1
|
Adam MS, Zhuang H, Ren X, Zhang Y, Zhou P. The metabolic characteristics and changes of chondrocytes in vivo and in vitro in osteoarthritis. Front Endocrinol (Lausanne) 2024; 15:1393550. [PMID: 38854686 PMCID: PMC11162117 DOI: 10.3389/fendo.2024.1393550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Osteoarthritis (OA) is an intricate pathological condition that primarily affects the entire synovial joint, especially the hip, hand, and knee joints. This results in inflammation in the synovium and osteochondral injuries, ultimately causing functional limitations and joint dysfunction. The key mechanism responsible for maintaining articular cartilage function is chondrocyte metabolism, which involves energy generation through glycolysis, oxidative phosphorylation, and other metabolic pathways. Some studies have shown that chondrocytes in OA exhibit increased glycolytic activity, leading to elevated lactate production and decreased cartilage matrix synthesis. In OA cartilage, chondrocytes display alterations in mitochondrial activity, such as decreased ATP generation and increased oxidative stress, which can contribute to cartilage deterioration. Chondrocyte metabolism also involves anabolic processes for extracellular matrix substrate production and energy generation. During OA, chondrocytes undergo considerable metabolic changes in different aspects, leading to articular cartilage homeostasis deterioration. Numerous studies have been carried out to provide tangible therapies for OA by using various models in vivo and in vitro targeting chondrocyte metabolism, although there are still certain limitations. With growing evidence indicating the essential role of chondrocyte metabolism in disease etiology, this literature review explores the metabolic characteristics and changes of chondrocytes in the presence of OA, both in vivo and in vitro. To provide insight into the complex metabolic reprogramming crucial in chondrocytes during OA progression, we investigate the dynamic interaction between metabolic pathways, such as glycolysis, lipid metabolism, and mitochondrial function. In addition, this review highlights prospective future research directions for novel approaches to diagnosis and treatment. Adopting a multifaceted strategy, our review aims to offer a comprehensive understanding of the metabolic intricacies within chondrocytes in OA, with the ultimate goal of identifying therapeutic targets capable of modulating chondrocyte metabolism for the treatment of OA.
Collapse
Affiliation(s)
| | | | | | | | - Panghu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Zhang R, Han L, Lin W, Ba X, Yan J, Li T, Yang Y, Huang Y, Huang Y, Qin K, Chen Z, Wang Y, Tu S. Mechanisms of NLRP3 inflammasome in rheumatoid arthritis and osteoarthritis and the effects of traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117432. [PMID: 37992880 DOI: 10.1016/j.jep.2023.117432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE It has been widely reported that various anti-rheumatic traditional Chinese medicines (TCMs) ameliorate rheumatoid arthritis (RA) and osteoarthritis (OA) through regulating the abnormal production, assembly, and activation of the NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome. These TCMs include monomers isolated from Chinese herbs, extracts of Chinese herbs, and Chinese medical formulae with a lengthy application history. AIM OF THE STUDY This review aimed to summarize and analyze the published articles about the NLRP3 inflammasome and its role in the pathogenesis of RA and OA. We also reviewed existing knowledge on the therapeutic mechanism of TCMs in RA and OA via the regulation of the NLRP3 inflammasome. MATERIALS AND METHODS We searched for relevant articles with the keywords "NLRP3 inflammasome", "traditional Chinese medicine," "Chinese herbal drugs," "rheumatoid arthritis," and "osteoarthritis." The information retrieval was conducted in medical Chinese and English databases from the date of construction to April 19, 2023, including PubMed, MEDLINE, Web of Science, Scopus, Ovid, China National Knowledge Infrastructure (CNKI), Chinese Biomedicine Literature Database (CBM), Chinese Science and Technology Periodicals Database (VIP), and China Online Journals (COJ). RESULTS According to retrieval results, 35 TCMs have been demonstrated to relieve RA by targeting the NLRP3 inflammasome, including six traditional Chinese prescriptions, seven extracts of Chinese herbs, and 22 monomers extracted from traditional Chinese herbs and formulae. Additionally, 23 TCMs have shown anti-OA effects with abilities to modulate the NLRP3 inflammasome, including five traditional Chinese prescriptions, one extract of Chinese herbs, and 17 monomers from Chinese herbs. CONCLUSIONS We summarized mechanism research about the pivotal roles of the NLRP3 inflammasome in the pathogenesis of RA and OA. Moreover, a review of TCMs with targets of the NLRP3 inflammasome in RA and OA treatment was also conducted. Our work is conducive to a better application of TCMs in complementary and alternative therapies in RA and OA.
