1
|
Krah A, Vogelaar T, de Jong SI, Claridge JK, Bond PJ, McMillan DGG. ATP binding by an F 1F o ATP synthase ε subunit is pH dependent, suggesting a diversity of ε subunit functional regulation in bacteria. Front Mol Biosci 2023; 10:1059673. [PMID: 36923639 PMCID: PMC10010621 DOI: 10.3389/fmolb.2023.1059673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/03/2023] [Indexed: 03/03/2023] Open
Abstract
It is a conjecture that the ε subunit regulates ATP hydrolytic function of the F1Fo ATP synthase in bacteria. This has been proposed by the ε subunit taking an extended conformation, with a terminal helix probing into the central architecture of the hexameric catalytic domain, preventing ATP hydrolysis. The ε subunit takes a contracted conformation when bound to ATP, thus would not interfere with catalysis. A recent crystallographic study has disputed this; the Caldalkalibacillus thermarum TA2.A1 F1Fo ATP synthase cannot natively hydrolyse ATP, yet studies have demonstrated that the loss of the ε subunit terminal helix results in an ATP synthase capable of ATP hydrolysis, supporting ε subunit function. Analysis of sequence and crystallographic data of the C. thermarum F1Fo ATP synthase revealed two unique histidine residues. Molecular dynamics simulations suggested that the protonation state of these residues may influence ATP binding site stability. Yet these residues lie outside the ATP/Mg2+ binding site of the ε subunit. We then probed the effect of pH on the ATP binding affinity of the ε subunit from the C. thermarum F1Fo ATP synthase at various physiologically relevant pH values. We show that binding affinity changes 5.9 fold between pH 7.0, where binding is weakest, to pH 8.5 where it is strongest. Since the C. thermarum cytoplasm is pH 8.0 when it grows optimally, this correlates to the ε subunit being down due to ATP/Mg2+ affinity, and not being involved in blocking ATP hydrolysis. Here, we have experimentally correlated that the pH of the bacterial cytoplasm is of critical importance for ε subunit ATP affinity regulated by second-shell residues thus the function of the ε subunit changes with growth conditions.
Collapse
Affiliation(s)
- Alexander Krah
- Korea Institute for Advanced Study, School of Computational Sciences, Seoul, South Korea.,Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Timothy Vogelaar
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Sam I de Jong
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Jolyon K Claridge
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Duncan G G McMillan
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands.,School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
2
|
A second shell residue modulates a conserved ATP-binding site with radically different affinities for ATP. Biochim Biophys Acta Gen Subj 2020; 1865:129766. [PMID: 33069831 DOI: 10.1016/j.bbagen.2020.129766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/16/2020] [Accepted: 10/14/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Prediction of ligand binding and design of new function in enzymes is a time-consuming and expensive process. Crystallography gives the impression that proteins adopt a fixed shape, yet enzymes are functionally dynamic. Molecular dynamics offers the possibility of probing protein movement while predicting ligand binding. Accordingly, we choose the bacterial F1Fo ATP synthase ε subunit to unravel why ATP affinity by ε subunits from Bacillus subtilis and Bacillus PS3 differs ~500-fold, despite sharing identical sequences at the ATP-binding site. METHODS We first used the Bacillus PS3 ε subunit structure to model the B. subtilis ε subunit structure and used this to explore the utility of molecular dynamics (MD) simulations to predict the influence of residues outside the ATP binding site. To verify the MD predictions, point mutants were made and ATP binding studies were employed. RESULTS MD simulations predicted that E102 in the B. subtilis ε subunit, outside of the ATP binding site, influences ATP binding affinity. Engineering E102 to alanine or arginine revealed a ~10 or ~54 fold increase in ATP binding, respectively, confirming the MD prediction that E102 drastically influences ATP binding affinity. CONCLUSIONS These findings reveal how MD can predict how changes in the "second shell" residues around substrate binding sites influence affinity in simple protein structures. Our results reveal why seemingly identical ε subunits in different ATP synthases have radically different ATP binding affinities. GENERAL SIGNIFICANCE This study may lead to greater utility of molecular dynamics as a tool for protein design and exploration of protein design and function.
