1
|
Viering B, Balogh H, Cox CF, Kirpekar OK, Akers AL, Federico VA, Valenzano GZ, Stempel R, Pickett HL, Lundin PM, Blackledge MS, Miller HB. Loratadine Combats Methicillin-Resistant Staphylococcus aureus by Modulating Virulence, Antibiotic Resistance, and Biofilm Genes. ACS Infect Dis 2024; 10:232-250. [PMID: 38153409 PMCID: PMC10788911 DOI: 10.1021/acsinfecdis.3c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has evolved to become resistant to multiple classes of antibiotics. New antibiotics are costly to develop and deploy, and they have a limited effective lifespan. Antibiotic adjuvants are molecules that potentiate existing antibiotics through nontoxic mechanisms. We previously reported that loratadine, the active ingredient in Claritin, potentiates multiple cell-wall active antibiotics in vitro and disrupts biofilm formation through a hypothesized inhibition of the master regulatory kinase Stk1. Loratadine and oxacillin combined repressed the expression of key antibiotic resistance genes in the bla and mec operons. We hypothesized that additional genes involved in antibiotic resistance, biofilm formation, and other cellular pathways would be modulated when looking transcriptome-wide. To test this, we used RNA-seq to quantify transcript levels and found significant effects in gene expression, including genes controlling virulence, antibiotic resistance, metabolism, transcription (core RNA polymerase subunits and sigma factors), and translation (a plethora of genes encoding ribosomal proteins and elongation factor Tu). We further demonstrated the impacts of these transcriptional effects by investigating loratadine treatment on intracellular ATP levels, persister formation, and biofilm formation and morphology. Loratadine minimized biofilm formation in vitro and enhanced the survival of infected Caenorhabditis elegans. These pleiotropic effects and their demonstrated outcomes on MRSA virulence and survival phenotypes position loratadine as an attractive anti-infective against MRSA.
Collapse
Affiliation(s)
- Brianna
L. Viering
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Halie Balogh
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Chloe F. Cox
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Owee K. Kirpekar
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - A. Luke Akers
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Victoria A. Federico
- Department
of Biology, High Point University, High Point, North Carolina 27268, United States
| | - Gabriel Z. Valenzano
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Robin Stempel
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Hannah L. Pickett
- Department
of Biology, High Point University, High Point, North Carolina 27268, United States
| | - Pamela M. Lundin
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Meghan S. Blackledge
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Heather B. Miller
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| |
Collapse
|
2
|
Niu K, Meng Y, Liu M, Ma Z, Lin H, Zhou H, Fan H. Phosphorylation of GntR reduces Streptococcus suis oxidative stress resistance and virulence by inhibiting NADH oxidase transcription. PLoS Pathog 2023; 19:e1011227. [PMID: 36913374 PMCID: PMC10010549 DOI: 10.1371/journal.ppat.1011227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
GntR transcription factor of Streptococcus suis serotype 2 (SS2) is a potential substrate protein of STK, but the regulation mechanisms of GntR phosphorylation are still unclear. This study confirmed that STK phosphorylated GntR in vivo, and in vitro phosphorylation experiments showed that STK phosphorylated GntR at Ser-41. The phosphomimetic strain (GntR-S41E) had significantly reduced lethality in mice and reduced bacterial load in the blood, lung, liver, spleen, and brain of infected mice compared to wild-type (WT) SS2. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) experiments demonstrated that the promoter of nox was bound by GntR. The phosphomimetic protein GntR-S41E cannot bind to the promoter of nox, and the nox transcription levels were significantly reduced in the GntR-S41E mutant compared to WT SS2. The virulence in mice and the ability to resist oxidative stress of the GntR-S41E strain were restored by complementing transcript levels of nox. NOX is an NADH oxidase that catalyzes the oxidation of NADH to NAD+ with the reduction of oxygen to water. We found that NADH is likely accumulated under oxidative stress in the GntR-S41E strain, and higher NADH levels resulted in increased amplified ROS killing. In total, we report GntR phosphorylation could inhibit the transcription of nox, which impaired the ability of SS2 to resist oxidative stress and virulence.