Collapse
Affiliation(s)
- Ruiyuan Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Liang Han
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Weiji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xin Ba
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiahui Yan
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tingting Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuyao Yang
- Integrated Traditional Chinese and Western Clinical Medicine, Second Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yao Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ying Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Kai Qin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhe Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yu Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shenghao Tu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Han X, Lin D, Huang W, Li D, Li N, Xie X. Mechanism of NLRP3 inflammasome intervention for synovitis in knee osteoarthritis: A review of TCM intervention. Front Genet 2023; 14:1159167. [PMID: 37065495 PMCID: PMC10090545 DOI: 10.3389/fgene.2023.1159167] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Objective: This paper briefly reviews the structure and function of NLRP3 inflammasomes, signaling pathway, relationship with synovitis in KOA, and intervention of traditional Chinese medicine (TCM) in NLRP3 inflammasomes as a means to improve its therapeutic potential and clinical application.Method: Literatures about NLRP3 inflammasomes and synovitis in KOA were reviewed to analyze and discuss.Result: NLRP3 inflammasome can activate NF-κB mediated signal transduction, which in turn causes the expression of proinflammatory cytokines, initiates the innate immune response, and triggers synovitis in KOA. The TCM monomer/active ingredient, decoction, external ointment, and acupuncture regulating NLRP3 inflammasomes are helpful to alleviate synovitis in KOA.Conclusion: The NLRP3 inflammasome plays a significant role in the pathogenesis of synovitis in KOA, TCM intervention targeting the NLRP3 inflammasome can be a novel approach and therapeutic direction for the treatment of synovitis in KOA.
Collapse
Affiliation(s)
- Xianfu Han
- Clinical Medical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Demin Lin
- Clinical Medical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Weiwei Huang
- Clinical Medical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Dingpeng Li
- Department of Orthopedics, The Second People’s Hospital of Gansu Province, Lanzhou, Gansu, China
| | - Ning Li
- Clinical Medical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Orthopedics, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- *Correspondence: Ning Li, ; Xingwen Xie,
| | - Xingwen Xie
- Department of Orthopedics, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- *Correspondence: Ning Li, ; Xingwen Xie,
| |
Collapse
|
4
|
Hosokawa H, Akagi R, Watanabe S, Horii M, Shinohara M, Mikami Y, Toguchi K, Kimura S, Yamaguchi S, Ohtori S, Sasho T. Nuclear receptor subfamily 1 group D member 1 in the pathology of obesity-induced osteoarthritis progression. J Orthop Res 2022; 41:930-941. [PMID: 36102152 DOI: 10.1002/jor.25440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/28/2022] [Accepted: 09/02/2022] [Indexed: 02/04/2023]
Abstract
Mechanical overload and chemical factors are both related to obesity-induced progression of knee osteoarthritis. The circadian rhythm is related to the development of metabolic syndrome and the progression of osteoarthritis, and the core clock genes nuclear receptor subfamily 1 group D member 1 (NR1D1) and brain and muscle arnt-like protein 1 (BMAL1) are dysregulated in cartilage from patients with osteoarthritis. Here, we focused on NR1D1 and investigated osteoarthritis-related changes and gene expression in a mouse model of diet-induced obesity. A high-fat diet was provided to C57BL6/J mice, and changes in body weight, blood lipids, and gene expression were investigated. Destabilization of the medial meniscus or sham surgery was performed on mice fed a high-fat diet or normal diet, and histological osteoarthritis-related changes and NR1D1 expression were investigated. The effects of the NR1D1 agonist SR9009 were also assessed. Mice fed a high-fat diet developed significant obesity and dyslipidemia. Nr1d1 and Bmal1 gene expression levels decreased in the liver and knee joints. Moreover, increased osteoarthritis progression and decreased NR1D1 protein expression were observed in high-fat diet-fed mice after surgical osteoarthritis induction. SR9009 decreased the progression of obesity, dyslipidemia, and osteoarthritis. Overall, obesity and dyslipidemia induced by the high-fat diet led to osteoarthritis progression and decreased NR1D1 expression. Thus, NR1D1 may play an important role in obesity-induced osteoarthritis.
