1
|
Rao J, Mou X, Mo Y, Bei HP, Wang L, Tang CY, Yiu KH, Yang Z, Zhao X. Gas station in blood vessels: An endothelium mimicking, self-sustainable nitric oxide fueling stent coating for prevention of thrombosis and restenosis. Biomaterials 2023; 302:122311. [PMID: 37677916 DOI: 10.1016/j.biomaterials.2023.122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Stenting is the primary treatment for vascular obstruction-related cardiovascular diseases, but it inevitably causes endothelial injury which may lead to severe thrombosis and restenosis. Maintaining nitric oxide (NO, a vasoactive mediator) production and grafting endothelial glycocalyx such as heparin (Hep) onto the surface of cardiovascular stents could effectively reconstruct the damaged endothelium. However, insufficient endogenous NO donors may impede NO catalytic generation and fail to sustain cardiovascular homeostasis. Here, a dopamine-copper (DA-Cu) network-based coating armed with NO precursor L-arginine (Arg) and Hep (DA-Cu-Arg-Hep) is prepared using an organic solvent-free dipping technique to form a nanometer-thin coating onto the cardiovascular stents. The DA-Cu network adheres tightly to the surface of stents and confers excellent NO catalytic activity in the presence of endogenous NO donors. The immobilized Arg functions as a NO fuel to generate NO via endothelial nitric oxide synthase (eNOS), while Hep works as eNOS booster to increase the level of eNOS to decompose Arg into NO, ensuring a sufficient supply of NO even when endogenous donors are insufficient. The synergistic interaction between Cu and Arg is analogous to a gas station to fuel NO production to compensate for the insufficient endogenous NO donor in vivo. Consequently, it promotes the reconstruction of natural endothelium, inhibits smooth muscle cell (SMC) migration, and suppresses cascading platelet adhesion, preventing stent thrombosis and restenosis. We anticipate that our DA-Cu-Arg-Hep coating will improve the quality of life of cardiovascular patients through improved surgical follow-up, increased safety, and decreased medication, as well as revitalize the stenting industry through durable designs.
Collapse
Affiliation(s)
- Jingdong Rao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Xiaohui Mou
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong 523000, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, Guangdong, China
| | - Yongyi Mo
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Ho-Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Li Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Island, Hong Kong SAR, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Island, Hong Kong SAR, China
| | - Kai-Hang Yiu
- Cardiology Division, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong Island, Hong Kong SAR, China
| | - Zhilu Yang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong 523000, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, Guangdong, China.
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
2
|
Taguchi K, Okudaira K, Matsumoto T, Kobayashi T. Ginkgolide B caused the activation of the Akt/eNOS pathway through the antioxidant effect of SOD1 in the diabetic aorta. Pflugers Arch 2023; 475:453-463. [PMID: 36715760 DOI: 10.1007/s00424-023-02790-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
Ginkgo biloba extract (GBE) helps lower cardiovascular disease risk. Diabetes mellitus (DM)-induced endothelial dysfunction is a critical and initiating factor in the beginning of diabetic vascular complications. It was reported that GBE causes an endothelial-dependent relaxation. This study was designed to figure out the molecular basis on which GBE protects from endothelial dysfunction in diabetes because the underlying mechanisms are unclear. Studies were performed in a normal control group and streptozotocin/nicotinamide-induced DM group. In aortas, notably diabetic aortas, GBE, and ginkgolide B (GB), a constituent of GBE, produced a dose-dependent relaxation. The relaxation by GB was abolished by prior incubation with L-NNA (an endothelial nitric oxide synthase (NOS) inhibitor), LY294002 (a phosphoinositide 3-kinase (PI3K) inhibitor), and Akt inhibitor, confirming the essential role of PI3K/Akt/eNOS signaling pathway. We also demonstrated that GB induced the phosphorylation of Akt and eNOS in aortas. The superoxide dismutase1 (SOD1) expression level decreased in DM aortas, but GB stimulation increased SOD activity and SOD1 expression in DM aortas. Our novel findings suggest that in DM aortas, endothelial-dependent relaxation induced by GB was mediated by activation of SOD1, resulting in activation of the Akt/eNOS signaling pathway.