Collapse
Affiliation(s)
- Kai Niu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mingxing Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Regulation of Staphylococcal Capsule by SarZ is SigA-Dependent. J Bacteriol 2022; 204:e0015222. [PMID: 35862799 PMCID: PMC9380528 DOI: 10.1128/jb.00152-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Production of capsular polysaccharides in Staphylococcus aureus is transcriptionally regulated by a control region of the cap operon that consists of SigA- and SigB-dependent promoters. A large number of regulators have been shown to affect cap gene expression. However, regulation of capsule is only partially understood. Here we found that SarZ was another regulator that activated the cap genes through the SigA-dependent promoter. Gel electrophoresis mobility shift experiments revealed that SarZ is bound to a broad region of the cap promoter including the SigA-dependent promoter but mainly the downstream region. We demonstrated that activation of cap expression by SarZ was independent of MgrA, which also activated capsule through the SigA-dependent promoter. Our results further showed that oxidative stress with hydrogen peroxide (H2O2) treatments enhanced SarZ activation of cap expression, indicating that SarZ is able to sense oxidative stress to regulate capsule production. IMPORTANCE Expression of virulence genes in Staphylococcus aureus is affected by environmental cues and is regulated by a surprisingly large number of regulators. Much is still unknown about how virulence factors are regulated by environment cues at the molecular level. Capsule is an antiphagocytic virulence factor that is highly regulated. In this study, we found SarZ was an activator of capsule and that the regulation of capsule by SarZ was affected by oxidative stress. These results provide an example of how a virulence factor could be regulated in response to an environmental cue. As the host oxidative defense system plays an important role against S. aureus, this study contributes to a better understanding of virulence gene regulation and staphylococcal pathogenesis.
Collapse
|
4
|
Viering B, Cunningham T, King A, Blackledge MS, Miller HB. Brominated Carbazole with Antibiotic Adjuvant Activity Displays Pleiotropic Effects in MRSA's Transcriptome. ACS Chem Biol 2022; 17:1239-1248. [PMID: 35467845 PMCID: PMC9498981 DOI: 10.1021/acschembio.2c00168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major threat to human health, as the US mortality rate outweighs those from HIV, tuberculosis, and viral hepatitis combined. In the wake of the COVID-19 pandemic, antibiotic-resistant bacterial infections acquired during hospital stays have increased. Antibiotic adjuvants are a key strategy to combat these bacteria. We have evaluated several small molecule antibiotic adjuvants that have strong potentiation with β-lactam antibiotics and are likely inhibiting a master regulatory kinase, Stk1. Here, we investigated how the lead adjuvant (compound 8) exerts its effects in a more comprehensive manner. We hypothesized that the expression levels of key resistance genes would decrease once cotreated with oxacillin and the adjuvant. Furthermore, bioinformatic analyses would reveal biochemical pathways enriched in differentially expressed genes. RNA-seq analysis showed 176 and 233 genes significantly up- and downregulated, respectively, in response to cotreatment. Gene ontology categories and biochemical pathways that were significantly enriched with downregulated genes involved carbohydrate utilization, such as the citrate cycle and the phosphotransferase system. One of the most populated pathways was S. aureus infection. Results from an interaction network constructed with affected gene products supported the hypothesis that Stk1 is a target of compound 8. This study revealed a dramatic impact of our lead adjuvant on the transcriptome that is consistent with a pleiotropic effect due to Stk1 inhibition. These results point to this antibiotic adjuvant having potential broad therapeutic use in combatting MRSA.
Collapse
Affiliation(s)
- Brianna Viering
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Taylor Cunningham
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Ashley King
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Meghan S Blackledge
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Heather B Miller
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| |
Collapse
|
5
|
The Transcription Factor SpoVG Is of Major Importance for Biofilm Formation of Staphylococcus epidermidis under In Vitro Conditions, but Dispensable for In Vivo Biofilm Formation. Int J Mol Sci 2022; 23:ijms23063255. [PMID: 35328675 PMCID: PMC8949118 DOI: 10.3390/ijms23063255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus epidermidis is a common cause of device related infections on which pathogens form biofilms (i.e., multilayered cell populations embedded in an extracellular matrix). Here, we report that the transcription factor SpoVG is essential for the capacity of S. epidermidis to form such biofilms on artificial surfaces under in vitro conditions. Inactivation of spoVG in the polysaccharide intercellular adhesin (PIA) producing S. epidermidis strain 1457 yielded a mutant that, unlike its parental strain, failed to produce a clear biofilm in a microtiter plate-based static biofilm assay. A decreased biofilm formation capacity was also observed when 1457 ΔspoVG cells were co-cultured with polyurethane-based peripheral venous catheter fragments under dynamic conditions, while the cis-complemented 1457 ΔspoVG::spoVG derivative formed biofilms comparable to the levels seen with the wild-type. Transcriptional studies demonstrated that the deletion of spoVG significantly altered the expression of the intercellular adhesion (ica) locus by upregulating the transcription of the ica operon repressor icaR and down-regulating the transcription of icaADBC. Electrophoretic mobility shift assays (EMSA) revealed an interaction between SpoVG and the icaA-icaR intergenic region, suggesting SpoVG to promote biofilm formation of S. epidermidis by modulating ica expression. However, when mice were challenged with the 1457 ΔspoVG mutant in a foreign body infection model, only marginal differences in biomasses produced on the infected catheter fragments between the mutant and the parental strain were observed. These findings suggest that SpoVG is critical for the PIA-dependent biofilm formation of S. epidermis under in vitro conditions, but is largely dispensable for biofilm formation of this skin commensal under in vivo conditions.
