to the development of cancer, especially the pathogenesis of NSCLC, remains to be elucidated. We explored the expression, function, and molecular mechanism of FSTL1 in NSCLC. In this study, we detected the expression of FSTL1 in a panel of NSCLC cell lines and lung normal epithelial cell line by qRT-PCR and western blot analysis and found that FSTL1 was downregulated in NSCLC cells compared with normal control. Knockdown of FSTL1 with different shRNA sequences result in increased cell proliferation and cell migration, invasion and reduced cell apoptosis in A549 cell line with high FSTL1 endogenous level. FSTL1 overexpression in H446 cell line with low FSTL1 endogenous level suppressed cell proliferation and migration, invasion and increased cell apoptosis. Knockdown and overexpression of FSTL1 caused altered cell cycle. Reduced cell apoptosis was revealed in FSTL1 knockdown cells accompanied by increased FAS expression and decreased FASL, cleaved caspase‑3 and ‑7 expression. By contrast, overexpression of FSTL1 caused reduced FAS level and increased activated caspase‑3 and ‑7 expression, which may lead to increased cell apoptosis. Moreover, the changed migration and invasion ability in FSTL1 sufficient or deficient cells may be caused by alterations in MMP2, MMP3 and MMP9 expression. Altogether, our results revealed the critical tumor-suppression function of FSTL1 in NSCLC progression, suggesting that FSTL1 might be an important factor in NSCLC progression.
Collapse
Affiliation(s)
- Xiaolei Ni
- Department of Medical Oncology, The First Hospital of Longyan Affiliated to Fujian Medical University, Longyan, Fujian, P.R. China
| | - Xiaoming Cao
- Department of Respiratory Medicine, The First Hospital of Longyan Affiliated to Fujian Medical University, Longyan, Fujian, P.R. China
| | - Yongquan Wu
- Department of Respiratory Medicine, The First Hospital of Longyan Affiliated to Fujian Medical University, Longyan, Fujian, P.R. China
| | - Jian Wu
- Department of Cardiothoracic Surgery, The First Hospital of Longyan Affiliated to Fujian Medical University, Longyan, Fujian, P.R. China
| |
Collapse
|
11
|
Application of bio-orthogonal proteome labeling to cell transplantation and heterochronic parabiosis. Nat Commun 2017; 8:643. [PMID: 28935952 PMCID: PMC5608760 DOI: 10.1038/s41467-017-00698-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/20/2017] [Indexed: 12/19/2022] Open
Abstract
Studies of heterochronic parabiosis demonstrated that with age, the composition of the circulatory milieu changes in ways that broadly inhibit tissue regenerative capacity. In addition, local tissue niches have age-specific influences on their resident stem cells. Here we use bio-orthogonal proteome labeling for detecting in vivo proteins present only in transplanted myoblasts, but not in host tissue, and proteins exclusive to one young mouse and transferred during parabiosis to its old partner. We use a transgenic mouse strain that ubiquitously expresses a modified tRNA methionine synthase, metRS, which preferentially incorporates the methionine surrogate azido-nor-leucine (ANL) into newly generated proteins. Using click chemistry and a modified antibody array to detect ANL-labeled proteins, we identify several ‘young’ systemic factors in old regenerating muscle of the heterochronic parabiotic partners. Our approach enables the selective profiling of mammalian proteomes in mixed biological environments such as cell and tissue transplantation, apheresis or parabiosis. Clarifying the source of proteins in mixed biological environments, such as after transplantation or parabiosis, remains a challenge. Here, the authors address this need with a mouse strain that incorporates a methionine derivate into proteins, allowing for their detection using click chemistry and antibody arrays.
Collapse
|
12
|
Wu J, Wang J, Zeng X, Chen Y, Xia J, Wang S, Huang Z, Chen W, Shen Z. Protein phosphatase 2A regulatory subunit B56β modulates erythroid differentiation. Biochem Biophys Res Commun 2016; 478:1179-84. [PMID: 27544028 DOI: 10.1016/j.bbrc.2016.08.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/16/2016] [Indexed: 11/29/2022]
Abstract
Anemia due to attenuated erythroid terminal differentiation is one of the most common hematological disorders occurring at all stages of life. We previously demonstrated that catalytic subunit α of protein phosphatase 2A (PP2Acα) modulates fetal liver erythropoiesis. However the corresponding PP2A regulatory subunit in this process remains unknown. In this study, we report that chemical inhibition of PP2A activity with okadaic acid impairs hemin-induced erythroid differentiation. Interestingly, B56 family member B56β is the only regulatory subunit whose expression is induced by both erythropoietin in fetal liver cells and hemin in erythroleukemia K562 cells. Finally, knockdown of B56β attenuates hemin-induced K562 erythroid differentiation. Collectively, our data identify B56β as the potential functional regulatory subunit of PP2A in erythroid differentiation, shedding light on new target for precise modulation of PP2A activity for treatment of anemia and related diseases.
Collapse
Affiliation(s)
- Jianping Wu
- Orthopedic Department of the Second Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Jun Wang
- Emergency Department of the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiansheng Zeng
- Department of Cardiology of the First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - Yueqiu Chen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - Jun Xia
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - Shizhen Wang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - Zan Huang
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210000, China.
| | - Weiqian Chen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou 215006, China.
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou 215006, China.
| |
Collapse
|