1
|
Hassanein EHM, Ibrahim IM, Abd-Alhameed EK, Sharawi ZW, Jaber FA, Althagafy HS. Nrf2/HO-1 as a therapeutic target in renal fibrosis. Life Sci 2023; 334:122209. [PMID: 37890696 DOI: 10.1016/j.lfs.2023.122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Chronic kidney disease (CKD) is one of the most prevalent chronic diseases and affects between 10 and 14 % of the world's population. The World Health Organization estimates that by 2040, the disease will be fifth in prevalence. End-stage CKD is characterized by renal fibrosis, which can eventually lead to kidney failure and death. Renal fibrosis develops due to multiple injuries and involves oxidative stress and inflammation. In the human body, nuclear factor erythroid 2-related factor 2 (Nrf2) plays an important role in the expression of antioxidant, anti-inflammatory, and cytoprotective genes, which prevents oxidative stress and inflammation damage. Heme oxygenase (HO-1) is an inducible homolog influenced by heme products and after exposure to cellular stress inducers such as oxidants, inflammatory chemokines/cytokines, and tissue damage as an outcome or downstream of Nrf2 activation. HO-1 is known for its antioxidative properties, which play an important role in regulating oxidative stress. In renal diseases-induced tissue fibrosis and xenobiotics-induced renal fibrosis, Nrf2/HO-1 has been targeted with promising results. This review summarizes these studies and highlights the interesting bioactive compounds that may assist in attenuating renal fibrosis mediated by HO-1 activation. In conclusion, Nrf2/HO-1 signal activation could have a renoprotective effect strategy against CKD caused by oxidative stress, inflammation, and consequent renal fibrosis.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Zeina W Sharawi
- Biological Sciences Department, Faculty of Sciences, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Chen L, Zhang L, Jin G, Liu Y, Guo N, Sun H, Jiang Y, Zhang X, He G, Lv G, Yang J, Tu X, Dong T, Liu H, An J, Si G, Kang Z, Li H, Yi S, Chen G, Liu W, Yang Y, Ou J. Synergy of 5-aminolevulinate supplement and CX3CR1 suppression promotes liver regeneration via elevated IGF-1 signaling. Cell Rep 2023; 42:112984. [PMID: 37578861 DOI: 10.1016/j.celrep.2023.112984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023] Open
Abstract
Inadequate remnant volume and regenerative ability of the liver pose life-threatening risks to patients after partial liver transplantation (PLT) or partial hepatectomy (PHx), while few clinical treatments focus on safely accelerating regeneration. Recently, we discovered that supplementing 5-aminolevulinate (5-ALA) improves liver cold adaptation and functional recovery, leading us to uncover a correlation between 5-ALA metabolic activities and post-PLT recovery. In a mouse 2/3 PHx model, 5-ALA supplements enhanced liver regeneration, promoting infiltration and polarization of anti-inflammatory macrophages via P53 signaling. Intriguingly, chemokine receptor CX3CR1 functions to counterbalance these effects. Genetic ablation or pharmacological inhibition of CX3CR1 (AZD8797; phase II trial candidate) augmented the macrophagic production of insulin-like growth factor 1 (IGF-1) and subsequent hepatocyte growth factor (HGF) production by hepatic stellate cells. Thus, short-term treatments with both 5-ALA and AZD8797 demonstrated pro-regeneration outcomes superior to 5-ALA-only treatments in mice after PHx. Overall, our findings may inspire safe and effective strategies to better treat PLT and PHx patients.
Collapse
Affiliation(s)
- Liang Chen
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University; Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lele Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University; Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guanghui Jin
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University; Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yasong Liu
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University; Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Na Guo
- Department of Anesthesiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haobin Sun
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University; Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yong Jiang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University; Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaomei Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University; Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guobin He
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guo Lv
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinghong Yang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University; Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuanjun Tu
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Dong
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University; Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huanyi Liu
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianhong An
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; The State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Ge Si
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhuang Kang
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hua Li
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University; Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuhong Yi
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University; Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University; Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University; Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University; Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Jingxing Ou
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University; Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Tanaka T, Tashiro M, Ota K, Fujita A, Sawai T, Kadota J, Fukuda Y, Sumiyoshi M, Ide S, Tachikawa N, Fujii H, Hibino M, Shiomi H, Izumida M, Matsui K, Yamauchi M, Takahashi K, Yamanashi H, Sugimoto T, Akabame S, Umeda M, Shimizu M, Hosogaya N, Kosai K, Takeda K, Iwanaga N, Ashizawa N, Hirayama T, Takazono T, Yamamoto K, Imamura Y, Miyazaki T, Kobayashi Y, Ariyoshi K, Mukae H, Yanagihara K, Kita K, Izumikawa K. Safety and efficacy of 5-aminolevulinic acid phosphate/iron in mild-to-moderate coronavirus disease 2019: A randomized exploratory phase II trial. Medicine (Baltimore) 2023; 102:e34858. [PMID: 37653769 PMCID: PMC10470697 DOI: 10.1097/md.0000000000034858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND 5-aminolevulinic acid (5-ALA), a natural amino acid that is marketed alongside sodium ferrous citrate (SFC) as a functional food, blocks severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proliferation in vitro and exerts anti-inflammatory effects. In this phase II open-label, prospective, parallel-group, randomized trial, we aimed to evaluate the safety and efficacy of 5-ALA in patients with mild-to-moderate coronavirus disease 2019. METHODS This trial was conducted in patients receiving 5-ALA/SFC (250/145 mg) orally thrice daily for 7 days, followed by 5-ALA/SFC (150/87 mg) orally thrice daily for 7 days. The primary endpoints were changes in SARS-CoV-2 viral load, clinical symptom scores, and 5-ALA/SFC safety (adverse events [AE] and changes in laboratory values and vital signs). RESULTS A total of 50 patients were enrolled from 8 institutions in Japan. The change in SARS-CoV-2 viral load from baseline was not significantly different between the 5-ALA/SFC (n = 24) and control (n = 26) groups. The duration to improvement was shorter in the 5-ALA/SFC group than in the control group, although the difference was not significant. The 5-ALA/SFC group exhibited faster improvement rates in "taste abnormality," "cough," "lethargy," and "no appetite" than the control group. Eight AEs were observed in the 5-ALA/SFC group, with 22.7% of patients experiencing gastrointestinal symptoms (decreased appetite, constipation, and vomiting). AEs occurred with 750/435 mg/day in 25.0% of patients in the first phase and with 450/261 mg/day of 5-ALA/SFC in 6.3% of patients in the second phase. CONCLUSION 5-ALA/SFC improved some symptoms but did not influence the SARS-CoV-2 viral load or clinical symptom scores over 14 days. The safety of 5-ALA/SFC in this study was acceptable. Further evaluation using a larger sample size or modified method is warranted.
