1
|
Rehman S, Storey KB. Small RNA and Freeze Survival: The Cryoprotective Functions of MicroRNA in the Frozen Muscle Tissue of the Grey Tree Frog. Metabolites 2024; 14:387. [PMID: 39057710 PMCID: PMC11279038 DOI: 10.3390/metabo14070387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The grey tree frog, Dryophytes versicolor, survives whole-body freezing for weeks during cold winter months. Survival in a state devoid of available food, water, or oxygen forces a reliance on metabolic rate depression (MRD) and the reprioritization of bodily functions. This study utilizes next-generation sequencing (NGS) and bioinformatic analyses to characterize changes in the microRNAome of D. versicolor. When comparing control to frozen groups, five microRNAs (miRNA) were found to be differentially regulated (miR-143-3p, miR-30e-3p, miR-10a-5p, miR-140-3p, and miR-148a-3p), suggesting that they play key roles in freeze survival. The KEGG and GO analyses of these changes predicted a significant negative enrichment of terms associated with cell proliferation and active metabolism while simultaneously predicting the upregulation of cell signalling terms. These results suggest a fast-acting regulatory role for miRNA in contributing to the reorganization of gene expression and the limitation of energy-expensive processes during MRD in the hind leg skeletal muscle of the frog.
Collapse
Affiliation(s)
| | - Kenneth B. Storey
- Department of Biology, Carleton Univesrity, Ottawa, ON K1S 5B6, Canada;
| |
Collapse
|
2
|
Abstract
Eryptosis is a regulated cell death (RCD) of mature erythrocytes initially described as a counterpart of apoptosis for enucleated cells. However, over the recent years, a growing number of studies have emphasized certain differences between both cell death modalities. In this review paper, we underline the hallmarks of eryptosis and apoptosis and highlight resemblances and dissimilarities between both RCDs. We summarize and critically discuss differences in the impact of caspase-3, Ca2+ signaling, ROS signaling pathways, opposing roles of casein kinase 1α, protein kinase C, Janus kinase 3, cyclin-dependent kinase 4, and AMP-activated protein kinase to highlight a certain degree of divergence between apoptosis and eryptosis. This review emphasizes the crucial importance of further studies that focus on deepening our knowledge of cell death machinery and identifying novel differences between cell death of nucleated and enucleated cells. This might provide evidence that erythrocytes can be defined as viable entities capable of programmed cell destruction. Additionally, the revealed cell type-specific patterns in cell death can facilitate the development of cell death-modulating therapeutic agents.
Collapse
Affiliation(s)
- Anton Tkachenko
- 1st Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic.
| |
Collapse
|
3
|
Liu T, Zhang B, Gao Y, Zhang X, Tong J, Li Z. Identification of ACHE as the hub gene targeting solasonine associated with non-small cell lung cancer (NSCLC) using integrated bioinformatics analysis. PeerJ 2023; 11:e16195. [PMID: 37842037 PMCID: PMC10573390 DOI: 10.7717/peerj.16195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Background Solasonine, as a major biological component of Solanum nigrum L., has demonstrated anticancer effects against several malignancies. However, little is understood regarding its biological target and mechanism in non-small cell lung cancer (NSCLC). Methods We conducted an analysis on transcriptomic data to identify differentially expressed genes (DEGs), and employed an artificial intelligence (AI) strategy to predict the target protein for solasonine. Subsequently, genetic dependency analysis and molecular docking were performed, with Acetylcholinesterase (ACHE) selected as a pivotal marker for solasonine. We then employed a range of bioinformatic approaches to explore the relationship between ACHE and solasonine. Furthermore, we investigated the impact of solasonine on A549 cells, a human lung cancer cell line. Cell inhibition of A549 cells following solasonine treatment was analyzed using the CCK8 assay. Additionally, we assessed the protein expression of ACHE, as well as markers associated with apoptosis and inflammation, using western blotting. To investigate their functions, we employed a plasmid-based ACHE overexpression system. Finally, we performed dynamics simulations to simulate the interaction mode between solasonine and ACHE. Results The results of the genetic dependency analysis revealed that ACHE could be identified as the pivotal target with the highest docking affinity. The cell experiments yielded significant findings, as evidenced by the negative regulatory effect of solasonine treatment on tumor cells, as demonstrated by the CCK8 assay. Western blotting analysis revealed that solasonine treatment resulted in the downregulation of the Bcl-2/Bax ratio and upregulation of cleaved caspase-3 protein expression levels. Moreover, we observed that ACHE overexpression promoted the expression of the Bcl-2/Bax ratio and decreased cleaved caspase-3 expression in the OE-ACHE group. Notably, solasonine treatment rescued the Bcl-2/Bax ratio and cleaved caspase-3 expression in OE-ACHE cells compared to OE-ACHE cells without solasonine treatment, suggesting that solasonine induces apoptosis. Besides, solasonine exhibited its anti-inflammatory effects by inhibiting P38 MAPK. This was supported by the decline in protein levels of IL-1β and TNF-α, as well as the phosphorylated forms of JNK and P38 MAPK. The results from the molecular docking and dynamics simulations further confirmed the potent binding affinity and effective inhibitory action between solasonine and ACHE. Conclusions The findings of the current investigation show that solasonine exerts its pro-apoptosis and anti-inflammatory effects by suppressing the expression of ACHE.