Collapse
Affiliation(s)
- Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Kanami Okudaira
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
3
|
Chen JF, Liu F, Qiao MM, Shu HZ, Li XC, Peng C, Xiong L. Vasorelaxant effect of curcubisabolanin A isolated from Curcuma longa through the PI3K/Akt/eNOS signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115332. [PMID: 35525529 DOI: 10.1016/j.jep.2022.115332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcuma longa L. (Zingiberaceae) is a known blood-activating and stasis-removing traditional Chinese medicine and has relevant pharmacological properties. The rhizomes of C. longa have been used for the treatment of cardiovascular disease (CVD) in China. Previous studies have shown that sesquiterpenoids from C. longa have significant vasorelaxant effects, which are closely associated with the prevention and treatment of CVD. AIM OF THE STUDY To explore the sesquiterpenoids with vasorelaxant effects from C. longa and investigate the underlying mechanisms. MATERIALS AND METHODS The compound was isolated from C. longa by multiple chromatography technologies. Its structure was determined by extensive spectroscopic analyses, nuclear magnetic resonance (NMR) data calculations, electronic circular dichroism (ECD) data calculations, and optical rotation (OR) data calculations. The vasorelaxant effect of the isolated compound was evaluated by KCl- or phenylephrine (PHE)-inducing contraction of the rat thoracic aortic rings. Endothelial removal and L-NAME pretreatment experiments were used to verify the endothelium-dependent vasorelaxant effect of the isolated compound in rat thoracic aortic rings. NO production was monitored in human umbilical vein endothelial cells (HUVECs). Western blot was carried out in HUVECs to elucidate the potential mechanisms. RESULTS A new bisabolane-type sesquiterpenoid, curcubisabolanin A [(+)-(1S,7S,9E)-bisabola-2(3),4(15),9(10)-trien-11-ol], was isolated from the rhizomes of C. longa. curcubisabolanin A exhibited endothelium-dependent relaxation on rat thoracic aortic rings, while pre-treatment of intact aortic rings with an eNOS inhibitor (L-NAME) attenuated the vasorelaxant response of curcubisabolanin A. In addition, curcubisabolanin A induced intracellular NO production and significantly increased the levels of phosphorylated PI3K (p-PI3K), phosphorylated Akt (p-Akt), and phosphorylated eNOS (p-eNOS) in HUVECs. LY294002 (a blocker of PI3K) and MK-2206 (a highly selective inhibitor of Akt) significantly decreased these effects of curcubisabolanin A. CONCLUSIONS These findings demonstrated that the vasorelaxant effect of curcubisabolanin A was partially endothelium-dependent and was related to regulation of NO production in vascular endothelial cells through the PI3K/Akt/eNOS signaling pathway.
Collapse
Affiliation(s)
- Jin-Feng Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ming-Ming Qiao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Zhen Shu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao-Cui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
4
|
Network Pharmacology Prediction and Pharmacological Verification Mechanism of Yeju Jiangya Decoction on Hypertension. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5579129. [PMID: 34055010 PMCID: PMC8131144 DOI: 10.1155/2021/5579129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
Background Yeju Jiangya decoction (CIF) is an herbal formula from traditional Chinese medicine (TCM) for the treatment of hypertension. Materials and Methods Based on the analysis of network pharmacology, combined with in animal experiments, the network pharmacology was used to explore the potential proteins and mechanisms of CIF against hypertension. The bioactive compounds of CIF were screened by using the platform, and the targets of hypertension and CIF were collected. Then, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction network (PPI) core targets were carried out, and the useful proteins were found by molecular docking technology. Finally, we used N-nitro-L-arginine (L-NNA) induced hypertension model rats to confirm the effect and mechanism of CIF on hypertension. Results 14 bioactive compounds of CIF passed the virtual screening criteria, and 178 overlapping targets were identified as core targets of CIF against hypertension. The CIF-related target network with 178 nodes and 344 edges is constructed. The topological results show that quercetin and luteolin are the key components in the network. The key targets NOS3 (nitric oxide synthase 3) and NOS2 (nitric oxide synthase 2) were screened by the protein-protein interaction network. The analysis of target protein pathway enrichment showed that the accumulation pathway is related to the vascular structure of CIF regulation of hypertension. Further verification based on molecular docking results showed that NOS3 had the good binding ability with quercetin and luteolin. On the other hand, NOS3 has an important relationship with the composition of blood vessels. Furthermore, the animal experiment indicated that after the L-NNA-induced hypertension rat model was established, CIF intervention was given by gavage for 3 weeks, and it can decrease serum concentrations of endothelin-1 (ET-1) and thromboxane B2 (TXB2), increase the expression of nitric oxide (NO) and prostacyclin 2 (PGI2), and improve renal, cardiac, and aortic lesions. At the same time, it can reduce blood pressure and shorten vertigo time. Western blot (WB) and immunohistochemistry (IHC) analyses indicated that CIF may downregulate the expression of NOS3, guanylyl cyclase-alpha 1 (GC-α1), guanylyl cyclase-alpha 2 (GC-α2), and protein kinase CGMP-dependent 1 (PRKG1). These results suggest that CIF may play an antihypertensive role by inhibiting the activation of the NOS3/PRKG1 pathway. Conclusions The results of this study indicate that CIF has the ability to improve target organs, protect endothelial function, and reduce blood pressure and that CIF might be a potential therapeutic drug for the prevention of hypertension. It provides new insight into hypertension and the potential biological basis and mechanism for CIF clinical research.