Collapse
Affiliation(s)
- Takeshi Tanaka
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Masato Tashiro
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki-shi, Nagasaki, Japan
| | - Kenji Ota
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Ayumi Fujita
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Toyomitsu Sawai
- Department of Respiratory Medicine, Nagasaki Harbor Medical Center, Nagasaki-shi, Nagasaki, Japan
| | - Junichi Kadota
- Department of Respiratory Medicine, Nagasaki Harbor Medical Center, Nagasaki-shi, Nagasaki, Japan
| | - Yuichi Fukuda
- Department of Respiratory Medicine, Sasebo City General Hospital, Sasebo-shi, Nagasaki, Japan
| | - Makoto Sumiyoshi
- Department of Respiratory Medicine, Isahaya General Hospital, Japan Community Health Care Organization, Isahaya-shi, Nagasaki, Japan
| | - Shotaro Ide
- Department of Respiratory Medicine, Isahaya General Hospital, Japan Community Health Care Organization, Isahaya-shi, Nagasaki, Japan
| | - Natsuo Tachikawa
- Department of Infectious Diseases, Yokohama Municipal Citizen’s Hospital, Yokohama-shi, Kanagawa, Japan
| | - Hiroshi Fujii
- Department of Respiratory Medicine, Kobe City Medical Center West Hospital, Kobe-shi, Hyogo, Japan
| | - Makoto Hibino
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Fujisawa-shi, Kanagawa, Japan
| | - Hisanori Shiomi
- Department of Surgery, Nagahama Red Cross Hospital, Nagahama-shi, Shiga, Japan
| | - Mai Izumida
- Department of Infectious Diseases, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Kohsuke Matsui
- Department of Infectious Diseases, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Momoko Yamauchi
- Department of Infectious Diseases, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Kensuke Takahashi
- Department of Infectious Diseases, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Hirotomo Yamanashi
- Department of Infectious Diseases, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
- Department of General Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Takashi Sugimoto
- Department of Infectious Diseases, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Shogo Akabame
- Department of General Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Masataka Umeda
- Department of General Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Masumi Shimizu
- Department of Infectious Diseases, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Naoki Hosogaya
- Clinical Research Center, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Kosuke Kosai
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Kazuaki Takeda
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Naoki Iwanaga
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Nobuyuki Ashizawa
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Tatsuro Hirayama
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Takahiro Takazono
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki-shi, Nagasaki, Japan
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Kazuko Yamamoto
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Yoshifumi Imamura
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Taiga Miyazaki
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Yusuke Kobayashi
- Clinical Development Department, Neopharma Japan Co. Ltd., Chiyoda-ku, Tokyo, Japan
| | - Koya Ariyoshi
- Department of Infectious Diseases, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki-shi, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki-shi, Nagasaki, Japan
- Department of Host-Defense Biochemistry, Institute of Tropical Medicine Nagasaki University, Nagasaki-shi, Nagasaki, Japan
| | - Koichi Izumikawa
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki-shi, Nagasaki, Japan
| |
Collapse
|
4
|
Suprihadi A, Pustimbara A, Ogura SI. 5-aminolevulinic acid and sodium ferrous citrate decreased cell viability of gastric cancer cells by enhanced ROS generation through improving COX activity. Photodiagnosis Photodyn Ther 2022; 40:103055. [PMID: 35934181 DOI: 10.1016/j.pdpdt.2022.103055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mitochondrial dysfunctions are related to cancer development.. 5-aminolevulinic acid (ALA) is used for photodynamic therapy (PDT). In this PDT, protoporphyrin IX (PpIX), which is converted from ALA, can generate reactive oxygen species (ROS) that kill the cancer cell. ALA is also reported to promote cytochrome c oxidase (COX) activity, which can generate ROS itself. Therefore, this study focused on the effect of ALA during PDT. In addition, in the previous study, sodium ferrous citrate (SFC) is reported to increase COX activity. So, this study also aims to improve the COX activity by the addition of SFC that can promote ROS generation, which has a cytotoxic effect. METHODS In this study, we used ALA and SFC, then evaluated the effects of the treatment on the human gastric cancer cell line MKN45, including the induction of cell death. RESULTS This study showed that treatment with ALA and SFC increases intracellular heme and heme proteins. Moreover, COX activity was promoted, resulting in the production of intracellular reactive oxygen species (ROS), which eventually reduced the cell viability in human gastric cancer cell line MKN45. CONCLUSION Our study can detect ROS generation with ALA and SFC. Furthermore, we found this generation of ROS has a cytotoxic effect. Therefore, this phenomenon contributes to the effect of PDT.