Collapse
Affiliation(s)
- Tong Liu
- Anhui University of Chinese Medicine, Hefei, Anhui, China
- Key Laboratory of Xin’An Medicine, Ministry of Education, Hefei, Anhui, China
| | - Boke Zhang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yating Gao
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xingxing Zhang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jiabing Tong
- Anhui University of Chinese Medicine, Hefei, Anhui, China
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Key Laboratory of Anhui Provincial Department of Education, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| | - Zegeng Li
- Anhui University of Chinese Medicine, Hefei, Anhui, China
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Key Laboratory of Anhui Provincial Department of Education, Hefei, Anhui, China
| |
Collapse
|
4
|
Zhang Q, Huang Y, Gong C, Tang Y, Xiong J, Wang D, Liu X. Dexmedetomidine attenuates inflammation and organ injury partially by upregulating Nur77 in sepsis. Immun Inflamm Dis 2023; 11:e883. [PMID: 37382273 PMCID: PMC10283499 DOI: 10.1002/iid3.883] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 06/30/2023] Open
Abstract
PURPOSE The aim of this study was to investigate the effect of dexmedetomidine (Dex) on inflammation and organ injury in sepsis, as well as the potential relationship between Dex and nuclear receptor 77 (Nur77). METHODS We investigated the effects of dexmedetomidine on lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells and organ injury in the cecal ligation and puncture (CLP) mouse model. Additionally, we examined the relationship between dexmedetomidine and Nur77. The expression levels of Nur77 in RAW264.7 cells were analyzed under various types of stimulation using quantitative reverse transcription polymerase chain reaction and western blot analysis. Inflammatory cytokine levels in the cells were evaluated using enzyme-linked immunoassay. Organ injuries were assessed by examining tissue histology and pathology of the lung, liver, and kidney. RESULTS Dexmedetomidine increased the expression of Nur77 and IL-10, and downregulated inflammatory cytokines (IL-1β and TNF-α) in LPS-treated RAW264.7 cells. The effect of dexmedetomidine on inhibiting inflammation in LPS-treated RAW264.7 cells was promoted by overexpressing Nur77, while it was reversed by downregulating Nur77. Additionally, dexmedetomidine promoted the expression of Nur77 in the lung and CLP-induced pathological changes in the lung, liver, and kidney. Activation of Nur77 with the agonist Cytosporone B (CsnB) significantly suppressed the production of IL-1β and TNF-α in LPS-treated RAW264.7 cells. In contrast, knockdown of Nur77 augmented IL-1β and TNF-α production in LPS-treated RAW264.7 cells. CONCLUSION Dexmedetomidine can attenuate inflammation and organ injury, at least partially, via upregulating Nur77 in sepsis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Critical Care MedicineGuizhou Medical UniversityGuiyangGuizhouPeople's Republic of China
| | - Yun Huang
- Department of NephrologyFirst People's HospitalGuiyangGuizhouPeople's Republic of China
| | - Chenchen Gong
- Department of Thoracic and Cardiovascular SurgeryThe Children's Hospital of Zhejiang University School of MedicineZhejiangPeople's Republic of China
| | - Yan Tang
- Department of Critical Care MedicineAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouPeople's Republic of China
| | - Jie Xiong
- Department of HematologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouPeople's Republic of China
| | - Difen Wang
- Department of Critical Care MedicineAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouPeople's Republic of China
| | - Xu Liu
- Department of Critical Care MedicineAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouPeople's Republic of China
| |
Collapse
|
5
|
Bai J, Pu X, Zhang Y, Dai E. Renal tubular gen e biomarkers identification based on immune infiltrates in focal segmental glomerulosclerosis. Ren Fail 2022; 44:966-986. [PMID: 35713363 PMCID: PMC9225740 DOI: 10.1080/0886022x.2022.2081579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
OBJECTIVE The present study identified novel renal tubular biomarkers that may influence the diagnosis and treatment of focal segmental glomerulosclerosis (FSGS) based on immune infiltration. METHODS Three FSGS microarray datasets, GSE108112, GSE133288 and GSE121211, were downloaded from the Gene Expression Omnibus (GEO) database. The R statistical software limma package and the combat function of the sva package were applied for preprocessing and to remove the batch effects. Differentially expressed genes (DEGs) between 120 FSGS and 15 control samples were identified with the limma package. Disease Ontology (DO) pathway enrichment analysis was conducted with statistical R software to search for related diseases. Gene set enrichment analysis (GSEA) was used to interpret the gene expression data and it revealed many common biological pathways. A protein-protein interaction (PPI) network was built using the Search Tool for the Retrieval of Interacting Genes (STRING) database, and hub genes were identified by the Cytoscape (version 3.7.2) plug-in CytoHubba. The plug-in Molecular Complex Detection (MCODE) was used to screen hub modules of the PPI network in Cytoscape, while functional analysis of the hub genes and hub nodes involved in the submodule was performed by ClusterProfiler. The least absolute shrinkage and selection operator (LASSO) regression and support vector machine recursive feature elimination (SVM-RFE) analysis were used to screen characteristic genes and build a logistic regression model. Receiver operating characteristic (ROC) curve analyses were used to investigate the logistic regression model and it was then validated by an external dataset GSE125779, which contained 8 FSGS samples and 8 healthy subjects. Cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) was used to calculate the immune infiltration of FSGS samples. RESULTS We acquired 179 DEGs, 79 genes with downregulated expression (44.1%) and 100 genes with upregulated expression (55.9%), in the FSGS samples. The DEGs were significantly associated with arteriosclerosis, kidney disease and arteriosclerotic cardiovascular disease. GSEA revealed that these gene sets were significantly enriched in allograft rejection signaling pathways and activation of immune response in biological processes. Fifteen genes were demonstrated to be hub genes by PPI, and three submodules were screened by MCODE linked with FSGS. Analysis by machine learning methodologies identified nuclear receptor subfamily 4 group A member 1 (NR4A1) and dual specificity phosphatase 1 (DUSP1) as sensitive tubular renal biomarkers in the diagnosis of FSGS, and they were selected as hub genes, as well as hub nodes which were enriched in the MAPK signaling pathway. Immune cell infiltration analysis revealed that the genetic biomarkers were both correlated with activated mast cells, which may amplify FSGS biological processes. CONCLUSION DUSP1 and NR4A1 were identified as sensitive potential biomarkers in the diagnosis of FSGS. Activated mast cells have a decisive effect on the occurrence and development of FSGS through tubular lesions and tubulointerstitial inflammation, and they are expected to become therapeutic targets in FSGS.