Collapse
|
5
|
The pleiotropic effects of antithrombotic drugs in the metabolic-cardiovascular-neurodegenerative disease continuum: impact beyond reduced clotting. Clin Sci (Lond) 2021; 135:1015-1051. [PMID: 33881143 DOI: 10.1042/cs20201445] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
Antithrombotic drugs are widely used for primary and secondary prevention, as well as treatment of many cardiovascular disorders. Over the past few decades, major advances in the pharmacology of these agents have been made with the introduction of new drug classes as novel therapeutic options. Accumulating evidence indicates that the beneficial outcomes of some of these antithrombotic agents are not solely related to their ability to reduce thrombosis. Here, we review the evidence supporting established and potential pleiotropic effects of four novel classes of antithrombotic drugs, adenosine diphosphate (ADP) P2Y12-receptor antagonists, Glycoprotein IIb/IIIa receptor Inhibitors, and Direct Oral Anticoagulants (DOACs), which include Direct Factor Xa (FXa) and Direct Thrombin Inhibitors. Specifically, we discuss the molecular evidence supporting such pleiotropic effects in the context of cardiovascular disease (CVD) including endothelial dysfunction (ED), atherosclerosis, cardiac injury, stroke, and arrhythmia. Importantly, we highlight the role of DOACs in mitigating metabolic dysfunction-associated cardiovascular derangements. We also postulate that DOACs modulate perivascular adipose tissue inflammation and thus, may reverse cardiovascular dysfunction early in the course of the metabolic syndrome. In this regard, we argue that some antithrombotic agents can reverse the neurovascular damage in Alzheimer's and Parkinson's brain and following traumatic brain injury (TBI). Overall, we attempt to provide an up-to-date comprehensive review of the less-recognized, beneficial molecular aspects of antithrombotic therapy beyond reduced thrombus formation. We also make a solid argument for the need of further mechanistic analysis of the pleiotropic effects of antithrombotic drugs in the future.