Collapse
Affiliation(s)
- Arif Suprihadi
- Tokyo Institute of Technology, School of Life Science and Technology, 4259 Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| | - Anantya Pustimbara
- Tokyo Institute of Technology, School of Life Science and Technology, 4259 Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| | - Shun-Ichiro Ogura
- Tokyo Institute of Technology, School of Life Science and Technology, 4259 Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| |
Collapse
|
5
|
Wang D, Zhou L, Zhou H, Hou G. Effects of Guava ( Psidium guajava L.) Leaf Extract on the Metabolomics of Serum and Feces in Weaned Piglets Challenged by Escherichia coli. Front Vet Sci 2021; 8:656179. [PMID: 34109234 PMCID: PMC8183609 DOI: 10.3389/fvets.2021.656179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
The effects of dietary supplementation with guava leaf extracts (GE) on intestinal barrier function and serum and fecal metabolome in weaned piglets challenged by enterotoxigenic Escherichia coli (ETEC) were investigated. In total, 50 weaned piglets (Duroc × Yorkshire × Landrace) from 25 pens (two piglets per pen) were randomly divided into five groups: BC (blank control), NC (negative control), S50 (supplemented with 50 mg kg−1 diet GE), S100 (100 mg kg−1 diet GE), and S200 (200 mg kg−1 diet GE), respectively. On day 4, all groups (except BC) were orally challenged with enterotoxigenic ETEC at a dose of 1.0 × 109 colony-forming units (CFUs). After treatment for 28 days, intestinal barrier function and parallel serum and fecal metabolomics analysis were carried out. Results suggested that dietary supplementation with GE (50–200 mg kg−1) increased protein expression of intestinal tight junction proteins (ZO-1, occludin, claudin-1) (p < 0.05) and Na+/H+ exchanger 3 (NHE3) (p < 0.05). Moreover, dietary supplementation with GE (50–200 mg kg−1) increased the level of tetrahydrofolic acid (THF) and reversed the higher level of nicotinamide-adenine dinucleotide phosphate (NADP) induced by ETEC in serum compared with the NC group (p < 0.05), and enhanced the antioxidant capacity of piglets. In addition, dietary addition with GE (100 mg kg−1) reversed the lower level of L-pipecolic acid induced by ETEC in feces compared with the NC group (p < 0.05) and decreased the oxidative stress of piglets. Collectively, dietary supplementation with GE exhibited a positive effect on improving intestinal barrier function. It can reprogram energy metabolism through similar or dissimilar metabolic pathways and finally enhance the antioxidant ability of piglets challenged by ETEC.
Collapse
Affiliation(s)
- Dingfa Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Luli Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hanlin Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
6
|
Hu X, Que W, Hirano H, Wang Z, Nozawa N, Ishii T, Ishizuka M, Ito H, Takahashi K, Nakajima M, Tanaka T, Zhu P, Guo WZ, Li XK. 5-Aminolevulinic acid/sodium ferrous citrate enhanced the antitumor effects of programmed cell death-ligand 1 blockade by regulation of exhausted T cell metabolism in a melanoma model. Cancer Sci 2021; 112:2652-2663. [PMID: 33934440 PMCID: PMC8253271 DOI: 10.1111/cas.14930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are key cytoplasmic organelles. Their activation is critical for the generation of T cell proliferation and cytotoxicity. Exhausted tumor‐infiltrating T cells show a decreased mitochondrial function and mass. 5‐Aminolevulinic acid (5‐ALA), a natural amino acid that is only produced in the mitochondria, has been shown to influence metabolic functions. We hypothesized that 5‐ALA with sodium ferrous citrate (SFC) might provide metabolic support for tumor‐infiltrating T cells. In a mouse melanoma model, we found that 5‐ALA/SFC with a programmed cell death‐ligand 1 (PD‐L1) blocking Ab synergized tumor regression. After treatment with 5‐ALA/SFC and anti‐PD‐L1 Ab, tumor infiltrating lymphocytes (TILs) were not only competent for the production of cytolytic particles and cytokines (granzyme B, interleukin‐2, and γ‐interferon) but also showed enhanced Ki‐67 activity (a proliferation marker). The number of activated T cells (PD‐1+Tim‐3−) was also significantly increased. Furthermore, we found that 5‐ALA/SFC activated the mitochondrial functions, including the oxygen consumption rate, ATP level, and complex V expression. The mRNA levels of Nrf‐2, HO‐1, Sirt‐1, and PGC‐1α and the protein levels of Sirt‐1 were upregulated by treatment with 5‐ALA/SFC. Taken together, our findings revealed that 5‐ALA/SFC could be a key metabolic regulator in exhausted T cell metabolism and suggested that 5‐ALA/SFC might synergize with anti‐PD‐1/PD‐L1 therapy to boost the intratumoral efficacy of tumor‐specific T cells. Our study not only revealed a new aspect of immune metabolism, but also paved the way to develop a strategy for combined anti‐PD‐1/PD‐L1 cancer immunotherapy.