Collapse
Affiliation(s)
- JunYuan Bai
- Medical College of Integrated Chinese and Western Medicine, GanSu University of Traditional Chinese Medicine, GanSu, China
| | - XiaoWei Pu
- Medical College of Integrated Chinese and Western Medicine, GanSu University of Traditional Chinese Medicine, GanSu, China
| | - YunXia Zhang
- Medical College of Integrated Chinese and Western Medicine, GanSu University of Traditional Chinese Medicine, GanSu, China
| | - Enlai Dai
- Department of Anesthesiology and Surgery, GanSu University of Traditional Chinese Medicine, Gansu, China
| |
Collapse
|
6
|
Li M, Xue Y. The upregulation of Nur77 decreases ketamine-induced hippocampal neurons toxicity in rats. Neuroreport 2021; 32:1370-1378. [PMID: 34718249 DOI: 10.1097/wnr.0000000000001738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ketamine is clinically used as a narcotic. However, ketamine has certain deficits and produces toxicity to neurons. As a member of the NR4A receptor subfamily, Nur77 decreases neurodegenerative disorders. The study aims to investigate the effects of upregulated Nur77 on ketamine-induced rat hippocampal neurons damage and the active mechanism. Neurons were obtained from rat hippocampal and identified by immunofluorescence assays. The treatment groups contained ketamine group, Nur77 group, ketamine + Nur77 group and ketamine + L-cam group. Neurons apoptosis and reactive oxygen species (ROS) were determined by a related kit using flow cytometry. Enzyme NAD(P)H quinone oxidoreductase 1 (NQO1), enzyme heme oxygenase 1 (HO1), Nur77, the expression of Bax, Bcl-2 and cleaved-caspase-3 and inflammatory cytokines were measured using western blot assays and reverse transcription-quantitative PCR (RT-qPCR) assays. Ketamine-induced neurons apoptosis; however, Nur77 decreased ketamine-induced neurons apoptosis. A low level of ROS was observed in two combination groups. Neurons treated by ketamine only had the lowest levels of Nur77, NQO1 and HO1, compared with other treatment groups. The levels of Bax and cleaved-caspase-3 in two combination groups were lower than those in the ketamine group. Furthermore, the ketamine group had higher levels of tumor necrosis factor alpha, IL-1β and IL-6 but the lowest level of IL-4. Upregulated Nur77 reduced the ketamine-induced toxicity in neurons. The mechanism of Nur77 involved antioxidation, apoptosis signaling pathway and inflammation signaling pathway. Our study provides a novel therapy that could attenuate ketamine-induced toxicity.
Collapse
Affiliation(s)
- Min Li
- Department of Neurology, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | | |
Collapse
|
7
|
Zhang H, Geng N, Sun L, Che X, Xiao Q, Tao Z, Chen L, Lyu Y, Shao Q, Pu J. Nuclear Receptor Nur77 Protects Against Abdominal Aortic Aneurysm by Ameliorating Inflammation Via Suppressing LOX-1. J Am Heart Assoc 2021; 10:e021707. [PMID: 34325521 PMCID: PMC8475661 DOI: 10.1161/jaha.121.021707] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Abdominal aortic aneurysm (AAA) is a life-threatening vascular disorder characterized by chronic inflammation of the aortic wall, which lacks effective pharmacotherapeutic remedies and has an extremely high mortality. Nuclear receptor NR4A1 (Nur77) functions in various chronic inflammatory diseases. However, the influence of Nur77 on AAA has remained unclear. Herein, we sought to determine the effects of Nur77 on the development of AAA. Methods and Results We observed that Nur77 expression decreased significantly in human and mice AAA lesions. Deletion of Nur77 accelerated the development of AAA in mice, as evidenced by increased AAA incidence, abdominal aortic diameters, elastin fragmentation, and collagen content. Consistent with genetic manipulation, pharmacological activation of Nur77 by celastrol showed beneficial effects against AAA. Microscopic and molecular analyses indicated that the detrimental effects of Nur77 deficiency were associated with aggravated macrophage infiltration in AAA lesions and increased pro-inflammatory cytokines secretion and matrix metalloproteinase (MMP-9) expression. Bioinformatics analyses further revealed that LOX-1 was upregulated by Nur77 deficiency and consequently increased the expression of cytokines and MMP-9. Moreover, rescue experiments verified that LOX-1 notably aggravated inflammatory response, an effect that was blunted by Nur77. Conclusions This study firstly demonstrated a crucial role of Nur77 in the formation of AAA by targeting LOX-1, which implicated Nur77 might be a potential therapeutic target for AAA.
