1
|
Kofsky JM, Babulic JL, Boddington ME, De León González FV, Capicciotti CJ. Glycosyltransferases as versatile tools to study the biology of glycans. Glycobiology 2023; 33:888-910. [PMID: 37956415 DOI: 10.1093/glycob/cwad092] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023] Open
Abstract
All cells are decorated with complex carbohydrate structures called glycans that serve as ligands for glycan-binding proteins (GBPs) to mediate a wide range of biological processes. Understanding the specific functions of glycans is key to advancing an understanding of human health and disease. However, the lack of convenient and accessible tools to study glycan-based interactions has been a defining challenge in glycobiology. Thus, the development of chemical and biochemical strategies to address these limitations has been a rapidly growing area of research. In this review, we describe the use of glycosyltransferases (GTs) as versatile tools to facilitate a greater understanding of the biological roles of glycans. We highlight key examples of how GTs have streamlined the preparation of well-defined complex glycan structures through chemoenzymatic synthesis, with an emphasis on synthetic strategies allowing for site- and branch-specific display of glyco-epitopes. We also describe how GTs have facilitated expansion of glyco-engineering strategies, on both glycoproteins and cell surfaces. Coupled with advancements in bioorthogonal chemistry, GTs have enabled selective glyco-epitope editing of glycoproteins and cells, selective glycan subclass labeling, and the introduction of novel biomolecule functionalities onto cells, including defined oligosaccharides, antibodies, and other proteins. Collectively, these approaches have contributed great insight into the fundamental biological roles of glycans and are enabling their application in drug development and cellular therapies, leaving the field poised for rapid expansion.
Collapse
Affiliation(s)
- Joshua M Kofsky
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| | - Jonathan L Babulic
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
| | - Marie E Boddington
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
| | | | - Chantelle J Capicciotti
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
- Department of Surgery, Queen's University, 76 Stuart Street, Kingston, ON K7L 2V7, Canada
| |
Collapse
|
2
|
Campbell AC, Tanner JJ, Krause KL. Optimisation of Neuraminidase Expression for Use in Drug Discovery by Using HEK293-6E Cells. Viruses 2021; 13:v13101893. [PMID: 34696326 PMCID: PMC8538103 DOI: 10.3390/v13101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/02/2022] Open
Abstract
Influenza virus is a highly contagious virus that causes significant human mortality and morbidity annually. The most effective drugs for treating influenza are the neuraminidase inhibitors, but resistance to these inhibitors has emerged, and additional drug discovery research on neuraminidase and other targets is needed. Traditional methods of neuraminidase production from embryonated eggs are cumbersome, while insect cell derived protein is less reflective of neuraminidase produced during human infection. Herein we describe a method for producing neuraminidase from a human cell line, HEK293-6E, and demonstrate the method by producing the neuraminidase from the 1918 H1N1 pandemic influenza strain. This method produced high levels of soluble neuraminidase expression (>3000 EU/mL), was enhanced by including a secretion signal from a viral chemokine binding protein, and does not require co-expression of additional proteins. The neuraminidase produced was of sufficient quantity and purity to support high resolution crystal structure determination. The structure solved using this protein conformed to the previously reported structure. Notably the glycosylation at three asparagine residues was superior in quality to that from insect cell derived neuraminidase. This method of production of neuraminidase should prove useful in further studies, such as the characterisation of inhibitor binding.