Collapse
|
6
|
Nagarajan SN, Lenoir C, Grangeasse C. Recent advances in bacterial signaling by serine/threonine protein kinases. Trends Microbiol 2021; 30:553-566. [PMID: 34836791 DOI: 10.1016/j.tim.2021.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022]
Abstract
It has been nearly three decades since the discovery of the first bacterial serine/threonine protein kinase (STPK). Since then, a blend of technological advances has led to the characterization of a multitude of STPKs and phosphorylation substrates in several bacterial species that finely regulate intricate signaling cascades. Years of intense research from several laboratories have demonstrated unexpected roles for serine/threonine phosphorylation, regulating not only bacterial growth and cell division but also antibiotic persistence, virulence and infection, metabolism, chromosomal biology, and cellular differentiation. This review aims to provide an account of the most recent and significant developments in this up and growing field in microbiology.
Collapse
Affiliation(s)
- Sathya Narayanan Nagarajan
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, IBCP building, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Cassandra Lenoir
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, IBCP building, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, IBCP building, 7 passage du Vercors, 69367 Lyon Cedex 07, France.
| |
Collapse
|
7
|
Yan H, Li M, Meng L, Zhao F. Formation of viable but nonculturable state of Staphylococcus aureus under frozen condition and its characteristics. Int J Food Microbiol 2021; 357:109381. [PMID: 34492585 DOI: 10.1016/j.ijfoodmicro.2021.109381] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022]
Abstract
Viable but nonculturable (VBNC) state of microorganisms has attracted much attention due to its characteristics, including the difficulty in detection by culture-based methods, virulence retention, high resistance, and so on. As a foodborne pathogen, Staphylococcus aureus is widely distributed, and has been found to enter the VBNC state under some environmental stresses, posing a potential threat to human health. Freezing is a common condition for food storage. This study investigated whether citric acid, a common food additive, could induce S. aureus into the VBNC state at -20 °C. By measuring the number of culturable and viable cells, it was found that S. aureus entered the VBNC state after 72 days of induction in citric acid buffer at -20 °C. The VBNC cells were then successfully resuscitated at 37 °C in trypsin soybean medium (TSB) with or without heat shock treatment, and TSB supplemented with sodium pyruvate and Tween 80 after 48 h. Heat shock resulted in an excellent resuscitation effect. Observed by transmission electron microscopy, the internal structure of VBNC cells was found markedly changed, compared with that of exponential phase cells. API ZYM kit was used to compare the intracellular enzyme activity of S. aureus in the exponential phase with that in the VBNC state. The results showed that the enzyme activity decreased significantly in VBNC cells, and that the VBNC cells were more resistant to simulated gastrointestinal fluid through flow cytometry analysis. Quantitative reverse-transcription polymerase chain reaction results suggested that the ability of adhesion and biofilm formation of VBNC cells might be decreased due to the down-regulation of related genes. However, it should not be ignored the recovery potential of biofilm-forming ability of VBNC cells caused by the high expression of sarA. In conclusion, S. aureus could be induced into the VBNC state in citric acid buffer at -20 °C, which showed changes in some biological characteristics and could resuscitate successfully by many conditions. Food industry needs to pay attention to the potential hazard by VBNC S. aureus under frozen conditions.
Collapse
Affiliation(s)
- Haiyang Yan
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, PR China
| | - Meng Li
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, PR China
| | - Lingling Meng
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, PR China
| | - Feng Zhao
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, PR China.