Collapse
Affiliation(s)
- Hengyuan Zhang
- Department of Cardiology Renji HospitalSchool of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Na Geng
- Department of Cardiology Renji HospitalSchool of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Lingyue Sun
- Department of Cardiology Renji HospitalSchool of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Xinyu Che
- Department of Cardiology Renji HospitalSchool of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Qingqing Xiao
- Department of Cardiology Renji HospitalSchool of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Zhenyu Tao
- Department of Cardiology Renji HospitalSchool of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Long Chen
- Department of Cardiology Renji HospitalSchool of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Yuyan Lyu
- Department of Cardiology Renji HospitalSchool of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Qin Shao
- Department of Cardiology Renji HospitalSchool of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Jun Pu
- Department of Cardiology Renji HospitalSchool of Medicine, Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
8
|
Hu QY, Zhang XK, Wang JN, Chen HX, He LP, Tang JS, Yao XS, Liu J. Malayoside, a cardenolide glycoside extracted from Antiaris toxicaria Lesch, induces apoptosis in human non-small lung cancer cells via MAPK-Nur77 signaling pathway. Biochem Pharmacol 2021; 190:114622. [PMID: 34043967 DOI: 10.1016/j.bcp.2021.114622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/01/2021] [Accepted: 05/20/2021] [Indexed: 12/25/2022]
Abstract
Lung cancer is the leading cause of cancer deaths in the world. Non-small cell lung cancer (NSCLC), with poor prognosis and resistance to chemoradiotherapy, is the most common histological type of lung cancer. Therefore, it is necessary to develop new and more effective treatment strategy for NSCLC. Nur77, an orphan member of the nuclear receptor superfamily, induces apoptosis in cancer cells including NSCLC cells, by high expression and translocation to mitochondria. Small molecules trigger expression and mitochondrial localization of Nur77 may be an ideal anti-cancer drug candidate. Here, we report malayoside, a cardiac glycoside in the extract of Antiaris toxicaria Lesch., had different sensitivities to NSCLC cells. Malayoside induced apoptosis in NCI-H460 cells. Meanwhile, malayoside induced Nur77 expression and mitochondrial localization, and its induction of apoptosis was Nur77-dependent. To investigate the molecular mechanism of malayoside inducing Nur77 and apoptosis, we found that malayoside activated MAPK signaling pathway, including both ERK and p38 phosphorylation. The suppression of MAPK signaling activation inhibited the expression of Nur77 and apoptosis induced by malayoside. Our studies in nude mice showed that malayside potently inhibited the growth of tumor cells in vivo. Furthermore, the anti-cancer effect of malayosidwas in vivo was also related to the elevated expression of Nur77, p-ERK, and p-p38 proteins. Our results suggest that malayoside possesses an anti-NSCLC activity in vitro and in vivo mainly via activation of MAPK-Nur77 signaling pathway, indicating that malayoside is a promising chemotherapeutic candidate for NSCLC.
Collapse
Affiliation(s)
- Qiong-Ying Hu
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Jia-Nan Wang
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Hao-Xuan Chen
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Lian-Ping He
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Jin-Shan Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jie Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
9
|
Guo ZH, Jia YYS, Zeng YM, Li ZF, Lin JS. Transcriptome analysis identifies the differentially expressed genes related to the stemness of limbal stem cells in mice. Gene 2021; 775:145447. [PMID: 33482278 DOI: 10.1016/j.gene.2021.145447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/28/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
Limbal stem cells (LSCs) reside in the basal layer of limbal epithelial cells (LECs). They are crucial for maintenance of corneal epithelium homeostasis and corneal wound healing. Their stemness is determined by their gene expression pattern. Despite of several positive identifiers have been reported, the unique biomarker for LSCs still remain elusive. Differentially expressed genes (DEGs) between stem cells and differentiated cells affect the fate of stem cells via specific signaling pathway. In order to understand the DEGs in the LSCs, RNA-seq was firstly conducted using a mouse model. A total of 1907 up-regulated DEGs and 395 down-regulated DEGs were identified in the limbus (L) compared to central cornea (CC) and conjunctiva (Cj). Reliability of the expression of genes from RNA-seq analysis was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) and immunofluorescence staining. The expression pattern of putative biomarkers was considered to be age-related. In up-regulated DEGs GO analysis, 570 gene ontology (GO) terms were significantly enriched. Five groups of genes related with biological processes from these significantly enriched GO terms comprised ionic transport, regulation of tissue development, muscle contraction, visual perception, and cell adhesion, which were clustered as a weighted similar network. Whereas, in down-regulated DEGs GO analysis, 61 GO terms were significantly enriched and only one group of ATP biosynthesis and metabolic process were clustered. Furthermore, we identified 55 signaling pathways by the Kyoto Encyclopedia of Genes and Genomes (KEGG) database based on up-regulated genes and 14 KEGG pathways based on down-regulated genes. In this study, we provide a landscape of the expression of putative LSCs biomarkers and stemness-related signaling pathways in a mouse model. Our findings could aid in the identification of LSC niche factors that may be related to the stemness of the LSCs.