Collapse
|
6
|
Chen R, Chen T, Wang T, Dai X, Zhang S, Jiang D, Meng K, Wang Y, Geng T, Xu J, Zhou K, Wang Y. Tongmai Yangxin pill reduces myocardial No-reflow via endothelium-dependent NO-cGMP signaling by activation of the cAMP/PKA pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113462. [PMID: 33058924 DOI: 10.1016/j.jep.2020.113462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Tongmai Yangxin pill (TMYX) is derived from the Zhigancao decoction recorded in Shang han lun by Zhang Zhongjing during the Han dynasty. TMYX is used for the clinical treatment of chest pain, heartache, and qi-yin-deficiency coronary heart disease. Previous studies have confirmed that TMYX can improve vascular endothelial function in patients with coronary heart disease by upregulating nitric oxide activity and then regulating vascular tension. Whether TMYX can further improve myocardial NR by upregulating NO activity and then dilating blood vessels remains unclear. AIM OF THE STUDY This study aimed to reveal whether TMYX can further improve myocardial NR by upregulating NO activity and then dilating blood vessels. The underlying cAMP/PKA and NO-cGMP signaling pathway-dependent mechanism is also explored. MATERIALS AND METHODS The left anterior descending coronary arteries of healthy adult male SD rats were ligated to establish the NR model. TMYX (4.0 g/kg) was orally administered throughout the experiment. Cardiac function was measured through echocardiography. Thioflavin S, Evans Blue, and TTC staining were used to evaluate the NR and ischemic areas. Pathological changes in the myocardium were assessed by hematoxylin-eosin staining. An automated biochemical analyzer and kit were used to detect the activities of myocardial enzymes and myocardial oxidants, including CK, CK-MB, LDH, reactive oxygen species, superoxide dismutase, malonaldehyde, and NO. The expression levels of genes and proteins related to the cAMP/PKA and NO/cGMP signaling pathways were detected via real-time fluorescence quantitative PCR and Western blot analysis, respectively. A microvascular tension sensor was used to detect coronary artery diastolic function in vitro. RESULTS TMYX elevated the EF, FS, LVOT peak, LVPWd and LVPWs values, decreased the LVIDd, LVIDs, LV-mass, IVSd, and LV Vols values, demonstrating cardio-protective effects, and reduced the NR and ischemic areas. Pathological staining showed that TMYX could significantly reduce inflammatory cell number and interstitial edema. The activities of CK, LDH, and MDA were reduced, NO activity was increased, and oxidative stress was suppressed after treatment with TMYX. TMYX not only enhanced the expression of Gs-α, AC, PKA, and eNOS but also increased the expression of sGC and PKG. Furthermore, TMYX treatment significantly decreased ROCK expression. We further showed that TMYX (25-200 mg/mL) relaxed isolated coronary microvessels. CONCLUSIONS TMYX attenuates myocardial NR after ischemia and reperfusion by activating the cAMP/PKA and NO/cGMP signaling pathways, further upregulating NO activity and relaxing coronary microvessels.
Collapse
Affiliation(s)
- Rui Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Ting Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Tianqi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Xiangdong Dai
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Shuying Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Di Jiang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Ke Meng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Yanyan Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Tong Geng
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd, Research Institute Branch, Tianjin, 300457, China.
| | - Jinpeng Xu
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd, Drug Marketing Co., Ltd, Tianjin, 300193, China.
| | - Kun Zhou
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
7
|
Huang Q, Zhang F, Chen S, Dong Z, Liu W, Zhou X. Clinical characteristics in patients with coronary slow flow phenomenon: A retrospective study. Medicine (Baltimore) 2021; 100:e24643. [PMID: 33578588 PMCID: PMC10545414 DOI: 10.1097/md.0000000000024643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/23/2020] [Accepted: 01/15/2021] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Coronary slow flow phenomenon (CSFP) is a coronary artery disease in which coronary angiography shows no obvious stenosis, but there is a delay in blood flow perfusion. The etiopathogenic mechanisms of CSFP are still unclear. The aim of the present study was to investigate the role of clinical characteristics in patients with CSFP, and to provide a reference for exploring the potential mechanisms of CSFP. Patients with angiographically normal epicardial arteries were enrolled (145 patients with CSFP and 145 normal controls). Collected clinical information and laboratory indexes, which measured by peripheral venous blood samples before coronary angiography. Logistic regression analysis was performed for statistical analysis. The present study found 19 clinical and laboratory indexes with statistical differences between the two groups in univariate analysis. Multivariate analysis showed that monocyte count, haemoglobin, serum creatinine and globulin were independent predictors of CSFP. Moreover, the monocyte count, haemoglobin, creatinine and globulin levels were significantly higher in the CSFP patients than the controls, with positive associations between these parameters and the extent of CSFP. In addition, ROC analysis showed the diagnostic value of the above indexes for CSFP.