Collapse
Affiliation(s)
- Xin Hu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Weitao Que
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroshi Hirano
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Hasumi International Research Foundation, Tokyo, Japan
| | - Zhidan Wang
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | | | | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Li SW, Takahara T, Que W, Fujino M, Guo WZ, Hirano SI, Ye LP, Li XK. Hydrogen-rich water protects against liver injury in nonalcoholic steatohepatitis through HO-1 enhancement via IL-10 and Sirt 1 signaling. Am J Physiol Gastrointest Liver Physiol 2021; 320:G450-G463. [PMID: 33439102 DOI: 10.1152/ajpgi.00158.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) could progress to hepatic fibrosis in the absence of effective control. The purpose of our experiment was to investigate the protective effect of drinking water with a high concentration of hydrogen, namely, hydrogen-rich water (HRW), on mice with nonalcoholic fatty liver disease to elucidate the mechanism underlying the therapeutic action of molecular hydrogen. The choline-supplemented, l-amino acid-defined (CSAA) or the choline-deficient, l-amino acid-defined (CDAA) diet for 20 wk was used to induce NASH and fibrosis in the mice model and simultaneously treated with the high-concentration 7-ppm HRW for different periods (4 wk, 8 wk, and 20 wk). Primary hepatocytes were stimulated by palmitate to mimic liver lipid metabolism during fatty liver formation. Primary hepatocytes were cultured in a closed vessel filled with 21% O2 + 5% CO2 + 3.8% H2 and N2 as the base gas to verify the response of primary hepatocytes in a high concentration of hydrogen gas in vitro. Mice in the CSAA + HRW group had lower serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and milder histological damage. The inflammatory cytokines were expressed at lower levels in the HRW group than in the CSAA group. Importantly, HRW reversed hepatocyte fatty acid oxidation and lipogenesis as well as hepatic inflammation and fibrosis in preexisting hepatic fibrosis specimens. Molecular hydrogen inhibits the lipopolysaccharide-induced production of inflammation cytokines through increasing heme oxygenase-1 (HO-1) expression. Furthermore, HRW improved hepatic steatosis in the CSAA + HRW group. Sirtuin 1 (Sirt1) induction by molecular hydrogen via the HO-1/adenosine monophosphate activated protein kinase (AMPK)/peroxisome proliferator-activated receptor α (PPARα)/peroxisome proliferator-activated receptor γ (PPAR-γ) pathway suppresses palmitate-mediated abnormal fat metabolism. Orally administered HRW suppressed steatosis induced by CSAA and attenuated fibrosis induced by CDAA, possibly by reducing oxidative stress and the inflammation response.NEW & NOTEWORTHY The mRNA expression of inflammatory cytokines in the HRW group was lower than in the CSAA group. HRW reversed hepatocyte apoptosis as well as hepatic inflammation and fibrosis in NASH specimens. Molecular hydrogen inhibits LPS-induced inflammation via an HO-1/interleukin 10 (IL-10)-independent pathway. HRW improved hepatic steatosis in the CSAA + HRW group. Sirt1 induction by molecular hydrogen via the HO-1/AMPK/PPARα/PPARγ pathway suppresses palmitate-mediated abnormal fat metabolism.
Collapse
Affiliation(s)
- Shao-Wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China.,Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Terumi Takahara
- Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Weitao Que
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Li-Ping Ye
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Baidya R, Crawford DHG, Gautheron J, Wang H, Bridle KR. Necroptosis in Hepatosteatotic Ischaemia-Reperfusion Injury. Int J Mol Sci 2020; 21:ijms21165931. [PMID: 32824744 PMCID: PMC7460692 DOI: 10.3390/ijms21165931] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
While liver transplantation remains the sole treatment option for patients with end-stage liver disease, there are numerous limitations to liver transplantation including the scarcity of donor livers and a rise in livers that are unsuitable to transplant such as those with excess steatosis. Fatty livers are susceptible to ischaemia-reperfusion (IR) injury during transplantation and IR injury results in primary graft non-function, graft failure and mortality. Recent studies have described new cell death pathways which differ from the traditional apoptotic pathway. Necroptosis, a regulated form of cell death, has been associated with hepatic IR injury. Receptor-interacting protein kinase 3 (RIPK3) and mixed-lineage kinase domain-like pseudokinase (MLKL) are thought to be instrumental in the execution of necroptosis. The study of hepatic necroptosis and potential therapeutic approaches to attenuate IR injury will be a key factor in improving our knowledge regarding liver transplantation with fatty donor livers. In this review, we focus on the effect of hepatic steatosis during liver transplantation as well as molecular mechanisms of necroptosis and its involvement during liver IR injury. We also discuss the immune responses triggered during necroptosis and examine the utility of necroptosis inhibitors as potential therapeutic approaches to alleviate IR injury.
Collapse
Affiliation(s)
- Raji Baidya
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland QLD 4006, Australia; (R.B.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
| | - Darrell H. G. Crawford
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland QLD 4006, Australia; (R.B.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
| | - Jérémie Gautheron
- Sorbonne University, Inserm, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France;
- Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France
| | - Haolu Wang
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
- Diamantina Institute, The University of Queensland, Brisbane, Queensland QLD 4102, Australia
| | - Kim R. Bridle
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland QLD 4006, Australia; (R.B.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
- Correspondence: ; Tel.: +61-7-3346-0698
| |
Collapse
|
9
|
Matsuo K, Yabuki Y, Fukunaga K. 5-aminolevulinic acid inhibits oxidative stress and ameliorates autistic-like behaviors in prenatal valproic acid-exposed rats. Neuropharmacology 2020; 168:107975. [PMID: 31991146 DOI: 10.1016/j.neuropharm.2020.107975] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorders (ASDs) constitute a neurodevelopmental disorder characterized by social deficits, repetitive behaviors, and learning disability. Oxidative stress and mitochondrial dysfunction are associated with ASD brain pathology. Here, we used oxidative stress in prenatal valproic acid (VPA)-exposed rats as an ASD model. After maternal VPA exposure (600 mg/kg, p.o.) on embryonic day (E) 12.5, temporal analyses of oxidative stress in the brain using an anti-4-hydroxy-2-nonenal antibody revealed that oxidative stress was increased in the hippocampus after birth. This was accompanied by aberrant enzymatic activity in the mitochondrial electron transport chain and reduced adenosine triphosphate (ATP) levels in the hippocampus. VPA-exposed rats exhibited impaired spatial reference and object recognition memory alongside impaired social behaviors and repetitive behaviors. ASD-like behaviors including learning and memory were rescued by chronic oral administration of 5-aminolevulinic acid (5-ALA; 30 mg/kg/day) and intranasal administration of oxytocin (OXT; 12 μg/kg/day), a neuropeptide that improves social behavior in ASD patients. 5-ALA but not OXT treatment ameliorated oxidative stress and mitochondrial dysfunction in the hippocampus of VPA-exposed rats. Fewer parvalbumin-positive interneurons were observed in VPA-exposed rats. Both 5-ALA and OXT treatments augmented the number of parvalbumin-positive interneurons. Collectively, our results indicate that oral 5-ALA administration ameliorated oxidative stress and mitochondrial dysfunction, suggesting that 5-ALA administration improves ASD-like neuropathology and behaviors via mechanisms different to those of OXT.