Collapse
Affiliation(s)
- Ashley C. Campbell
- Department of Biochemistry, University of Otago, 710 Cumberland St., Dunedin 9016, New Zealand;
| | - John J. Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA;
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Kurt L. Krause
- Department of Biochemistry, University of Otago, 710 Cumberland St., Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
- Correspondence:
| |
Collapse
|
3
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
4
|
Wu ZL, Whittaker M, Ertelt JM, Person AD, Kalabokis V. Detecting substrate glycans of fucosyltransferases with fluorophore-conjugated fucose and methods for glycan electrophoresis. Glycobiology 2020; 30:970-980. [PMID: 32248235 PMCID: PMC7724747 DOI: 10.1093/glycob/cwaa030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Like sialylation, fucose usually locates at the nonreducing ends of various glycans on glycoproteins and constitutes important glycan epitopes. Detecting the substrate glycans of fucosyltransferases is important for understanding how these glycan epitopes are regulated in response to different growth conditions and external stimuli. Here we report the detection of these glycans on glycoproteins as well as in their free forms via enzymatic incorporation of fluorophore-conjugated fucose using FUT2, FUT6, FUT7, FUT8 and FUT9. Specifically, we describe the detection of the substrate glycans of these enzymes on fetal bovine fetuin, recombinant H1N1 viral neuraminidase and therapeutic antibodies. The detected glycans include complex and high-mannose N-glycans. By establishing a series of precursors for the synthesis of Lewis X and sialyl Lewis X structures, we not only provide convenient electrophoresis methods for studying glycosylation but also demonstrate the substrate specificities and some kinetic features of these enzymes. Our results support the notion that fucosyltransferases are key targets for regulating the synthesis of Lewis X and sialyl Lewis X structures.
Collapse
Affiliation(s)
- Zhengliang L Wu
- Bio-techne, R&D Systems, Inc., 614 McKinley Place N.E., Minneapolis, MN 55413, USA
| | - Mark Whittaker
- Bio-techne, R&D Systems, Inc., 614 McKinley Place N.E., Minneapolis, MN 55413, USA
| | - James M Ertelt
- Bio-techne, R&D Systems, Inc., 614 McKinley Place N.E., Minneapolis, MN 55413, USA
| | - Anthony D Person
- Bio-techne, R&D Systems, Inc., 614 McKinley Place N.E., Minneapolis, MN 55413, USA
| | - Vassili Kalabokis
- Bio-techne, R&D Systems, Inc., 614 McKinley Place N.E., Minneapolis, MN 55413, USA
| |
Collapse
|
5
|
Bae SJ, Shin MW, Kim RH, Shin D, Son T, Wee HJ, Kim KW. Ninjurin1 Assembles Into a Homomeric Protein Complex Maintained by N-linked Glycosylation. J Cell Biochem 2017; 118:2219-2230. [PMID: 28067406 DOI: 10.1002/jcb.25872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 12/11/2022]
Abstract
Ninjurin1 (Ninj1) is a cell surface protein known as a homophilic adhesion molecule. Previous studies have shown a trans-interaction of Ninj1 between immune cells and endothelial cells; however, little is known about Ninj1 modification and structure in the cis-interaction. We showed that Ninj1 assembles into a homomeric complex via a cis-interaction mediated by the intracellular region and N-glycosylation at Asn60 . We identified cis-interaction between Ninj1 proteins using CFP- and YFP-tagged Ninj1 by Förster resonance energy transfer using a confocal microscope and fluorescence-activated cell sorter. We further observed the Ninj1 homomeric complexes composed of two to six monomeric Ninj1 molecules by a formaldehyde cross-linking assay. Co-immunoprecipitation assays with epitope-tagged truncated Ninj1 suggested that the intracellular region encompassing Leu101 -Ala110 participates in Ninj1 homomer assembly. Ninj1 N-glycosylation was characterized by treatment of tunicamycin and substitution of Asn to Gln or Ala. Fluorescence-activated cell sorting-based Förster resonance energy transfer assays further demonstrated that N-glycosylation is indispensable for the Ninj1 cis-interaction, and a formaldehyde cross-linking assay confirmed that interruption of N-glycosylation by Asn substitution disrupted Ninj1 homomeric complex formation. In silico analysis revealed that Ninj1 is highly conserved in vertebrates and that the conserved sequence contains an N-glycosylation motif and cis-interacting intracellular region, which participate in Ninj1 homomer assembly. Taken together, these data show that Ninj1 assembles into a homomeric protein complex and that N-glycosylation is a prerequisite for Ninj1 homomer assembly. J. Cell. Biochem. 118: 2219-2230, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sung-Jin Bae
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Min Wook Shin
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Ran Hee Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Dongyoon Shin
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Taekwon Son
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hee-Jun Wee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Kyu-Won Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea.,Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, Korea
| |
Collapse
|