Collapse
Affiliation(s)
- Zhi Hou Guo
- School of Medicine, Huaqiao University, Quanzhou, Fujian 362021, China; Stem Cell Laboratory, The Second Affiliated Hospital of Fujian Medical University, China
| | | | - Yi Ming Zeng
- The Second Affiliated Hospital of Fujian Medical University, China
| | - Zhao Fa Li
- School of Medicine, Huaqiao University, Quanzhou, Fujian 362021, China
| | - Jun Sheng Lin
- School of Medicine, Huaqiao University, Quanzhou, Fujian 362021, China.
| |
Collapse
|
10
|
Li Y, Wei W, An S, Jiang J, He J, Zhang H, Wang G, Han J, Liang B, Ye L, Liang H. Identification and analysis of lncRNA, microRNA and mRNA expression profiles and construction of ceRNA network in Talaromyces marneffei-infected THP-1 macrophage. PeerJ 2021; 9:e10529. [PMID: 33520437 PMCID: PMC7811284 DOI: 10.7717/peerj.10529] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023] Open
Abstract
Background Competitive endogenous RNA (ceRNA) reveals new mechanisms for interactions between RNAs, which have been considered to play a significant role in pathogen-host innate immune response. However, knowledge of ceRNA regulatory networks in Talaromyces marneffei (TM)-macrophages is still limited. Methods Next-generation sequencing technology (NGS) was used to obtain mRNA, miRNA and lncRNA expression profiles in TM-infected macrophages. The R package DESeq2 was used to identify differentially expressed lncRNA, miRNA and mRNA. The R package GOseq was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and the ceRNA network of lncRNA–miRNA–mRNA interaction was constructed in Cytoscape. Similarly, functional enrichment analysis on mRNA in the ceRNA network. Finally, two mRNAs and four lncRNAs in the ceRNA network were randomly selected to verify the expression using qRT-PCR. Results In total, 119 lncRNAs, 28 miRNAs and 208 mRNAs were identified as differentially expressed RNAs in TM-infected macrophages. The constructed ceRNA network contains 38 lncRNAs, 10 miRNAs and 45 mRNAs. GO and KEGG analysis of mRNA in the ceRNA network indicated that activated pathways in TM-infected macrophages were related to immunity, inflammation and metabolism. The quantitative validation of the expression of four randomly selected differentially expressed lncRNAs, AC006252.1, AC090197.1, IL6R-AS1, LINC02009 and two mRNAs, CSF1, NR4A3 showed that the expression levels were consistent with those in the RNA-sequencing. Conclusions The ceRNA network related to immunity, inflammation and metabolism plays an important role in TM-macrophage interaction. This study may provide effective and novel insights for further understanding the underlying mechanism of TM infection.
Collapse
Affiliation(s)
- Yueqi Li
- Guangxi Collaborative Innovation Center for Biomedicine & Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Wudi Wei
- Guangxi Collaborative Innovation Center for Biomedicine & Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Sanqi An
- Guangxi Collaborative Innovation Center for Biomedicine & Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Junjun Jiang
- Guangxi Collaborative Innovation Center for Biomedicine & Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinhao He
- Guangxi Collaborative Innovation Center for Biomedicine & Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Zhang
- Guangxi Collaborative Innovation Center for Biomedicine & Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Gang Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Han
- Guangxi Collaborative Innovation Center for Biomedicine & Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Bingyu Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Li Ye
- Guangxi Collaborative Innovation Center for Biomedicine & Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Hao Liang
- Guangxi Collaborative Innovation Center for Biomedicine & Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
11
|
EGFP-EGF1-conjugated poly (lactic-co-glycolic acid) nanoparticles as a carrier for the delivery of CCR2- shRNA to atherosclerotic macrophage in vitro. Sci Rep 2020; 10:19636. [PMID: 33184330 PMCID: PMC7661524 DOI: 10.1038/s41598-020-76416-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Reducing macrophage recruitment by silencing chemokine (C–C motif) receptor 2 (CCR2) expression is a promising therapeutic approach against atherosclerosis. However the transfection of macrophages with siRNA is often technically challenging. EGFP-EGF1-conjugated poly (lactic-co-glycolic acid) (PLGA) nanoparticles (ENPs) have a specific affinity to tissue factor (TF). In this study, the feasibility of ENPs as a carrier for target delivery of CCR2-shRNA to atherosclerotic cellular models of macrophages was investigated. Coumarin-6 loaded ENPs were synthesized using a double-emulsion method. Fluorescence microscopy and flow cytometry assay were taken to examine the uptake of Coumarin-6 loaded ENPs in the cellular model. Then a sequence of shRNA specific to CCR2 mRNA was constructed and encapsulated into ENPs. Target delivery of CCR2-shRNA to atherosclerotic cellular models of macrophages in vitro were evaluated. Results showed more uptake of ENPs by the cellular model than common PLGA nanoparticles. CCR2-shRNA loaded ENPs effectively silenced CCR2 gene in the atherosclerotic macrophages and exhibited a favorable cytotoxic profile to cultured cells. With their low cytotoxicity and efficient drug delivery, ENP could be a useful carrier for target delivery of CCR2-shRNA to inflammatory monocytes/macrophages for the therapy against atherosclerosis.
Collapse
|
12
|
Understanding MAPK Signaling Pathways in Apoptosis. Int J Mol Sci 2020; 21:ijms21072346. [PMID: 32231094 PMCID: PMC7177758 DOI: 10.3390/ijms21072346] [Citation(s) in RCA: 600] [Impact Index Per Article: 150.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/10/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
MAPK (mitogen-activated protein kinase) signaling pathways regulate a variety of biological processes through multiple cellular mechanisms. In most of these processes, such as apoptosis, MAPKs have a dual role since they can act as activators or inhibitors, depending on the cell type and the stimulus. In this review, we present the main pro- and anti-apoptotic mechanisms regulated by MAPKs, as well as the crosstalk observed between some MAPKs. We also describe the basic signaling properties of MAPKs (ultrasensitivity, hysteresis, digital response), and the presence of different positive feedback loops in apoptosis. We provide a simple guide to predict MAPKs’ behavior, based on the intensity and duration of the stimulus. Finally, we consider the role of MAPKs in osmostress-induced apoptosis by using Xenopus oocytes as a cell model. As we will see, apoptosis is plagued with multiple positive feedback loops. We hope this review will help to understand how MAPK signaling pathways engage irreversible cellular decisions.