| |
Collapse
|
8
|
Huang Q, Zhang Z, Liu Q, Liu F, Liu Y, Zhang J, Wang G. SpoVG is an important regulator of sporulation and affects biofilm formation by regulating Spo0A transcription in Bacillus cereus 0-9. BMC Microbiol 2021; 21:172. [PMID: 34102998 PMCID: PMC8186074 DOI: 10.1186/s12866-021-02239-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Background Bacillus cereus 0–9, a Gram-positive, endospore-forming bacterium isolated from healthy wheat roots in our previous research, is considered to be an effective biocontrol strain against several soil-borne plant diseases. SpoVG, a regulator that is broadly conserved among many Gram-positive bacteria, may help this organism coordinate environmental growth and virulence to survive. This study aimed to explore the multiple functions of SpoVG in B. cereus 0–9. Methods The gene knockout strains were constructed by homologous recombination, and the sporulation process of B. cereus 0–9 and its mutants were observed by fluorescence staining method. We further determined the spore yields and biofilm formation abilities of test strains. Transcriptional fusion strains were constructed by overlapping PCR technique, and the promoter activity of the target gene was detected by measuring its fluorescence intensity. The biofilm production and colonial morphology of B. cereus 0–9 and its mutants were determined to study the functions of the target genes, and the transcription level of the target gene was determined by qRT-PCR. Results According to observation of the sporulation process of B. cereus 0–9 in germination medium, SpoVG is crucial for regulating sporulation stage V of B. cereus 0–9, which is identical to that of Bacillus subtilis but differs from that of Bacillus anthracis. In addition, SpoVG could influence biofilm formation of B. cereus 0–9. The transcription levels of two genes closely related to biofilm-formation, sipW and calY, were downregulated in a ΔspoVG mutant. The role of SpoVG in regulating biofilm formation was further explored by deleting the genes abrB and sinR in the ΔspoVG mutant, respectively, generating the double mutant strains ΔspoVGΔabrB and ΔspoVGΔsinR. The phenotypes of these double mutants were congruent with those of the single abrB and sinR deletion strains, respectively, which showed increased biofilm formation. This indicated that spoVG was located upstream of abrB and sinR in the regulatory pathway of B. cereus biofilm formation. Further, the results of qRT-PCR and the luminescence intensity of transcriptional fusion strains indicated that spoVG gene deletion could inhibit the transcription of Spo0A. Conclusions SpoVG, an important regulator in the sporulation of B. cereus, is located upstream of Spo0A and participates in regulation of biofilm formation of B. cereus 0–9 through regulating the transcription level of spo0A. Sporulation and biofilm formation are crucial mechanisms by which bacteria respond to adverse conditions. SpoVG is therefore an important regulator of Spo0A and is crucial for both sporulation and biofilm formation of B. cereus 0–9. This study provides a new insight into the regulatory mechanism of environmental adaptation in bacteria and a foundation for future studies on biofilm formation of B. cereus. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02239-6.
Collapse
Affiliation(s)
- Qiubin Huang
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.,Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Zhen Zhang
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Qing Liu
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Fengying Liu
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.,Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Yupeng Liu
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.,Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Juanmei Zhang
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China. .,School of Pharmaceutical, Henan Univeristy, Kaifeng, 475004, China.
| | - Gang Wang
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China. .,Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China.
| |
Collapse
|
9
|
Lei MG, Lee CY. MgrA Activates Staphylococcal Capsule via SigA-Dependent Promoter. J Bacteriol 2020; 203:e00495-20. [PMID: 33077637 PMCID: PMC7950413 DOI: 10.1128/jb.00495-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/14/2020] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus capsule polysaccharide is an important antiphagocytic virulence factor. The cap genes are regulated at the promoter element (Pcap) upstream of the cap operon. Pcap, which consists of a dominant SigB-dependent promoter and a weaker upstream SigA-dependent promoter, is activated by global regulator MgrA. How MgrA activates capsule is unclear. Here, we showed that MgrA directly bound to the Pcap region and affected the SigA-dependent promoter. Interestingly, an electrophoretic mobility shift assay showed that MgrA bound to a large region of Pcap, mainly downstream of the SigA-dependent promoter. We further showed that the ArlRS two-component system and the Agr quorum sensing system activated capsule primarily through MgrA in the early growth phases.IMPORTANCE The virulence of Staphylococcus aureus depends on the expression of various virulence factors, which is governed by a complex regulatory network. We have been using capsule as a model virulence factor to study virulence gene regulation in S. aureus MgrA is one of the regulators of capsule and has a major effect on capsule production. However, how MgrA regulates capsule genes is not understood. In this study, we were able to define the mechanism involving MgrA regulation of capsule. In addition, we also delineated the role of MgrA in capsule regulatory pathways involving the key virulence regulators Agr and Arl. This study further advances our understanding of virulence gene regulation in S. aureus, an important human pathogen.