Collapse
Affiliation(s)
- Hiroaki Hosokawa
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan.,Center for Preventive Medicine, Musculoskeletal Disease and Pain, Chiba University, Chiba, Japan
| | - Ryuichiro Akagi
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan
| | - Shotaro Watanabe
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan.,Center for Preventive Medicine, Musculoskeletal Disease and Pain, Chiba University, Chiba, Japan
| | - Manato Horii
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan
| | - Masashi Shinohara
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan
| | - Yukio Mikami
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan
| | - Kaoru Toguchi
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan
| | - Seiji Kimura
- Department of Orthopaedic Surgery, Center for Advanced Joint Function and Reconstructive Spine Surgery Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Yamaguchi
- Graduate School of Global and Transdisciplinary Studies, Chiba University, Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan
| | - Takahisa Sasho
- Center for Preventive Medicine, Musculoskeletal Disease and Pain, Chiba University, Chiba, Japan
| |
Collapse
|
5
|
Dietary Fatty Acid Regulation of the NLRP3 Inflammasome via the TLR4/NF-κB Signaling Pathway Affects Chondrocyte Pyroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3711371. [PMID: 35571243 PMCID: PMC9095358 DOI: 10.1155/2022/3711371] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022]
Abstract
Dietary fatty acid (FA) content and type have different effects on obesity-associated osteoarthritis (OA), but the mechanisms underlying these differences are not fully understood. Inflammation activated by toll-like receptor 4 (TLR4)/nuclear factor- (NF-) κB signaling and pyroptosis induced by the NLRP3/caspase-1/gasdermin D (GSDMD) signaling pathway play important roles in OA development. Our aim in this study was to observe the effects of dietary FAs on the articular cartilage of obese post-traumatic OA model mice and on chondrocytes stimulated by lipopolysaccharide (LPS) and to determine whether the underlying mechanisms involve TLR4/NF-κB and NLRP3/caspase-1/GSDMD signaling pathways. Mice were fed high-fat diets rich in various FAs and underwent surgical destabilization of the medial meniscus to establish the obesity-related post-traumatic OA model. LPS-induced SW1353 chondrosarcoma cells were used to mimic OA status in vitro, and TLR4 inhibitors or TLR4 overexpressing lentivirus was administered. Analysis using weight-matched mice and multiple regression models revealed that OA was associated with dietary FA content and serum inflammatory factor levels, but not body weight. Diets rich in n-3 polyunsaturated fatty acids (PUFAs) attenuated OA and inhibited the TLR4/NF-κB and NLRP3/caspase-1/GSDMD signaling pathways, whereas diets rich in saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), or n-6 PUFAs increased OA severity and activated these pathways. In vitro results for SFAs, n-6 PUFAs, and n-3 PUFAs were consistent with the animal experiments. However, those for MUFAs were not. FA effects on the NLRP3/caspase-1/GSDMD pathway were associated with the inhibition or activation of the TLR4 signaling pathway. In conclusion, diets rich in SFAs or n-6 PUFAs can exacerbate obesity-associated OA, whereas those rich in n-3 PUFAs have protective effects against this disease, due to their respective pro-/anti-inflammatory and pyroptotic effects. Further research on dietary FA supplements as a potential therapeutic approach for OA is needed.
Collapse
|
6
|
Shen PC, Chou SH, Lu CC, Huang HT, Chien SH, Huang PJ, Liu ZM, Shih CL, Su SJ, Chen LM, Tien YC. Shockwave Treatment Enhanced Extracellular Matrix Production in Articular Chondrocytes Through Activation of the ROS/MAPK/Nrf2 Signaling Pathway. Cartilage 2021; 13:238S-253S. [PMID: 34238028 PMCID: PMC8804851 DOI: 10.1177/19476035211012465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Shockwave application is a potential treatment for osteoarthritis (OA), but the underlying mechanism remains unknown. Oxidative stress and a counterbalancing antioxidant system might be the key to understanding this mechanism. We hypothesized that reactive oxygen species (ROS) and the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2),which is an important regulator of cellular redox homeostasis, are plausible elements. DESIGN Porcine chondrocytes were cultured in a 3-dimensional pellet model and subjected to shockwaves. The effects of shockwaves with various energy-flux densities on optimal extracellular matrix (ECM) synthesis were assessed. ROS, mitogen-activated protein kinase (MAPK) signaling, and the redox activity of Nrf2 were measured. To investigate the signaling mechanism involved in the shockwave treatment in chondrocytes, specific inhibitors of ROS, MAPK signaling, and Nrf2 activity were targeted. RESULTS Shockwaves increased ECM synthesis without affecting cell viability or proliferation. Furthermore, they induced transient ROS production mainly through xanthine oxidase. The phosphorylation of ERK1/2 and p38 and the nuclear translocation of Nrf2 were activated by shockwaves. By contrast, suppression of ROS signaling mitigated shockwave-induced MAPK phosphorylation, Nrf2 nuclear translocation, and ECM synthesis. Pretreatment of chondrocytes with the specific inhibitors of MEK1/2 and p38, respectively, mitigated the shockwave-induced nuclear translocation of Nrf2 and ECM synthesis. Nrf2 inhibition by both small hairpin RNA knockdown and brusatol reduced the shockwave-enhanced ECM synthesis. CONCLUSIONS Shockwaves activated Nrf2 activity through the induction of transient ROS signaling and subsequently enhanced ECM synthesis in chondrocytes. This study provided fundamental evidence confirming the potential of shockwaves for OA management.