Collapse
Affiliation(s)
- Kazuya Matsuo
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
10
|
Sun H, McKeen T, Wang H, Ni HM. Necroptosis in ischemia-reperfusion injury of lean and steatotic livers. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Liu C, Fujino M, Zhu S, Isaka Y, Ito H, Takahashi K, Nakajima M, Tanaka T, Zhu P, Li X. 5-ALA/SFC enhances HO-1 expression through the MAPK/Nrf2 antioxidant pathway and attenuates murine tubular epithelial cell apoptosis. FEBS Open Bio 2019; 9:1928-1938. [PMID: 31495071 PMCID: PMC6823284 DOI: 10.1002/2211-5463.12729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Cyclosporin A (CsA) is a common immunosuppressant, but its use is limited as it can cause chronic kidney injury. Oxidative stress and apoptosis play a key role in CsA-induced nephrotoxicity. This study investigated the protective effect of 5-aminolevulinic acid and iron (5-ALA/SFC) on CsA-induced injury in murine proximal tubular epithelial cells (mProx24). 5-ALA/SFC significantly inhibited apoptosis in CsA-treated mProx24 cells with increases in heme oxygenase (HO)-1, nuclear factor E2-related factor 2 (Nrf2), and p38, and Erk-1/2 phosphorylation. Moreover, 5-ALA/SFC suppressed production of reactive oxygen species in CsA-exposed cells and inhibition of HO-1 suppressed the protective effects of 5-ALA/SFC. In summary, 5-ALA/SFC may have potential for development into a treatment for the anti-nephrotoxic/apoptotic effects of CsA.
Collapse
Affiliation(s)
- Chi Liu
- Division of Transplantation ImmunologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Masayuki Fujino
- Division of Transplantation ImmunologyNational Research Institute for Child Health and DevelopmentTokyoJapan
- AIDS Research CenterNational Institute of Infectious DiseasesTokyoJapan
| | - Shuoji Zhu
- Guangdong Cardiovascular InstituteGuangdong Academy of Medical SciencesGuangdong Provincial People's HospitalGuangzhouChina
| | - Yoshitaka Isaka
- Department of NephrologyOsaka University Graduate School of MedicineJapan
| | | | | | | | | | - Ping Zhu
- Guangdong Cardiovascular InstituteGuangdong Academy of Medical SciencesGuangdong Provincial People's HospitalGuangzhouChina
| | - Xiao‐Kang Li
- Division of Transplantation ImmunologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| |
Collapse
|
12
|
Effects of 5-aminolevulinic acid and sodium ferrous citrate on fibroblasts from individuals with mitochondrial diseases. Sci Rep 2019; 9:10549. [PMID: 31332208 PMCID: PMC6646320 DOI: 10.1038/s41598-019-46772-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/04/2019] [Indexed: 01/21/2023] Open
Abstract
Mitochondrial respiratory chain complexes II, III, and IV and cytochrome c contain haem, which is generated by the insertion of Fe2+ into protoporphyrin IX. 5-Aminolevulinic acid (ALA) combined with sodium ferrous citrate (SFC) was reported to enhance haem production, leading to respiratory complex and haem oxygenase-1 (HO-1) upregulation. Here, we investigated the effects of different concentrations of ALA and SFC alone or in combination (ALA/SFC) on fibroblasts from 8 individuals with mitochondrial diseases and healthy controls. In normal fibroblasts, expression levels of oxidative phosphorylation (OXPHOS) complex subunits and corresponding genes were upregulated only by ALA/SFC. Additionally, the increased oxygen consumption rate (OCR) and ATP levels in normal fibroblasts were more obvious after treatment with ALA/SFC than after treatment with ALA or SFC. OXPHOS complex proteins were enhanced by ALA/SFC, whereas OCR and ATP levels were increased in 6 of the 8 patient-derived fibroblasts. Further, HO-1 protein and mRNA levels were enhanced by ALA/SFC in all fibroblasts. The relative mtDNA copy number was increased by ALA/SFC. Thus, our findings indicate that ALA/SFC is effective in elevating OXPHOS, HO-1 protein, and mtDNA copy number, resulting in an increase in OCR and ATP levels, which represents a promising therapeutic option for mitochondrial diseases.
Collapse
|
13
|
Liu C, Zhu P, Fujino M, Zhu S, Ito H, Takahashi K, Nakajima M, Tanaka T, Zhuang J, Li XK. 5-ALA/SFC Attenuated Binge Alcohol-Induced Gut Leakiness and Inflammatory Liver Disease in HIV Transgenic Rats. Alcohol Clin Exp Res 2019; 43:1651-1661. [PMID: 31141180 DOI: 10.1111/acer.14117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND This study aimed to investigate the protective effect of 5-aminolevulinic acid (5-ALA) and sodium ferrous citrate (SFC) against binge alcohol-induced gut leakiness and inflammatory liver disease in HIV transgenic (TG) rats. METHODS TG rats were treated with 3 consecutive doses of binge ethanol (EtOH) with or without 5-ALA/SFC. Blood and liver tissue samples were collected at 6 hours following the last dose of EtOH. RESULTS Compared with the wild-type (WT) rats, the TG rats showed increased sensitivity to alcohol-mediated inflammation, as evidenced by the significantly elevated levels of serum endotoxin, AST, ALT, ED1, and ED2 staining in liver. In contrast, 5-ALA/SFC improved the above biochemical and histochemical profiles. 5-ALA/SFC also attenuated the up-regulated mRNA expression of leptin and CCL2. Furthermore, down-regulated intestinal ZO-1 protein expression was also inhibited by 5-ALA/SFC. Moreover, the expressions of HO-1, HO-2, Sirt1, and related signal transduction molecules in liver were increased by 5-ALA/SFC. These results demonstrated that 5-ALA/SFC treatment ameliorated binge alcohol exposure liver injury in a rat model of HIV-infected patients by reducing macrophage activation and expression of inflammatory cytokines/chemokines, and by inducing HO-1, HO-2, and Sirt1 expression. CONCLUSIONS Taken together, these findings suggested that treatment with 5-ALA/SFC has a potential therapeutic effect for binge alcohol exposure liver injury in HIV-infected patients.