Collapse
|
13
|
Wang J, Yang X, Han S, Zhang L. CEP131 knockdown inhibits cell proliferation by inhibiting the ERK and AKT signaling pathways in non-small cell lung cancer. Oncol Lett 2020; 19:3145-3152. [PMID: 32218865 PMCID: PMC7068694 DOI: 10.3892/ol.2020.11411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
Disrupted centrosome-associated family protein expression can result in the detrimental duplication of centrosomes, causing genomic instability and subsequent carcinogenesis. Limited research has demonstrated that centrosomal protein 131 (CEP131) exhibits oncogenic activity in osteosarcoma, hepatocellular carcinoma and breast cancer. The present study demonstrated that there is an association between CEP131 expression and advanced Tumor-Node-Metastasis stage (P=0.016), and positive regional lymph node metastasis (P=0.023) in 91 cases of non-small cell lung cancer. A549 and SPC-A-1 cells, with moderate expression levels of CEP131, were selected as representative cell lines. The results indicated that downregulation of CEP131 induced G1/S cell cycle arrest, inhibition of cyclins D1/E and cyclin-dependent kinases 2/4/6, and induction of inhibitory p21/p27, all of which are regulated by ERK and AKT signaling, suggesting that CEP131 exhibits potential as a novel target in the treatment of lung cancer.
Collapse
Affiliation(s)
- Junying Wang
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiaoping Yang
- Department of Anesthesiology, Dalian Obstetrics and Gynecology Hospital, Dalian, Liaoning 116033, P.R. China
| | - Shixin Han
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Lizhi Zhang
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
14
|
Devarakonda CV, Pereira FE, Smith JD, Shapiro LH, Ghosh M. CD13 deficiency leads to increased oxidative stress and larger atherosclerotic lesions. Atherosclerosis 2019; 287:70-80. [PMID: 31229835 PMCID: PMC6746312 DOI: 10.1016/j.atherosclerosis.2019.06.901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Atherosclerosis is an inflammatory cardiovascular disorder characterized by accumulation of lipid-loaded macrophages in the intima. Prolonged accumulation leads to apoptosis of macrophages and eventually to progression of lesion development. Prevention of macrophage accumulation within the intima has been shown to reduce lesion formation. Since CD13 mediates trafficking of macrophages to sites of injury and repair, we tested the role of CD13 in atherosclerosis. METHODS CD13+/+Ldlr-/- and CD13-/-Ldlr-/- (low density lipoprotein receptor) mice were fed basal or high fat diet (HFD) for 9, 12 and 15 weeks. Mice were euthanized and aortic roots along with innominate arteries were analyzed for atherosclerotic lesions. Cellular mechanisms were determined in vitro using CD13+/+ and CD13-/- bone marrow derived macrophages (BMDMs) incubated with highly oxidized low-density lipoprotein (oxLDL). RESULTS At the 9 and 12 week time points, no differences were observed in the average lesion size, but at the 15 week time point, CD13-/-Ldlr-/- mice had larger lesions with exaggerated necrotic areas. CD13+/+ and CD13-/- macrophages endocytosed similar amounts of oxLDL, but CD13-/- macrophages generated higher amounts of oxidative stressors in comparison to CD13+/+ macrophages. This increased oxidative stress was due to increased nitric oxide production in oxLDL treated CD13-/- macrophages. Accumulated oxidative stress subsequently led to accelerated apoptosis and enhanced necrosis of oxLDL treated CD13-/- macrophages. CONCLUSIONS Contrary to our prediction, CD13 deficiency led to larger atherosclerotic lesions with increased areas of necrosis. Mechanistically, CD13 deficiency led to increased nitric oxide production and consequently, greater oxidative stress.
Collapse
Affiliation(s)
- Charan V Devarakonda
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Flavia E Pereira
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Jonathan D Smith
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Linda H Shapiro
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| | - Mallika Ghosh
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
15
|
Lu J, Chen X, Xu X, Liu J, Zhang Z, Wang M, Li X, Chen H, Zhao D, Wang J, Zhao D, Cong D, Li X, Sun L. Active polypeptides from Hirudo inhibit endothelial cell inflammation and macrophage foam cell formation by regulating the LOX-1/LXR-α/ABCA1 pathway. Biomed Pharmacother 2019; 115:108840. [DOI: 10.1016/j.biopha.2019.108840] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/28/2019] [Accepted: 03/31/2019] [Indexed: 12/31/2022] Open
|
16
|
Zhang X, Zheng Q, Wang C, Zhou H, Jiang G, Miao Y, Zhang Y, Liu Y, Li Q, Qiu X, Wang E. CCDC106 promotes non-small cell lung cancer cell proliferation. Oncotarget 2018; 8:26662-26670. [PMID: 28460455 PMCID: PMC5432287 DOI: 10.18632/oncotarget.15792] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/16/2017] [Indexed: 12/24/2022] Open
Abstract
Coiled-coil domain containing (CCDC) family members enhance tumor cell proliferation, and high CCDC protein levels correlate with unfavorable prognoses. Limited research demonstrated that CCDC106 may promote the degradation of p53/TP53 protein and inhibit its transactivity. The present study demonstrated that CCDC106 expression correlates with advanced TNM stage (P = 0.008), positive regional lymph node metastasis (P < 0.001), and poor overall survival (P < 0.001) in 183 non-small cell lung cancer cases. A549 and H1299 cells were selected as representative of CCDC106-low and CCDC106-high expressing cell lines, respectively. CCDC106 overexpression promoted A549 cell proliferation and xenograft tumor growth in nude mice, while siRNA-mediated CCDC106 knockdown inhibited H1299 cell proliferation. CCDC106 promoted AKT phosphorylation and upregulated the cell cycle-regulating proteins Cyclin A2 and Cyclin B1. Cell proliferation promoted by CCDC106 via Cyclin A2 and Cyclin B1 was rescued by treatment with the AKT inhibitor, LY294002. Our studies revealed that CCDC106 is associated with non-small cell lung cancer progression and unfavorable prognosis. CCDC106 enhanced Cyclin A2 and Cyclin B1 expression and promoted A549 and H1299 cell proliferation, which depended on AKT signaling. These results suggest that CCDC106 may be a novel target for lung cancer treatment.