Collapse
Affiliation(s)
- Po-Chih Shen
- Department of Orthopaedic Surgery,
Kaohsiung Medical University Hospital, Kaohsiung,Graduate Institute of Medicine, College
of Medicine, Kaohsiung Medical University, Kaohsiung
| | - Shih-Hsiang Chou
- Department of Orthopaedic Surgery,
Kaohsiung Medical University Hospital, Kaohsiung
| | - Cheng-Chang Lu
- Department of Orthopaedic Surgery,
Kaohsiung Medical University Hospital, Kaohsiung,Graduate Institute of Medicine, College
of Medicine, Kaohsiung Medical University, Kaohsiung,Department of Orthopaedic Surgery,
Kaohsiung Municipal Siaoqang Hospital, Kaohsiung
| | - Hsuan-Ti Huang
- Department of Orthopaedic Surgery,
Kaohsiung Medical University Hospital, Kaohsiung,Department of Orthopaedic Surgery,
Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung
| | - Song-Hsiung Chien
- Department of Orthopaedic Surgery,
Kaohsiung Medical University Hospital, Kaohsiung
| | - Peng-Ju Huang
- Department of Orthopaedic Surgery,
Kaohsiung Medical University Hospital, Kaohsiung
| | - Zi-Miao Liu
- Department of Orthopaedic Surgery,
Kaohsiung Medical University Hospital, Kaohsiung
| | - Chia-Lung Shih
- Department of Orthopaedic Surgery,
Kaohsiung Medical University Hospital, Kaohsiung
| | - Shu-Jem Su
- Department of Medical Laboratory
Science and Biotechnology, School of Medicine and Health Sciences, Fooyin
University, Kaohsiung
| | - Li-Min Chen
- Departments of Pediatrics, E-DA
Hospital, I-Shou University, Kaohsiung City
| | - Yin-Chun Tien
- Department of Orthopaedic Surgery,
Kaohsiung Medical University Hospital, Kaohsiung,Graduate Institute of Medicine, College
of Medicine, Kaohsiung Medical University, Kaohsiung,Yin-Chun Tien, Department of Orthopaedic
Surgery, Kaohsiung Medical University Hospital, 100 Tzu-You 1st Road, Kaohsiung
807.
| |
Collapse
|
7
|
Nasi S, Castelblanco M, Chobaz V, Ehirchiou D, So A, Bernabei I, Kusano T, Nishino T, Okamoto K, Busso N. Xanthine Oxidoreductase Is Involved in Chondrocyte Mineralization and Expressed in Osteoarthritic Damaged Cartilage. Front Cell Dev Biol 2021; 9:612440. [PMID: 33634117 PMCID: PMC7900416 DOI: 10.3389/fcell.2021.612440] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
Pathologic calcification of cartilage consists of the formation of basic calcium phosphate (BCP) and/or calcium pyrophosphate dihydrate (CPPD) containing calcium crystals in mature hyaline or articular cartilage and is associated with aging, cartilage injury and likely plays a role in accelerating the pathology of osteoarthritis (OA). The pathways regulating joint calcification, in particular cartilage calcification, are not completely understood, but inflammation and the formation of reactive oxygen species (ROS) are contributory factors. The xanthine oxidase (XO) form of xanthine oxidoreductase (XOR), the key enzyme in xanthine and uric acid metabolism, is a major cellular source of superoxide. We hypothesized that XOR could be implicated in chondrocyte mineralization and cartilage calcification and degradation in OA. We showed both in murine primary chondrocyte and chondrogenic ATDC5 cells, that mineralization was inhibited by two different XOR inhibitors, febuxostat and allopurinol. In addition, XOR inhibition reduced the expression of the pro-mineralizing cytokine interleukin-6 (IL-6). We next generated XOR knock-out chondrocyte cell lines with undetectable XOR expression and XO activity. XOR knock-out chondrocyte cells showed decreased mineralization and reduced alkaline phosphatase (Alp) activity. To assess the precise form of XOR involved, primary chondrocytes of XOR mutant mice expressing either the XDH form (XDH ki) or the XO form (XO ki) were studied. We found that XO ki chondrocytes exhibited increased mineralization compared to XDH ki chondrocytes, and this was associated with enhanced Alp activity, ROS generation and IL-6 secretion. Finally, we found increased XOR expression in damaged vs. undamaged cartilage obtained from OA patients and XOR expression partially co-localized with areas showing pathologic calcification. Altogether, our results suggest that XOR, via its XO form, contribute to chondrocyte mineralization and pathological calcification in OA cartilage.