Collapse
Affiliation(s)
- Chi Liu
- Division of Transplantation Immunology, Research Institute, National Center for Child Health and Development, Tokyo, Japan
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Masayuki Fujino
- Division of Transplantation Immunology, Research Institute, National Center for Child Health and Development, Tokyo, Japan.,AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | | | | | | | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, Research Institute, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
14
|
Li S, Fujino M, Takahara T, Li XK. Protective role of heme oxygenase-1 in fatty liver ischemia-reperfusion injury. Med Mol Morphol 2019; 52:61-72. [PMID: 30171344 PMCID: PMC6542780 DOI: 10.1007/s00795-018-0205-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022]
Abstract
Ischemia-reperfusion (IR) injury is a kind of injury resulting from the restoration of the blood supply after blood vessel closure during liver transplantation and is the main cause of graft failure. The pathophysiological mechanisms of hepatic IR include a variety of oxidative stress responses. Hepatic IR is characterized by ischemia and hypoxia inducing oxidative stress, immune response and apoptosis. Fat-denatured livers are also used as donors due to the lack of liver donors. Fatty liver is less tolerant to IR than normal liver. Heme oxygenase (HO) is an enzyme that breaks down hemoglobin to bilirubin, ferrous iron and carbon monoxide (CO). Inducible HO subtype HO-1 is an important protective molecule in mammalian cells used to improve acute and chronic liver injury owing to its characteristic anti-inflammatory and anti-apoptotic qualities. HO-1 degrades heme, and its reaction product CO has been shown to reduce hepatic IR injury and increase the survival rate of grafts. As an induced form of HO, HO-1 also exerts a protective effect against liver IR injury and may be useful as a new strategy of ameliorating this kind of damage. This review summarizes the protective effects of HO-1 in liver IR injury, especially in fatty liver.
Collapse
Affiliation(s)
- Shaowei Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Terumi Takahara
- Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
| |
Collapse
|
15
|
Ni HM, Chao X, Kaseff J, Deng F, Wang S, Shi YH, Li T, Ding WX, Jaeschke H. Receptor-Interacting Serine/Threonine-Protein Kinase 3 (RIPK3)-Mixed Lineage Kinase Domain-Like Protein (MLKL)-Mediated Necroptosis Contributes to Ischemia-Reperfusion Injury of Steatotic Livers. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1363-1374. [PMID: 31026418 DOI: 10.1016/j.ajpath.2019.03.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/12/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Increased hepatic ischemia-reperfusion (IR) injury in steatotic livers is a major reason for rejecting the use of fatty livers for liver transplantation. Necroptosis is implicated in the pathogenesis of fatty liver diseases. Necroptosis is regulated by three key proteins: receptor-interacting serine/threonine-protein kinase (RIPK)-1, RIPK3, and mixed-lineage kinase domain-like protein (MLKL). Here, we found that marked steatosis of the liver was induced when a Western diet was given in mice; steatosis was associated with the inhibition of hepatic proteasome activities and with increased levels of key necroptosis-related proteins. Mice fed a Western diet had more severe liver injury, as demonstrated by increases in serum alanine aminotransferase and necrotic areas of liver, after IR than did mice fed a control diet. Although hepatic steatosis was not different between Mlkl knockout mice and wild-type mice, Mlkl knockout mice had decreased hepatic neutrophil infiltration and inflammation and were protected from hepatic IR injury, irrespective of diet. Intriguingly, Ripk3 knockout or Ripk3 kinase-dead knock-in mice were protected against IR injury at the late phase but not the early phase, irrespective of diet. Overall, our findings indicate that liver steatosis exacerbates hepatic IR injury via increased MLKL-mediated necroptosis. Targeting MLKL-mediated necroptosis may help to improve outcomes in steatotic liver transplantation.
Collapse
Affiliation(s)
- Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas.
| | - Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Joshua Kaseff
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Fengyan Deng
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Ying-Hong Shi
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
16
|
Liu C, Zhu P, Fujino M, Isaka Y, Ito H, Takahashi K, Nakajima M, Tanaka T, Zhuang J, Li XK. 5-aminolaevulinic acid (ALA), enhances heme oxygenase (HO)-1 expression and attenuates tubulointerstitial fibrosis and renal apoptosis in chronic cyclosporine nephropathy. Biochem Biophys Res Commun 2019; 508:583-589. [PMID: 30514440 DOI: 10.1016/j.bbrc.2018.11.175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cyclosporine-A (CsA) is an immunosuppressant indicated for various immunological diseases; however, it can induce chronic kidney injury. Oxidative stress and apoptosis play a crucial role in CsA-induced nephrotoxicity. The present study evaluated the protective effect of combining 5-aminolaevulinic acid with iron (5-ALA/SFC), a precursor of heme synthesis, to enhance HO-1 activity against CsA-induced chronic nephrotoxicity. METHODS Mice were divided into three groups: the control group (using olive oil as a vehicle), CsA-only group, and CsA+5-ALA/SFC group. After 28 days, the mice were sacrificed, and blood and kidney samples were collected. In addition to histological and biochemical examination, the mRNA expression of proinflammatory and profibrotic cytokines was assessed. RESULTS Renal function in the 5-ALA/SFC treatment group as assessed by the serum creatinine and serum urea nitrogen levels was superior to that of the CsA-only treatment group, demonstrating that 5-ALA/SFC significantly attenuated CsA-induced kidney tissue inflammation, fibrosis, apoptosis, and tubular atrophy, as well as reducing the mRNA level of TNF-α, IL-6, TGF-β1, and iNOS while increasing HO-1. CONCLUSION The activity of 5-ALA/SFC has important implications for clarifying the mechanism of HO-1 activity in CsA-induced nephrotoxicity and may provide a favorable basis for clinical therapy.