Collapse
Affiliation(s)
- Xiupeng Zhang
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Qin Zheng
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Chen Wang
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Haijing Zhou
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Guiyang Jiang
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yuan Miao
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Qingchang Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Enhua Wang
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
17
|
Su M, Wang D, Chang W, Liu L, Cui M, Xu T. Preparation of Vitamin E-Containing High-Density Lipoprotein and Its Protective Efficacy on Macrophages. Assay Drug Dev Technol 2018; 16:107-114. [PMID: 29469589 DOI: 10.1089/adt.2017.831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Manman Su
- Department of Obstetrics and Gynecology, The Second Clinical Hospital, Jilin University, Changchun, Republic of China
- Department of Regenerative Medicine, College of Pharmacy, Jilin University, Changchun, Republic of China
| | - Dingding Wang
- Department of Biotechnology, College of Life Science and Biopharmacology, Guangdong Pharmaceutical University, Guangzhou, Republic of China
| | - Weiqin Chang
- Department of Obstetrics and Gynecology, The Second Clinical Hospital, Jilin University, Changchun, Republic of China
| | - Lixian Liu
- Department of Regenerative Medicine, College of Pharmacy, Jilin University, Changchun, Republic of China
| | - Manhua Cui
- Department of Obstetrics and Gynecology, The Second Clinical Hospital, Jilin University, Changchun, Republic of China
| | - Tianmin Xu
- Department of Obstetrics and Gynecology, The Second Clinical Hospital, Jilin University, Changchun, Republic of China
| |
Collapse
|
18
|
Sun W, Lin Y, Chen L, Ma R, Cao J, Yao J, Chen K, Wan J. Legumain suppresses OxLDL-induced macrophage apoptosis through enhancement of the autophagy pathway. Gene 2018; 652:16-24. [PMID: 29414692 DOI: 10.1016/j.gene.2018.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/23/2018] [Accepted: 02/04/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Autophagy plays a prominent role in the pathogenesis of plaques formation and progression of atherosclerosis (AS). The cysteine protease legumain is known to participate in atherogenesis, but its function and underlying mechanism in AS macrophages remain unclear. METHODS The expressions of legumain in plaques isolated from AS patients and in macrophages stimulated with oxLDL were examined. Moreover, we effectively altered legumain expression in macrophages to characterize the effect of legumain on oxLDL-induced macrophage apoptosis. The expression of apoptotic and autophagic factors was analysed. RESULTS Legumain was present in plaques, and its expression was upregulated in macrophages treated with oxLDL. Suppressing legumain significantly increased oxLDL-induced macrophage apoptosis and the expression of caspase 3, caspase 9 and Bax. However, legumain overexpression decreased macrophage apoptosis upon oxLDL exposure and the levels of caspase 3, caspase 9 and Bax. In addition, recombinant legumain protein suppressed macrophage apoptosis. Biochemical experiments revealed that legumain deficiency decreased the levels of Beclin1 and LC3, whereas increased legumain expression increased the levels of Beclin1 and LC3 significantly. CONCLUSION Legumain regulates oxLDL-induced macrophage apoptosis by enhancing the autophagy pathway, which may also influence the vulnerability of atherosclerotic plaques.