Collapse
Affiliation(s)
- Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Mariela Castelblanco
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Véronique Chobaz
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Driss Ehirchiou
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Alexander So
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Ilaria Bernabei
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Teruo Kusano
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Takeshi Nishino
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Ken Okamoto
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Yoshida S, Hagiwara Y, Tsuchiya M, Shinoda M, Koide M, Hatakeyama H, Chaweewannakorn C, Suzuki K, Yano T, Sogi Y, Itaya N, Sekiguchi T, Yabe Y, Sasaki K, Kanzaki M, Itoi E. Involvement of inflammasome activation via elevation of uric acid level in nociception in a mouse model of muscle pain. Mol Pain 2020; 15:1744806919858797. [PMID: 31161887 PMCID: PMC6614954 DOI: 10.1177/1744806919858797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Muscle pain is a common condition in many diseases and is induced by muscle
overuse. Muscle overuse induces an increase in uric acid, which stimulates the
nucleotide-binding oligomerization domain-like receptor (NLR). This receptor
contains the pyrin domain NLRP-3 inflammasome which when activated, results in
the secretion of potent pro-inflammatory cytokines such as interleukin-1β
(IL-1β). The aim of this study was to investigate the involvement of
inflammasome activation via the elevation of uric acid level in nociception in a
mouse model of muscle pain. The right hind leg muscles of BALB/c mice were
stimulated electrically to induce excessive muscle contraction. The left hind
leg muscles were not stimulated as a control. Mechanical withdrawal thresholds,
levels of uric acid, IL-1β, and NLRP3, caspase-1 activity, and the number of
macrophages were investigated. Furthermore, the effects of xanthine oxidase
inhibitors, such as Brilliant Blue G, caspase-1 inhibitor, and clodronate
liposome, on pain were investigated. In the stimulated muscles, mechanical
withdrawal thresholds decreased, and the levels of uric acid, NLRP3, and IL-1β,
caspase-1 activity, and the number of macrophages increased compared to that in
the non-stimulated muscles. Administration of the inhibitors attenuated
hyperalgesia caused by excessive muscle contraction. These results suggested
that IL-1β secretion and NLRP3 inflammasome activation in macrophages produced
mechanical hyperalgesia by elevating uric acid level, and xanthine oxidase
inhibitors may potentially reduce over-exercised muscle pain.
Collapse
Affiliation(s)
- Shinichirou Yoshida
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshihiro Hagiwara
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Masamichi Shinoda
- 3 Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Masashi Koide
- 4 Department of Orthopaedic Surgery, Matsuda Hospital, Sendai, Japan
| | - Hiroyasu Hatakeyama
- 5 Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | | | - Kazuaki Suzuki
- 6 Department of Orthopaedic Surgery, JR Sendai Hospital, Sendai, Japan
| | - Toshihisa Yano
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhito Sogi
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuyuki Itaya
- 6 Department of Orthopaedic Surgery, JR Sendai Hospital, Sendai, Japan
| | - Takuya Sekiguchi
- 7 Department of Orthopaedic Surgery, Iwate Prefectural Central Hospital, Morioka, Japan
| | - Yutaka Yabe
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiichi Sasaki
- 8 Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Makoto Kanzaki
- 5 Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Eiji Itoi
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
9
|
Sansone V, Applefield RC, De Luca P, Pecoraro V, Gianola S, Pascale W, Pascale V. Does a high-fat diet affect the development and progression of osteoarthritis in mice?: A systematic review. Bone Joint Res 2020; 8:582-592. [PMID: 31934329 PMCID: PMC6946912 DOI: 10.1302/2046-3758.812.bjr-2019-0038.r1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Aims The aim of this study was to systematically review the literature for evidence of the effect of a high-fat diet (HFD) on the onset or progression of osteoarthritis (OA) in mice. Methods A literature search was performed in PubMed, Embase, Web of Science, and Scopus to find all studies on mice investigating the effects of HFD or Western-type diet on OA when compared with a control diet (CD). The primary outcome was the determination of cartilage loss and alteration. Secondary outcomes regarding local and systemic levels of proteins involved in inflammatory processes or cartilage metabolism were also examined when reported. Results In total, 14 publications met our inclusion criteria and were included in our review. Our meta-analysis showed that, when measured by the modified Mankin Histological-Histochemical Grading System, there was a significantly higher rate of OA in mice fed a HFD than in mice on a CD (standardized mean difference (SMD) 1.27, 95% confidence interval (CI) 0.63 to 1.91). Using the Osteoarthritis Research Society International (OARSI) score, there was a trend towards HFD causing OA (SMD 0.78, 95% CI -0.04 to 1.61). In terms of OA progression, a HFD consistently worsened the progression of surgically induced OA when compared with a CD. Finally, numerous inflammatory cytokines such as tumour necrosis factor alpha (TNF-α), interleukin (IL)-1β, and leptin, among others, were found to be altered by a HFD. Conclusion A HFD seems to induce or exacerbate the progression of OA in mice. The metabolic changes and systemic inflammation brought about by a HFD appear to be key players in the onset and progression of OA. Cite this article:Bone Joint Res 2019;8:582–592.