Collapse
Affiliation(s)
- Qiaojuan Huang
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University
| | - Fan Zhang
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Siyu Chen
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University
| | - Zhaoying Dong
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University
| | - Weiwei Liu
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University
| | - Xiaoli Zhou
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University
| |
Collapse
|
8
|
Chen R, Chen T, Wang T, Dai X, Meng K, Zhang S, Jiang D, Wang Y, Zhou K, Geng T, Xu J, Wang Y. Tongmai Yangxin pill reduces myocardial no-reflow by regulating apoptosis and activating PI3K/Akt/eNOS pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113069. [PMID: 32619593 DOI: 10.1016/j.jep.2020.113069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/15/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tongmai Yangxin pill (TMYX) is derived from the Zhigancao decoction recorded in Shang han lun by Zhang Zhongjing during the Han dynasty and was further improved by Professor Ruan Shiyi, a cardiovascular expert at Tianjin University of Traditional Chinese Medicine. TMYX is used for the clinical treatment of chest pain, heartache, and qi-yin-deficiency coronary heart disease and can improve vascular endothelial function in patients with angina pectoris or coronary heart disease by up-regulating nitric oxide activity and then regulating vascular tension. Whether TMYX can further improve myocardial no-reflow by up-regulating NO activity and then dilating blood vessels remains unclear. AIM OF THE STUDY This study aimed to reveal whether TMYX can further improve myocardial NR by up-regulating NO activity and then dilating blood vessels. The mechanism underlying PI3K/Akt/eNOS pathway activation and apoptosis regulation is also explored. MATERIALS AND METHODS The left anterior descending coronary arteries of healthy adult male SD rats were ligated to establish a NR model. The rats were assigned to 14 groups: control, sham, NR, TMYX (4.0 g/kg), sodium nitroprusside (SNP), Tongxinluo capsule (TXL), PI3K blocker (LY), TMYX + LY, SNP + LY, TXL + LY, eNOS blocker (L-NAME), TMYX + L-NAME, SNP + L-NAME, and TXL + L-NAME groups. Cardiac function was measured through echocardiography. Thioflavin S, Evans Blue, and TTC staining were adopted to evaluate NR and ischemic areas. Cell inflammation degree and edema were assessed by hematoxylin-eosin staining. Automated biochemical analyzer and kit were used to detect the activities of myocardial oxidants, including reactive oxygen species, super oxide dismutase, malonaldehyde, and NO. The expression levels of genes and proteins in the PI3K/Akt/eNOS signaling pathway and apoptosis were detected via real-time fluorescence quantitative PCR and Western blot analysis, respectively. A microvascular tension sensor was adopted to detect coronary artery diastolic function in vitro. RESULTS TMYX reduced NR and ischemic areas; suppressed LV-mass; enhanced EF, FS, LVOT peak, and LVSV; and improved cardiac structure and function. Moreover, it decreased creatine kinase (CK), CK-MB, and lactic dehydrogenase activities. TMYX increased NO and super oxide dismutase activities; inhibited malonaldehyde activity; reduced muscle fiber swelling and inflammatory cell infiltration; and improved vasodilation in vitro. In the NR myocardium, TMYX stimulated myocardial PI3K activities and PI3K (Tyr458) phosphorylation and enhanced Akt activities and Akt phosphorylation at Tyr315. TMYX increased the activities of eNOS and the phosphorylation of eNOS at Ser1177 in the NR myocardium and attenuated cardiomyocyte apoptosis by increasing the expression of Bcl-2 and decreasing that of caspase-3 and Bax. All these effects of TMYX were abolished by the specific inhibitors of PI3K (LY) and eNOS (L-NAME). CONCLUSIONS TMYX attenuates myocardial NR after ischemia and reperfusion by activating the PI3K/Akt/eNOS pathway and regulating apoptosis, further up-regulating NO activity and relaxing coronary microvessels.
Collapse
Affiliation(s)
- Rui Chen
- Institute of traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Ting Chen
- Institute of traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Tianqi Wang
- Institute of traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Xiangdong Dai
- Institute of traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Ke Meng
- Institute of traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Shuying Zhang
- Institute of traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Di Jiang
- Institute of traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Yanyan Wang
- Institute of traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Kun Zhou
- Institute of traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Tong Geng
- Tianjin Zhongxin Pharmaceutical Group Co. Ltd. Research Institute Branch, Tianjin, 300457, China.
| | - Jinpeng Xu
- Tianjin Zhongxin Pharmaceutical Group Co. Ltd, Drug Marketing Co., Ltd, Tianjin, 300193, China.