Collapse
|
3
|
Krah A, Huber RG, McMillan DGG, Bond PJ. The Molecular Basis for Purine Binding Selectivity in the Bacterial ATP Synthase ϵ Subunit. Chembiochem 2020; 21:3249-3254. [PMID: 32608105 DOI: 10.1002/cbic.202000291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/30/2020] [Indexed: 12/21/2022]
Abstract
The ϵ subunit of ATP synthases has been proposed to regulate ATP hydrolysis in bacteria. Prevailing evidence supports the notion that when the ATP concentration falls below a certain threshold, the ϵ subunit changes its conformation from a non-inhibitory down-state to an extended up-state that then inhibits enzymatic ATP hydrolysis by binding to the catalytic domain. It has been demonstrated that the ϵ subunit from Bacillus PS3 is selective for ATP over other nucleotides, including GTP. In this study, the purine triphosphate selectivity is rationalized by using results from MD simulations and free energy calculations for the R103A/R115A mutant of the ϵ subunit from Bacillus PS3, which binds ATP more strongly than the wild-type protein. Our results are in good agreement with experimental data, and the elucidated molecular basis for selectivity could help to guide the design of novel GTP sensors.
Collapse
Affiliation(s)
- Alexander Krah
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Str. #07-01 Matrix, Singapore, 138671, Singapore.,Korea Institute for Advanced Study, School of Computational Sciences, 85 Hoegiro, Dongdaemun-gu, Seoul, 02455, Republic of Korea
| | - Roland G Huber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Str. #07-01 Matrix, Singapore, 138671, Singapore
| | - Duncan G G McMillan
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Str. #07-01 Matrix, Singapore, 138671, Singapore.,National University of Singapore, Department of Biological Sciences, 14 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
4
|
Krah A, Huber RG, Bond PJ. How Ligand Binding Affects the Dynamical Transition Temperature in Proteins. Chemphyschem 2020; 21:916-926. [DOI: 10.1002/cphc.201901221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/03/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Alexander Krah
- School of Computational SciencesKorea Institute for Advanced Study 85 Hoegiro, Dongdaemun-gu Seoul 02455 Republic of Korea
- Bioinformatics InstituteAgency for Science Technology and Research (A*STAR) 30 Biopolis Str., #07-01 Matrix 138671 Singapore
| | - Roland G. Huber
- Bioinformatics InstituteAgency for Science Technology and Research (A*STAR) 30 Biopolis Str., #07-01 Matrix 138671 Singapore
| | - Peter J. Bond
- Bioinformatics InstituteAgency for Science Technology and Research (A*STAR) 30 Biopolis Str., #07-01 Matrix 138671 Singapore
- National University of SingaporeDepartment of Biological Sciences 14 Science Drive 4 Singapore 117543
| |
Collapse
|
5
|
ATP-binding affinity of the ε subunit of thermophilic F 1-ATPase under label-free conditions. Biochem Biophys Rep 2020; 21:100725. [PMID: 31938734 PMCID: PMC6953521 DOI: 10.1016/j.bbrep.2020.100725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/29/2019] [Accepted: 01/03/2020] [Indexed: 12/31/2022] Open
Abstract
The ε subunits of several bacterial F1-ATPases bind ATP. ATP binding to the ε subunit has been shown to be involved in the regulation of F1-ATPase from thermophilic Bacillus sp. PS3 (TF1). We previously reported that the dissociation constant for ATP of wild-type ε subunit of TF1 at 25 °C is 4.3 μM by measuring changes in the fluorescence of the dye attached to the ε subunit (Kato, S. et al. (2007) J. Biol. Chem.282, 37618). However, we have recently noticed that this varies with the dye used. In this report, to determine the affinity for ATP under label-free conditions, we have measured the competitive displacement of 2′(3′)-O-N′-methylaniloyl-aminoadenosine-5′-triphosphate (Mant-ATP), a fluorescent analog of ATP, by ATP. The dissociation constant for ATP of wild-type ε subunit of TF1 at 25 °C was determined to be 0.29 μM, which is one order of magnitude higher affinity than previously reported values. The ε subunit of F1-ATPase from Bacillus PS3 specifically binds ATP. Fluorescent labeling of ε subunit for the measurement may affect binding affinity. ATP binding affinity under label-free conditions was determined. Affinity of ε subunit for ATP is revised.