Collapse
Affiliation(s)
- Chi Liu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshitaka Isaka
- Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
17
|
Kamiya A, Hara T, Tsuda M, Tsuru E, Kuroda Y, Ota U, Karashima T, Fukuhara H, Inoue K, Ishizuka M, Nakajima M, Tanaka T. 5-Aminolevulinic acid with ferrous iron improves early renal damage and hepatic steatosis in high fat diet-induced obese mice. J Clin Biochem Nutr 2018; 64:59-65. [PMID: 30705513 PMCID: PMC6348406 DOI: 10.3164/jcbn.18-35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/11/2018] [Indexed: 01/22/2023] Open
Abstract
5-Aminolevulinic acid, a natural amino acid, activates mitochondrial respiration and induces heme oxygenase-1 expression. Obesity and type 2 diabetes mellitus are associated with age-related mitochondrial respiration defect, oxidative stress and inflammation. The aim of this study is to investigate the effects of 5-aminolevulinic acid with sodium ferrous citrate on early renal damage and hepatic steatosis. 7-Month-old C57BL/6 mice were fed with a standard diet or high fat diet for 9 weeks, which were orally administered 300 mg/kg 5-aminolevulinic acid combined with 47 mg/kg sodium ferrous citrate (5-aminolevulinic acid/sodium ferrous citrate) or vehicle for the last 5 weeks. We observed that 5-aminolevulinic acid/sodium ferrous citrate significantly decreased body weight, fat weight, hepatic lipid deposits and improved levels of blood glucose and oral glucose tolerance test. In addition, 5-aminolevulinic acid/sodium ferrous citrate suppressed increased glomerular tuft area in high fat diet-fed mice, which was associated with increased heme oxygenase-1 protein expression. Our findings demonstrate additional evidence that 5-aminolevulinic acid/sodium ferrous citrate could improve glucose and lipid metabolism in diabetic mice. 5-Aminolevulinic acid/sodium ferrous citrate has potential application in obesity or type 2 diabetes mellitus-associated disease such as diabetic nephropathy and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Atsuko Kamiya
- SBI Pharmaceuticals Co. Ltd., 1-6-1 Roppongi, Minato-ku, Tokyo 106-6020, Japan
| | - Takeshi Hara
- SBI Pharmaceuticals Co. Ltd., 1-6-1 Roppongi, Minato-ku, Tokyo 106-6020, Japan
| | - Masayuki Tsuda
- Institute for Laboratory Animal Research, Kochi Medical School, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan
| | - Emi Tsuru
- Institute for Laboratory Animal Research, Kochi Medical School, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan
| | - Yasushi Kuroda
- SBI Pharmaceuticals Co. Ltd., 1-6-1 Roppongi, Minato-ku, Tokyo 106-6020, Japan
| | - Urara Ota
- SBI Pharmaceuticals Co. Ltd., 1-6-1 Roppongi, Minato-ku, Tokyo 106-6020, Japan
| | - Takashi Karashima
- Department of Urology, Kochi Medical School, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan
| | - Hideo Fukuhara
- Department of Urology, Kochi Medical School, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan
| | - Keiji Inoue
- Department of Urology, Kochi Medical School, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan
| | - Masahiro Ishizuka
- SBI Pharmaceuticals Co. Ltd., 1-6-1 Roppongi, Minato-ku, Tokyo 106-6020, Japan
| | - Motowo Nakajima
- SBI Pharmaceuticals Co. Ltd., 1-6-1 Roppongi, Minato-ku, Tokyo 106-6020, Japan
| | - Tohru Tanaka
- SBI Pharmaceuticals Co. Ltd., 1-6-1 Roppongi, Minato-ku, Tokyo 106-6020, Japan
| |
Collapse
|
18
|
Molecular hydrogen protects against ischemia-reperfusion injury in a mouse fatty liver model via regulating HO-1 and Sirt1 expression. Sci Rep 2018; 8:14019. [PMID: 30232347 PMCID: PMC6145907 DOI: 10.1038/s41598-018-32411-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/23/2018] [Indexed: 12/19/2022] Open
Abstract
Fatty liver has lower tolerance against ischemia-reperfusion (I/R) injury in liver operations, including liver transplantation. Seeking to ameliorate liver injury following I/R in fatty liver, we examined the protective effect of hydrogen (H2) saline on I/R liver injury in a methionine and choline-deficient plus high fat (MCDHF) diet-induced fatty liver mouse model. Saline containing 7 ppm H2 was administrated during the process of I/R. Livers were obtained and analyzed. Primary hepatocytes and Kupffer cells (KCs) were obtained from fatty liver and subjected to hypoxia/reoxygenation. Apoptosis-related proteins and components of the signaling pathway were analyzed after treatment with hydrogen gas. The MCDHF I/R group showed higher levels of AST and ALT in serum, TUNEL-positive apoptotic cells, F4/80 immunopositive cells, mRNA levels of inflammatory cytokines, constituents of the signaling pathway, pro-apoptotic molecules in liver, and KCs and/or primary hepatocytes, compared to the control group. In contrast, H2 treatment significantly suppressed the signs of I/R injury in fatty liver. Moreover, the expression of Bcl-2, HO-1, and Sirt1 in liver, KCs, and hepatocytes by hydrogen gas were increased, whereas caspase activation, Bax, and acetylation of p53 were suppressed by hydrogen gas. These results demonstrated that H2 treatment ameliorated I/R liver injury in a fatty liver model by reducing hepatocyte apoptosis, inhibiting macrophage activation and inflammatory cytokines, and inducing HO-1 and Sirt1 expression. Taken togather, treatment with H2 saline may have a protective effect and safe therapeutic activity during I/R events, such as in liver transplantation with fatty liver.