| | - Yi Wang
- Institute of traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
9
|
Zhang Q, Lyu W, Yu M, Niu Y. Sulfur dioxide induces vascular relaxation through PI3K/Akt/eNOS and NO/cGMP signaling pathways in rats. Hum Exp Toxicol 2020; 39:1108-1117. [PMID: 32153200 DOI: 10.1177/0960327120911428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sulfur dioxide (SO2) is a common exogenous atmospheric pollutant. Studies have shown that SO2 can cause vasodilation as a gas signaling molecule, but the specific signaling pathways are not well understood. This study aimed to explore the underlying mechanism behind the effects of SO2 on vasodilation of isolated rat aorta. The results showed that when the dose of SO2 was 30 μM, the vasodilation of endothelium-intact rings was partially suppressed by LY294002 and NG-nitro-l-arginine methyl ester, and the protein levels of phosphoinositide 3-kinase (PI3K), p-Akt, and p-endothelial nitric oxide synthase (p-eNOS) were significantly increased. When the dose of SO2 was 300 μM or 1500 μM, the vasodilation of endothelium-denuded rings did not change after application of the inhibitor, but the protein levels of PI3K, p-Akt, and p-eNOS were significantly decreased, and the activity of NOS and the level of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) were significantly increased. We speculate that the mechanism of SO2-induced vasodilatation likely involved the endothelial PI3K/Akt/eNOS and NO/cGMP signal pathways. In addition, at the concentration of 1500 μM, SO2 markedly increased the level of caspase-3 and caspase-9. The results suggest that high concentrations of SO2 may cause damage to blood vessels. This study will help to further inform the etiologies of SO2-related cardiovascular disease.
Collapse
Affiliation(s)
- Q Zhang
- College of Environment and Resource, Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - W Lyu
- College of Environment and Resource, Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - M Yu
- Institute of NBC Defence, Beijing, China
| | - Y Niu
- College of Environment and Resource, Institute of Environmental Science, Shanxi University, Taiyuan, China
| |
Collapse
|
10
|
Aires RS, Vieira LD, Freitas ACN, de Lima ME, Lima NKS, Farias JS, Paixão AD. NO mediates the effect of the synthetic natriuretic peptide NPCdc on kidney and aorta in nephrectomised rats. Eur J Pharmacol 2020; 866:172780. [PMID: 31734277 DOI: 10.1016/j.ejphar.2019.172780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/18/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022]
Abstract
NPCdc is a synthetic natriuretic peptide that was originally derived from another peptide, the NP2_Casca, isolated from Crotalus durissus cascavella venom. These molecules share 70% structural homology with natriuretic peptides obtained from different species, including humans. NP2_Casca induces vasorelaxation and increases nitric oxide levels independently of natriuretic peptide receptors A and B. This study aimed to investigate whether NPCdc-induced hypotension in control rats and rats with a reduced kidney mass is associated with effects on the glomerular filtration rate, NADPH oxidase activity and components downstream of natriuretic peptide receptor C (NPR-C). Anaesthetized Wistar rats that were subjected to a sham operation and 5/6 nephrectomy (5/6Nx) were infused with saline (vehicle) or NPCdc (7.5 μg/kg/min) for 70 min. The NPCdc treatment decreased the mean arterial pressure and NADPH oxidase activity while simultaneously increasing the glomerular filtration rate, fractional Na+ excretion and nitric oxide level. After 70 min, the levels of p-AKT Ser-473, p-eNOS Ser-1177, p-nNOS Ser-1417 and p-iNOSTyr-151 were not affected. However, p-ERK1/2 Thr-202/Tyr-204 levels were altered. Thus, nitric oxide and components of NPR-C signalling mediate the effects of NPCdc. The results suggest a potential therapeutic application of this peptide for cardiorenal syndrome.
Collapse
Affiliation(s)
- Regina S Aires
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Leucio D Vieira
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Ana C N Freitas
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria E de Lima
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Natalia K S Lima
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Juliane S Farias
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Ana D Paixão
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil.