Collapse
Affiliation(s)
- Valerio Sansone
- Department of Orthopaedics, Universitá degli Studi di Milano and IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | | | | | - Valentina Pecoraro
- Department of Laboratory Medicine, Ospedale Civile Sant'Agostino Estense di Baggiovra, Baggiovara, Italy
| | | | | | - Valerio Pascale
- Department of Orthopaedics, Universitá degli Studi di Milano and IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
10
|
Berenbaum F, Griffin TM, Liu-Bryan R. Review: Metabolic Regulation of Inflammation in Osteoarthritis. Arthritis Rheumatol 2019; 69:9-21. [PMID: 27564539 DOI: 10.1002/art.39842] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/09/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Francis Berenbaum
- Sorbonnes Universités, UPMC University Paris 06, INSERM, AP-HP Hôpital Saint-Antoine, Centre de Recherche Saint-Antoine, DHU i2B, Paris, France
| | - Timothy M Griffin
- Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City
| | - Ru Liu-Bryan
- VA San Diego Healthcare System and University of California, San Diego
| |
Collapse
|
11
|
Bolduc JA, Collins JA, Loeser RF. Reactive oxygen species, aging and articular cartilage homeostasis. Free Radic Biol Med 2019; 132:73-82. [PMID: 30176344 PMCID: PMC6342625 DOI: 10.1016/j.freeradbiomed.2018.08.038] [Citation(s) in RCA: 355] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/07/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023]
Abstract
Chondrocytes are responsible for the maintenance of the articular cartilage. A loss of homeostasis in cartilage contributes to the development of osteoarthritis (OA) when the synthetic capacity of chondrocytes is overwhelmed by processes that promote matrix degradation. There is evidence for an age-related imbalance in reactive oxygen species (ROS) production relative to the anti-oxidant capacity of chondrocytes that plays a role in cartilage degradation as well as chondrocyte cell death. The ROS produced by chondrocytes that have received the most attention include superoxide, hydrogen peroxide, the reactive nitrogen species nitric oxide, and the nitric oxide derived product peroxynitrite. Excess levels of these ROS not only cause oxidative-damage but, perhaps more importantly, cause a disruption in cell signaling pathways that are redox-regulated, including Akt and MAP kinase signaling. Age-related mitochondrial dysfunction and reduced activity of the mitochondrial superoxide dismutase (SOD2) are associated with an increase in mitochondrial-derived ROS and are in part responsible for the increase in chondrocyte ROS with age. Peroxiredoxins (Prxs) are a key family of peroxidases responsible for removal of H2O2, as well as for regulating redox-signaling events. Prxs are inactivated by hyperoxidation. An age-related increase in chondrocyte Prx hyperoxidation and an increase in OA cartilage has been noted. The finding in mice that deletion of SOD2 or the anti-oxidant gene transcriptional regulator nuclear factor-erythroid 2- related factor (Nrf2) result in more severe OA, while overexpression or treatment with mitochondrial targeted anti-oxidants reduces OA, further support a role for excessive ROS in the pathogenesis of OA. Therefore, new therapeutic strategies targeting specific anti-oxidant systems including mitochondrial ROS may be of value in reducing the progression of age-related OA.
Collapse
Affiliation(s)
- Jesalyn A Bolduc
- Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC, USA; Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - John A Collins
- Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC, USA; Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Richard F Loeser
- Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC, USA; Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Battelli MG, Bortolotti M, Polito L, Bolognesi A. Metabolic syndrome and cancer risk: The role of xanthine oxidoreductase. Redox Biol 2018; 21:101070. [PMID: 30576922 PMCID: PMC6302121 DOI: 10.1016/j.redox.2018.101070] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 12/29/2022] Open
Abstract
Obesity and related pathologies such as diabetes and metabolic syndrome are associated with chronic inflammation and cancer. The serum level of xanthine oxidoreductase (XOR) is correlated to obesity-associated metabolic disorders. XOR can play a role in the pathogenesis of both metabolic syndrome and cancer through the inflammatory response and the oxidative stress elicited by the products of its activity. The reactive oxygen and nitrogen species and the uric acid derived from XOR concur to the development of hypertension, dyslipidemia and insulin resistance and participate in both cell transformation and proliferation, as well as in the progression and metastasis process. Despite the availability of different drugs to inhibit in vivo XOR activity, the complexity of XOR inhibition effects should be carefully considered before clinical application, save in the case of symptomatic hyperuricemia. Metabolic syndrome (MS) increases the risk of cancer development. Xanthine oxidoreductase (XOR) plays a role in both MS and cancer. Uric acid, ROS and RNS produced by XOR cause inflammation and oxidative stress. Inflammation and oxidative stress contribute to the pathogenesis of MS and cancer. XOR activity can be pharmacologically controlled.