Collapse
|
6
|
Krah A, Bond PJ. Single mutations in the ε subunit from thermophilic Bacillus PS3 generate a high binding affinity site for ATP. PeerJ 2018; 6:e5505. [PMID: 30202650 PMCID: PMC6129141 DOI: 10.7717/peerj.5505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/02/2018] [Indexed: 01/23/2023] Open
Abstract
The ε subunit from ATP synthases acts as an ATP sensor in the bacterial cell to prevent ATP hydrolysis and thus the waste of ATP under conditions of low ATP concentration. However, the ATP binding affinities from various bacterial organisms differ markedly, over several orders of magnitude. For example, the ATP synthases from thermophilic Bacillus PS3 and Escherichia coli exhibit affinities of 4 µM and 22 mM, respectively. The recently reported R103A/R115A double mutant of Bacillus PS3 ATP synthase demonstrated an increased binding affinity by two orders of magnitude with respect to the wild type. Here, we used atomic-resolution molecular dynamics simulations to determine the role of the R103A and R115A single mutations. These lead us to predict that both single mutations also cause an increased ATP binding affinity. Evolutionary analysis reveals R103 and R115 substitutions in the ε subunit from other bacillic organisms, leading us to predict they likely have a higher ATP binding affinity than previously expected.
Collapse
Affiliation(s)
- Alexander Krah
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Republic of Korea.,Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Krah A, Zarco-Zavala M, McMillan DGG. Insights into the regulatory function of the ɛ subunit from bacterial F-type ATP synthases: a comparison of structural, biochemical and biophysical data. Open Biol 2018; 8:170275. [PMID: 29769322 PMCID: PMC5990651 DOI: 10.1098/rsob.170275] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/24/2018] [Indexed: 01/07/2023] Open
Abstract
ATP synthases catalyse the formation of ATP, the most common chemical energy storage unit found in living cells. These enzymes are driven by an electrochemical ion gradient, which allows the catalytic evolution of ATP by a binding change mechanism. Most ATP synthases are capable of catalysing ATP hydrolysis to varying degrees, and to prevent wasteful ATP hydrolysis, bacteria and mitochondria have regulatory mechanisms such as ADP inhibition. Additionally, ɛ subunit inhibition has also been described in three bacterial systems, Escherichia coli, Bacillus PS3 and Caldalkalibacillus thermarum TA2.A1. Previous studies suggest that the ɛ subunit is capable of undergoing an ATP-dependent conformational change from the ATP hydrolytic inhibitory 'extended' conformation to the ATP-induced non-inhibitory 'hairpin' conformation. A recently published crystal structure of the F1 domain of the C. thermarum TA2.A1 F1Fo ATP synthase revealed a mutant ɛ subunit lacking the ability to bind ATP in a hairpin conformation. This is a surprising observation considering it is an organism that performs no ATP hydrolysis in vivo, and appears to challenge the current dogma on the regulatory role of the ɛ subunit. This has prompted a re-examination of present knowledge of the ɛ subunits role in different organisms. Here, we compare published biochemical, biophysical and structural data involving ɛ subunit-mediated ATP hydrolysis regulation in a variety of organisms, concluding that the ɛ subunit from the bacterial F-type ATP synthases is indeed capable of regulating ATP hydrolysis activity in a wide variety of bacteria, making it a potentially valuable drug target, but its exact role is still under debate.
Collapse
Affiliation(s)
- Alexander Krah
- School of Computational Sciences, Korea Institute for Advanced Study, 85 Hoegiro Dongdaemun-gu, Seoul 02455, Republic of Korea
| | - Mariel Zarco-Zavala
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Duncan G G McMillan
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
8
|
Krah A, Kato-Yamada Y, Takada S. The structural basis of a high affinity ATP binding ε subunit from a bacterial ATP synthase. PLoS One 2017; 12:e0177907. [PMID: 28542497 PMCID: PMC5436830 DOI: 10.1371/journal.pone.0177907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/04/2017] [Indexed: 01/09/2023] Open
Abstract
The ε subunit from bacterial ATP synthases functions as an ATP sensor, preventing ATPase activity when the ATP concentration in bacterial cells crosses a certain threshold. The R103A/R115A double mutant of the ε subunit from thermophilic Bacillus PS3 has been shown to bind ATP two orders of magnitude stronger than the wild type protein. We use molecular dynamics simulations and free energy calculations to derive the structural basis of the high affinity ATP binding to the R103A/R115A double mutant. Our results suggest that the double mutant is stabilized by an enhanced hydrogen-bond network and fewer repulsive contacts in the ligand binding site. The inferred structural basis of the high affinity mutant may help to design novel nucleotide sensors based on the ε subunit from bacterial ATP synthases.
Collapse
Affiliation(s)
- Alexander Krah
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
- School of Computational Sciences, Korea Institute for Advanced Study, Dongdaemun-gu, Seoul, Republic of Korea
- * E-mail:
| | - Yasuyuki Kato-Yamada
- Department of Life Science, College of Science, Rikkyo University, Nishi-Ikebukuro, Toshima-ku, Tokyo, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|