Collapse
Affiliation(s)
- Wenhua Sun
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Yingying Lin
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Liling Chen
- Department of Cardiology, Longyan First Hospital affiliated to Fujian Medical University, Fujian 364000, People's Republic of China
| | - Rong Ma
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Jiayu Cao
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Jing Yao
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Kaihong Chen
- Department of Cardiology, Longyan First Hospital affiliated to Fujian Medical University, Fujian 364000, People's Republic of China
| | - Jieqing Wan
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| |
Collapse
|
19
|
Han Y, Ma J, Wang J, Wang L. Silencing of H19 inhibits the adipogenesis and inflammation response in ox-LDL-treated Raw264.7 cells by up-regulating miR-130b. Mol Immunol 2018; 93:107-114. [DOI: 10.1016/j.molimm.2017.11.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/27/2017] [Accepted: 11/18/2017] [Indexed: 02/08/2023]
|
20
|
Zhang L, Wang Q, Liu W, Liu F, Ji A, Li Y. The Orphan Nuclear Receptor 4A1: A Potential New Therapeutic Target for Metabolic Diseases. J Diabetes Res 2018; 2018:9363461. [PMID: 30013988 PMCID: PMC6022324 DOI: 10.1155/2018/9363461] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Orphan nuclear receptor 4A1 (NR4A1) is a transcriptional factor of the nuclear orphan receptor (NR4A) superfamily that has sparked interest across different research fields in recent years. Several studies have demonstrated that ligand-independent NR4A1 is an immediate-early response gene and the protein product is rapidly induced by a variety of stimuli. Hyperfunction or dysfunction of NR4A1 is implicated in various metabolic processes, including carbohydrate metabolism, lipid metabolism, and energy balance, in major metabolic tissues, such as liver, skeletal muscle, pancreatic tissues, and adipose tissues. No endogenous ligands for NR4A1 have been identified, but numerous compounds that bind and activate or inactivate nuclear NR4A1 or induce cytoplasmic localization of NR4A1 have been identified. This review summarizes recent advances in our understanding of the molecular biology and physiological functions of NR4A1. And we focus on the physiological functions of NR4A1 receptor to the development of the metabolic diseases, with a special focus on the impact on carbohydrate and lipid metabolism in skeletal muscle, liver, adipose tissue, and islet.
Collapse
Affiliation(s)
- Lei Zhang
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Qun Wang
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Wen Liu
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Fangyan Liu
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Ailing Ji
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Yanzhang Li
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| |
Collapse
|
21
|
Greenwood MP, Greenwood M, Gillard BT, Chitra Devi R, Murphy D. Regulation of cAMP Responsive Element Binding Protein 3-Like 1 (Creb3l1) Expression by Orphan Nuclear Receptor Nr4a1. Front Mol Neurosci 2017; 10:413. [PMID: 29311806 PMCID: PMC5732970 DOI: 10.3389/fnmol.2017.00413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022] Open
Abstract
Cyclic AMP (cAMP) inducible transcription factor cAMP responsive element binding protein 3 like 1 (Creb3l1) is strongly activated in the hypothalamus in response to hyperosmotic cues such as dehydration (DH). We have recently shown that Creb3l1 expression is upregulated by cAMP pathways in vitro, however the exact mechanisms are not known. Here we show that increasing Creb3l1 transcription by raising cAMP levels in mouse pituitary AtT20 cells automatically initiates cleavage of Creb3l1, leading to a greater abundance of the transcriptionally active N-terminal portion. Inhibiting protein synthesis indicated that de novo protein synthesis of an intermediary transcription factor was required for Creb3l1 induction. Strategic mining of our microarray data from dehydrated rodent hypothalamus revealed four candidates, reduced to two by analysis of acute hyperosmotic-induced transcriptional activation profiles in the hypothalamus, and one, orphan nuclear receptor Nr4a1, by direct shRNA mediated silencing in AtT20 cells. We show that activation of Creb3l1 transcription by Nr4a1 involves interaction with a single NBRE site in the promoter region. The ability to activate Creb3l1 transcription by this pathway in vitro is dictated by the level of methylation of a CpG island within the proximal promoter/5′UTR of this gene. We thus identify a novel cAMP-Nr4a1-Creb3l1 transcriptional pathway in AtT20 cells and also, our evidence would suggest, in the hypothalamus.
Collapse
Affiliation(s)
| | - Mingkwan Greenwood
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Benjamin T Gillard
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - R Chitra Devi
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - David Murphy
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom.,Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Liu TY, Yang XY, Zheng LT, Wang GH, Zhen XC. Activation of Nur77 in microglia attenuates proinflammatory mediators production and protects dopaminergic neurons from inflammation-induced cell death. J Neurochem 2016; 140:589-604. [PMID: 27889907 DOI: 10.1111/jnc.13907] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/26/2016] [Accepted: 11/14/2016] [Indexed: 01/16/2023]
Abstract
Microglia-mediated neuroinflammation plays a critical role in the pathological development of Parkinson's disease (PD). Orphan nuclear receptor Nur77 (Nur77) is abundant in neurons, while its role in microglia-mediated neuroinflammation remains unclear. The present data demonstrated that the expression of Nur77 in microglia was reduced accompanied by microglia activation in response to lipopolysaccharide (LPS) in vitro and in experimental 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-PD mouse model. Nur77 over-expression or application of Nur77 agonist cytosporone B suppressed the expression of proinflammatory genes, such as inducible nitric oxide NOS, cyclooxygenase-2, IL-1β, and tumor necrosis factor-α in the activated microglia, while silenced Nur77 exaggerated the inflammatory responses in microglia. Moreover, activation of Nur77 suppressed the LPS-induced NF-κB activation which was partly dependent on p38 MAPK activity, since inhibition of p38 MAPK by SB203580 abolished the LPS-activated NF-κB in microglia. On the other hand, inhibition of p38 MAPK attenuated LPS-induced Nur77 reduction. Furthermore, in a microglia-conditioned cultured media system, Nur77 ameliorated the cytotoxicity to MN9D dopaminergic cells. Lastly, cytosporone B attenuated microglia activation and loss of dopaminergic neuron in the substantia nigra pars compacta (SNpc) of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-PD mouse model. Taken together, these findings revealed the first evidence that Nur77 was an important modulator in microglia function that associated with microglia-mediated dopaminergic neurotoxicity, and thus modulation of Nur77 may represent a potential novel target for treatment for neurodegenerative disease.
Collapse
Affiliation(s)
- Tian-Ya Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Xiao-Ying Yang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Long-Tai Zheng
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Guang-Hui Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Xue-Chu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| |
Collapse
|