Collapse
Affiliation(s)
- Maria Giulia Battelli
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| |
Collapse
|
13
|
Battelli MG, Bortolotti M, Polito L, Bolognesi A. The role of xanthine oxidoreductase and uric acid in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2557-2565. [PMID: 29733945 DOI: 10.1016/j.bbadis.2018.05.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/20/2018] [Accepted: 05/03/2018] [Indexed: 12/15/2022]
Abstract
Xanthine oxidoreductase (XOR) could contribute to the pathogenesis of metabolic syndrome through the oxidative stress and the inflammatory response induced by XOR-derived reactive oxygen species and uric acid. Hyperuricemia is strongly linked to hypertension, insulin resistance, obesity and hypertriglyceridemia. The serum level of XOR is correlated to triglyceride/high density lipoprotein cholesterol ratio, fasting glycemia, fasting insulinemia and insulin resistance index. Increased activity of endothelium-linked XOR may promote hypertension. In addition, XOR is implicated in pre-adipocyte differentiation and adipogenesis. XOR and uric acid play a role in cell transformation and proliferation as well as in the progression and metastatic process. Collected evidences confirm the contribution of XOR and uric acid in metabolic syndrome. However, in some circumstances XOR and uric acid may have anti-oxidant protective outcomes. The dual-face role of both XOR and uric acid explains the contradictory results obtained with XOR inhibitors and suggests caution in their therapeutic use.
Collapse
Affiliation(s)
- Maria Giulia Battelli
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum - University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum - University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum - University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum - University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| |
Collapse
|
14
|
Kozijn AE, Gierman LM, van der Ham F, Mulder P, Morrison MC, Kühnast S, van der Heijden RA, Stavro PM, van Koppen A, Pieterman EJ, van den Hoek AM, Kleemann R, Princen HMG, Mastbergen SC, Lafeber FPJG, Zuurmond AM, Bobeldijk I, Weinans H, Stoop R. Variable cartilage degradation in mice with diet-induced metabolic dysfunction: food for thought. Osteoarthritis Cartilage 2018; 26:95-107. [PMID: 29074298 DOI: 10.1016/j.joca.2017.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/03/2017] [Accepted: 10/10/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Human cohort studies have demonstrated a role for systemic metabolic dysfunction in osteoarthritis (OA) pathogenesis in obese patients. To explore the mechanisms underlying this metabolic phenotype of OA, we examined cartilage degradation in the knees of mice from different genetic backgrounds in which a metabolic phenotype was established by various dietary approaches. DESIGN Wild-type C57BL/6J mice and genetically modified mice (hCRP, LDLr-/-. Leiden and ApoE*3Leiden.CETP mice) based on C57BL/6J background were used to investigate the contribution of inflammation and altered lipoprotein handling on diet-induced cartilage degradation. High-caloric diets of different macronutrient composition (i.e., high-carbohydrate or high-fat) were given in regimens of varying duration to induce a metabolic phenotype with aggravated cartilage degradation relative to controls. RESULTS Metabolic phenotypes were confirmed in all studies as mice developed obesity, hypercholesteremia, glucose intolerance and/or insulin resistance. Aggravated cartilage degradation was only observed in two out of the twelve experimental setups, specifically in long-term studies in male hCRP and female ApoE*3Leiden.CETP mice. C57BL/6J and LDLr-/-. Leiden mice did not develop HFD-induced OA under the conditions studied. Osteophyte formation and synovitis scores showed variable results between studies, but also between strains and gender. CONCLUSIONS Long-term feeding of high-caloric diets consistently induced a metabolic phenotype in various C57BL/6J (-based) mouse strains. In contrast, the induction of articular cartilage degradation proved variable, which suggests that an additional trigger might be necessary to accelerate diet-induced OA progression. Gender and genetic modifications that result in a humanized pro-inflammatory state (human CRP) or lipoprotein metabolism (human-E3L.CETP) were identified as important contributing factors.