| |
Collapse
|
11
|
Curcumane C and (±)-curcumane D, an unusual seco-cadinane sesquiterpenoid and a pair of unusual nor-bisabolane enantiomers with significant vasorelaxant activity from Curcuma longa. Bioorg Chem 2019; 92:103275. [PMID: 31539747 DOI: 10.1016/j.bioorg.2019.103275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/25/2019] [Accepted: 09/10/2019] [Indexed: 01/19/2023]
Abstract
A new seco-cadinane sesquiterpenoid (curcumane C, 1) and a pair of new nor-bisabolene enantiomers [(+)- and (-)-curcumane D, 2a and 2b] were isolated from C. longa. Compound 1 possesses an unusual 4,5-seco-cadinane skeleton with a tetrahydrophthalide moiety, while 2a and 2b contain an unusual 15-nor-bisabolene skeleton with a chromone core. All compounds exhibited significant vasorelaxant effects against KCl-induced contraction of rat aortic rings. Compound 1 also exhibited a vasorelaxant effect against phenylephrine-induced contraction of rat aortic rings. Meanwhile, compound 1 showed a stronger vasorelaxant effect in endothelium-intact rat aortic rings compared with endothelium-denuded rat aortic rings, indicating that vasodilation by 1 involved both endothelium-dependent and endothelium-independent pathways. Furthermore, compound 1 increased the NO content in human umbilical vein endothelial cells and its vasorelaxant effect could be attenuated by treatment with L-NAME, an endothelium NO synthase inhibitor. Thus, the underlying vasodilatory mechanisms of 1 may be mediated via abrogation of extracellular Ca2+ influx and regulation of NO release in vascular endothelial cells.
Collapse
|
12
|
Lee YS, Kim H, Kim J, Seol GH, Lee KW. Lancemaside A, a major triterpene saponin of Codonopsis lanceolata enhances regulation of nitric oxide synthesis via eNOS activation. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:110. [PMID: 31126276 PMCID: PMC6534936 DOI: 10.1186/s12906-019-2516-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/30/2019] [Indexed: 02/08/2023]
Abstract
Background Many studies on the effect of saponin-rich Codonopsis lanceolata as a bioactive source for improving physical health have been performed. C. lanceolata contains triterpenoid saponins, including lancemasides. These saponins are known to be particularly involved in the regulation of blood pressure or hypertension. This study investigated whether lancemaside A (LA), a major triterpenoid saponin from C. lanceolata, regulates nitric oxide (NO) production via the activation of endothelial NO synthase (eNOS) in human umbilical vein endothelial cells. Methods Upon separation with petroleum ether, ethyl acetate, and n-butanol, LA was found to be abundant in the n-butanol-soluble portion. For further purification of LA, HPLC was performed to collect fraction, and LA was identified using analysis of LC/MSMS and 13C-NMR values. In in vitro, the effects of LA on NO release mechanism in HUVECs were investigated by Griess assay, quantitative real-time reverse-transcription PCR, and Western blotting. Results Our results showed that NO production was efficiently improved by treatment with LA in a dose-dependent manner. In addition, the LA treatment resulted in extensive recovery of the NO production suppressed by the eNOS inhibitor, L-NAME, compared with that in the control group. Additionally, the level of eNOS mRNA was increased by this treatment in a dose-dependent manner. These results suggested that LA is an inducer of NO synthesis via eNOS mRNA expression. Also, the study indicated that LA is involved in activating the PI3K/Akt/eNOS signaling pathway. Conclusion These results suggested that LA is an inducer of NO synthesis via eNOS mRNA expression. Also, the study indicated that LA is involved in activating the PI3K/Akt/eNOS signaling pathway. These findings suggest the value of using LA as a component of functional foods and natural pharmaceuticals. Electronic supplementary material The online version of this article (10.1186/s12906-019-2516-6) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Zhang L, Zhang Y, Yu X, Xu H, Sui D, Zhao X. Alprostadil attenuates myocardial ischemia/reperfusion injury by promoting antioxidant activity and eNOS activation in rats. Acta Cir Bras 2019; 33:1067-1077. [PMID: 30624512 DOI: 10.1590/s0102-865020180120000004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/17/2018] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To investigate the effect of alprostadil on myocardial ischemia/reperfusion (I/R) in rats. METHODS Rats were subjected to myocardial ischemia for 30 min followed by 24h reperfusion. Alprostadil (4 or 8 μg/kg) was intravenously administered at the time of reperfusion and myocardial infarct size, levels of troponin T, and the activity of creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH) in the serum were measured. Antioxidative parameters, nitric oxide (NO) content and phosphorylated endothelial nitric oxide synthase 3 (p-eNOS) expression in the left ventricles were also measured. Histopathological examinations of the left ventricles were also performed. RESULTS Alprostadil treatment significantly reduced myocardial infarct size, serum troponin T levels, and CK-MB and LDH activity (P<0.05). Furthermore, treatment with alprostadil significantly decreased malondialdehyde (MDA) content (P<0.05) and markedly reduced myonecrosis, edema and infiltration of inflammatory cells. Superoxide dismutase and catalase activities (P<0.05), NO level (P<0.01) and p-eNOS (P<0.05) were significantly increased in rats treated with alprostadil compared with control rats. CONCLUSION These results indicate that alprostadil protects against myocardial I/R injury and that these protective effects are achieved, at least in part, via the promotion of antioxidant activity and activation of eNOS.