Collapse
|
19
|
Ye Z, Kong Q, Han J, Deng J, Wu M, Deng H. Circular RNAs are differentially expressed in liver ischemia/reperfusion injury model. J Cell Biochem 2018; 119:7397-7405. [PMID: 29775224 DOI: 10.1002/jcb.27047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023]
Abstract
Liver ischemia/reperfusion (I/R) injury has high mortality due to the intense inflammatory process occurs in the liver. However, the pathological mechanism underlying I/R injury is still not clear. Recent works showed that circular RNAs play critical roles in many human diseases. In this study, the occurrence of liver I/R injury was validated by an analysis of the blood samples and hematoxylin-eosin (HE) staining of liver tissues. Total RNA was purified and followed by RNA-seq in the purpose of screening the circRNAs in significant differentially expression, which were validated by quantitative PCR. GO and KEGG analysis were performed to determine the function of these differentially expressed circular RNAs. The circular structure of the circRNA was validated with gel electrophoresis and RNase R treatment. We found that some circular RNAs were differentially expressed in Liver I/R mouse models through bioinformatics analysis. These circular RNAs play roles in biological process, cellular component, and molecular function through GO analysis. Meanwhile, Hippo signaling pathway was found to be correlated with circular RNAs function in I/R models by KEGG analysis. To further validate bioinformatics data, two up-regulated and three down-regulated circular RNAs were confirmed in I/R models. The circularity of these differentially expressed circular RNAs was validated through gel electrophoresis and RNase R treatment. In summary, this work provides new insights into the mechanism underlying pathogenesis of liver I/R injury, providing new and potentially efficient targets against I/R injury.
Collapse
Affiliation(s)
- Zhiqiang Ye
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-Sen University. Guangzhou, China
| | - Qinglei Kong
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-Sen University. Guangzhou, China
| | - Jianhua Han
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-Sen University. Guangzhou, China
| | - Jingyi Deng
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-Sen University. Guangzhou, China
| | - Miaolue Wu
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-Sen University. Guangzhou, China
| | - Hong Deng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University. Guangzhou, China.,GuangDong Provincial Key Laboratory of Liver Disease, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
20
|
Li S, Takahara T, Fujino M, Fukuhara Y, Sugiyama T, Li XK, Takahara S. Astaxanthin prevents ischemia-reperfusion injury of the steatotic liver in mice. PLoS One 2017; 12:e0187810. [PMID: 29121675 PMCID: PMC5679630 DOI: 10.1371/journal.pone.0187810] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022] Open
Abstract
Steatosis has a low tolerance against ischemia-reperfusion injury (IRI). To prevent IRI in the steatotic liver, we attempted to elucidate the protective effect of astaxanthin (ASTX) in the steatotic liver model by giving mice a methionine and choline-deficient high fat (MCDHF) diet. Levels of lipid peroxidation and apoptosis, the expression of inflammatory cytokines and heme oxygenase (HO)-1, in the liver were assessed. Reactive oxygen species (ROS), inflammatory cytokines, apoptosis-related proteins and members of the signaling pathway were also examined in isolated Kupffer cells and/or hepatocytes from the steatotic liver. ASTX decreased serum ALT and AST levels, the amount of TUNEL, F4/80, or 4HNE-positive cells and the mRNA levels of inflammatory cytokines in MCDHF mice by IRI. Moreover, HO-1 and HIF-1α, phosphorylation of Akt and mTOR expressions were increased by ASTX. The inflammatory cytokines produced by Kupffer, which were subjected to hypoxia and reoxygenation (HR), were inhibited by ASTX. Expressions of Bcl-2, HO-1 and Nrf2 in hepatocytes by HR were increased, whereas Caspases activation, Bax and phosphorylation of ERK, MAPK, and JNK were suppressed by ASTX. Pretreatment with ASTX has a protective effect and is a safe therapeutic treatment for IRI, including for liver transplantation of the steatotic liver.
Collapse
Affiliation(s)
- Shaowei Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine, Osaka, Japan
- Research Center of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- Clinical Medicine Research Center of Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Terumi Takahara
- Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuyuki Fukuhara
- Division of Medical Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Toshiro Sugiyama
- Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shiro Takahara
- Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
21
|
Chakraborty I, Carrington SJ, Roseman G, Mascharak PK. Synthesis, Structures, and CO Release Capacity of a Family of Water-Soluble PhotoCORMs: Assessment of the Biocompatibility and Their Phototoxicity toward Human Breast Cancer Cells. Inorg Chem 2017; 56:1534-1545. [DOI: 10.1021/acs.inorgchem.6b02623] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Indranil Chakraborty
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Samantha J. Carrington
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Graham Roseman
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Pradip K. Mascharak
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
22
|
Abstract
Carbon monoxide (CO) has long been considered an environmental pollutant and a poison. Exogenous exposure to amounts of CO beyond the physiologic level of the body can result in a protective or adaptive response. However, as a gasotransmitter, endogenous CO is important for multiple physiologic functions. To date, at least seven distinct methods of delivering CO have been utilized in animal and clinical studies. In this mini-review, we summarize the exogenous CO delivery methods and compare their advantages and disadvantages.
Collapse
Affiliation(s)
- Hui-Jun Hu
- Department of Navy Aeromedicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China; Department of Hyperbaric Oxygen, Navy General Hospital, Beijing, China
| | - Qiang Sun
- Department of Hyperbaric Oxygen, Navy General Hospital, Beijing, China
| | - Zhou-Heng Ye
- Department of Navy Aeromedicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Xue-Jun Sun
- Department of Navy Aeromedicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|