Collapse
Affiliation(s)
- A E Kozijn
- Metabolic Health Research, TNO, Leiden, The Netherlands; Department of Orthopaedics, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - L M Gierman
- Metabolic Health Research, TNO, Leiden, The Netherlands
| | - F van der Ham
- Metabolic Health Research, TNO, Leiden, The Netherlands
| | - P Mulder
- Metabolic Health Research, TNO, Leiden, The Netherlands
| | - M C Morrison
- Metabolic Health Research, TNO, Leiden, The Netherlands
| | - S Kühnast
- Metabolic Health Research, TNO, Leiden, The Netherlands
| | - R A van der Heijden
- Department of Pathology and Medical Biology, UMC Groningen, Groningen, The Netherlands
| | - P M Stavro
- Bunge North America, Saint Louis, United States
| | - A van Koppen
- Metabolic Health Research, TNO, Leiden, The Netherlands
| | - E J Pieterman
- Metabolic Health Research, TNO, Leiden, The Netherlands
| | | | - R Kleemann
- Metabolic Health Research, TNO, Leiden, The Netherlands
| | - H M G Princen
- Metabolic Health Research, TNO, Leiden, The Netherlands
| | - S C Mastbergen
- Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - F P J G Lafeber
- Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - A-M Zuurmond
- Metabolic Health Research, TNO, Leiden, The Netherlands
| | - I Bobeldijk
- Metabolic Health Research, TNO, Leiden, The Netherlands
| | - H Weinans
- Department of Orthopaedics, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - R Stoop
- Metabolic Health Research, TNO, Leiden, The Netherlands.
| |
Collapse
|
15
|
Yokose C, Chen M, Berhanu A, Pillinger MH, Krasnokutsky S. Gout and Osteoarthritis: Associations, Pathophysiology, and Therapeutic Implications. Curr Rheumatol Rep 2017; 18:65. [PMID: 27686950 DOI: 10.1007/s11926-016-0613-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteoarthritis (OA), the most common type of arthritis worldwide, is a degenerative disease of diarthrodial joints resulting in pain, reduced quality of life, and socioeconomic burden. Gout, the most common form of inflammatory arthritis, is a consequence of persistently elevated levels of urate and the formation of proinflammatory monosodium urate crystals in joints. Clinicians have long noted a predilection for both diseases to occur in the same joints. In this review, we provide an overview into research elucidating possible biochemical, mechanical, and immunological relationships between gout and OA. We additionally consider the potential implications of these relationships for OA treatment.
Collapse
Affiliation(s)
- Chio Yokose
- From the Crystal Disease Study Group, Division of Rheumatology, New York University School of Medicine, New York, USA
| | - Meng Chen
- From the Crystal Disease Study Group, Division of Rheumatology, New York University School of Medicine, New York, USA
| | - Adey Berhanu
- From the Crystal Disease Study Group, Division of Rheumatology, New York University School of Medicine, New York, USA
| | - Michael H Pillinger
- From the Crystal Disease Study Group, Division of Rheumatology, New York University School of Medicine, New York, USA
| | - Svetlana Krasnokutsky
- From the Crystal Disease Study Group, Division of Rheumatology, New York University School of Medicine, New York, USA. .,NYU Hospital for Joint Diseases, 301 East 17th Street, Suite 1410, New York, NY, 10003, USA.
| |
Collapse
|
16
|
Marchev AS, Dimitrova PA, Burns AJ, Kostov RV, Dinkova-Kostova AT, Georgiev MI. Oxidative stress and chronic inflammation in osteoarthritis: can NRF2 counteract these partners in crime? Ann N Y Acad Sci 2017; 1401:114-135. [PMID: 28662306 DOI: 10.1111/nyas.13407] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is an age-related joint degenerative disease associated with pain, joint deformity, and disability. The disease starts with cartilage damage but then progressively involves subchondral bone, causing an imbalance between osteoclast-driven bone resorption and osteoblast-driven remodeling. Here, we summarize the data for the role of oxidative stress and inflammation in OA pathology and discuss how these two processes are integrated during OA progression, as well as their contribution to abnormalities in cartilage/bone metabolism and integrity. At the cellular level, oxidative stress and inflammation are counteracted by transcription factor nuclear factor erythroid p45-related factor 2 (NRF2), and we describe the regulation of NRF2, highlighting its role in OA pathology. We also discuss the beneficial effect of some phytonutrients, including the therapeutic potential of NRF2 activation, in OA.
Collapse
Affiliation(s)
- Andrey S Marchev
- Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
| | - Petya A Dimitrova
- Department of Immunology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Andrew J Burns
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK
| | - Rumen V Kostov
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK
- Departments of Medicine and Pharmacology and Molecular Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Milen I Georgiev
- Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
| |
Collapse
|