Collapse
Affiliation(s)
- Liping Zhang
- MD, Department of Cardiovascular Medicine, First Hospital, Jilin University, Changchun, Jilin, P.R. China. Acquisition, analysis and interpretation of data; manuscript writing
| | - Ying Zhang
- Master, Pharmacology, College of Pharmacy, Jilin University, Changchun, Jilin, P.R. China. Acquisition of data
| | - Xiaofeng Yu
- MD, Pharmacology, College of Pharmacy, Jilin University, Changchun, Jilin, P.R. China. Acquisition of data, technical procedures, histopathological examinations
| | - Huali Xu
- MD, Pharmacology, College of Pharmacy, Jilin University, Changchun, Jilin, P.R. China. Analysis and interpretation of data
| | - Dayuan Sui
- MD, Pharmacology, College of Pharmacy, Jilin University, Changchun, Jilin, P.R. China. Conception and design of the study, manuscript writing
| | - Xuezhong Zhao
- MD, Department of Cardiovascular Medicine, First Hospital, Jilin University, Changchun, Jilin, P.R. China. Conception and design of the study, critical revision, final approval
| |
Collapse
|
14
|
Li JB, Wang HY, Yao Y, Sun QF, Liu ZH, Liu SQ, Zhuang JL, Wang YP, Liu HY. Overexpression of microRNA-138 alleviates human coronary artery endothelial cell injury and inflammatory response by inhibiting the PI3K/Akt/eNOS pathway. J Cell Mol Med 2017; 21:1482-1491. [PMID: 28371277 PMCID: PMC5542903 DOI: 10.1111/jcmm.13074] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/29/2016] [Indexed: 12/24/2022] Open
Abstract
This study aimed to investigate the role of miR‐138 in human coronary artery endothelial cell (HCAEC) injury and inflammatory response and the involvement of the PI3K/Akt/eNOS signalling pathway. Oxidized low‐density lipoprotein (OX‐LDL)‐induced HCAEC injury models were established and assigned to blank, miR‐138 mimic, miR‐138 inhibitor, LY294002 (an inhibitor of the PI3K/Akt/eNOS pathway), miR‐138 inhibitor + LY294002 and negative control (NC) groups. qRT‐PCR and Western blotting were performed to detect the miR‐138, PI3K, Akt and eNOS levels and the protein expressions of PI3K, Akt, eNOS, p‐Akt, p‐eNOS, Bcl‐2, Bax and caspase‐3. ELISAs were employed to measure the expressions of TNF‐α, IL‐4, IL‐6, IL‐8, IL‐10 and nitric oxide (NO) and the activities of lactate dehydrogenase (LDH) and eNOS. MTT and flow cytometry were performed to assess the proliferation and apoptosis of HCAECs. Compared to the blank group, PI3K, Akt and eNOS were down‐regulated in the miR‐138 mimic and LY294002 groups but were up‐regulated in the miR‐138 inhibitor group. The miR‐138 mimic and LY294002 groups showed decreased concentrations of TNF‐α, IL‐6, IL‐8 and NO and reduced activities of LDH and eNOS, while opposite trends were observed in the miR‐138 inhibitor group. The concentrations of IL‐4 and IL‐10 increased in the miR‐138 mimic and LY294002 groups but decreased in the miR‐138 inhibitor group. The miR‐138 mimic and LY294002 groups had significantly decreased cell proliferation and increased cell apoptosis compared to the blank group. These findings indicate that up‐regulation of miR‐138 alleviates HCAEC injury and inflammatory response by inhibiting the PI3K/Akt/eNOS signalling pathway.
Collapse
Affiliation(s)
- Jing-Bo Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hai-Yang Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ye Yao
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qing-Feng Sun
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zong-Hong Liu
- Department of Cardiac Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Si-Qi Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun-Li Zhuang
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yun-Peng Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong-Yu Liu
- Department of Cardiac Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|