Collapse
Affiliation(s)
- Mei G Lei
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Chia Y Lee
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
10
|
Vaishampayan A, Ahmed R, Wagner O, de Jong A, Haag R, Kok J, Grohmann E. Transcriptomic analysis of stress response to novel antimicrobial coatings in a clinical MRSA strain. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111578. [PMID: 33321624 DOI: 10.1016/j.msec.2020.111578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/20/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Multi-drug resistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) cause nosocomial infections that can have deleterious effects on human health. Thus, it is imperative to find solutions to treat these detrimental infections as well as to control their spread. We tested the effect of two different antimicrobial materials, functionalised graphene oxide (GOX), and AGXX® coated on cellulose fibres, on the growth and transcriptome of the clinical MRSA strain S. aureus 04-02981. In addition, we investigated the effect of a third material as a combination of GOX and AGXX® fibres on S. aureus 04-02981. Standard plate count assay revealed that the combination of fibres, GOX-AGXX® inhibited the growth of S. aureus 04-02981 by 99.98%. To assess the effect of these antimicrobials on the transcriptome of our strain, cultures of S. aureus 04-02981 were incubated with GOX, AGXX®, or GOX-AGXX® fibres for different time periods and then subjected to RNA-sequencing. Uncoated cellulose fibres were used as a negative control. The antimicrobial fibres had a huge impact on the transcriptome of S. aureus 04-02981 affecting the expression of 2650 genes. Primarily genes related to biofilm formation and virulence (such as agr, sarA, and those of the two-component system SaeRS), and genes crucial for survival in biofilms (like arginine metabolism arc genes) were repressed. In contrast, the expression of siderophore biosynthesis genes (sbn) was induced, a probable response to stress imposed by the antimicrobials and the conditions of iron-deficiency. Genes associated with potassium transport, intracellular survival and pathogenesis (kdp) were also differentially expressed. Our data suggest that the combination of GOX and AGXX® acts as an efficient antimicrobial against S. aureus 04-02981. Thus, these materials are potential candidates for applications in antimicrobial surface coatings.
Collapse
Affiliation(s)
- Ankita Vaishampayan
- Life Sciences and Technology, Beuth University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany
| | - Rameez Ahmed
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Olaf Wagner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Anne de Jong
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 Groningen, the Netherlands
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Jan Kok
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 Groningen, the Netherlands
| | - Elisabeth Grohmann
- Life Sciences and Technology, Beuth University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany.
| |
Collapse
|
11
|
Bonne Køhler J, Jers C, Senissar M, Shi L, Derouiche A, Mijakovic I. Importance of protein Ser/Thr/Tyr phosphorylation for bacterial pathogenesis. FEBS Lett 2020; 594:2339-2369. [PMID: 32337704 DOI: 10.1002/1873-3468.13797] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Protein phosphorylation regulates a large variety of biological processes in all living cells. In pathogenic bacteria, the study of serine, threonine, and tyrosine (Ser/Thr/Tyr) phosphorylation has shed light on the course of infectious diseases, from adherence to host cells to pathogen virulence, replication, and persistence. Mass spectrometry (MS)-based phosphoproteomics has provided global maps of Ser/Thr/Tyr phosphosites in bacterial pathogens. Despite recent developments, a quantitative and dynamic view of phosphorylation events that occur during bacterial pathogenesis is currently lacking. Temporal, spatial, and subpopulation resolution of phosphorylation data is required to identify key regulatory nodes underlying bacterial pathogenesis. Herein, we discuss how technological improvements in sample handling, MS instrumentation, data processing, and machine learning should improve bacterial phosphoproteomic datasets and the information extracted from them. Such information is expected to significantly extend the current knowledge of Ser/Thr/Tyr phosphorylation in pathogenic bacteria and should ultimately contribute to the design of novel strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Julie Bonne Køhler
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Carsten Jers
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Mériem Senissar
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lei Shi
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Abderahmane Derouiche
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
12
|
Keinhörster D, George SE, Weidenmaier C, Wolz C. Function and regulation of Staphylococcus aureus wall teichoic acids and capsular polysaccharides. Int J Med Microbiol 2019; 309:151333. [DOI: 10.1016/j.ijmm.2019.151333] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/09/2019] [Accepted: 07/17/2019] [Indexed: 01/05/2023] Open
|
13
|
Cutrona N, Gillard K, Ulrich R, Seemann M, Miller HB, Blackledge MS. From Antihistamine to Anti-infective: Loratadine Inhibition of Regulatory PASTA Kinases in Staphylococci Reduces Biofilm Formation and Potentiates β-Lactam Antibiotics and Vancomycin in Resistant Strains of Staphylococcus aureus. ACS Infect Dis 2019; 5:1397-1410. [PMID: 31132246 DOI: 10.1021/acsinfecdis.9b00096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Staphylococcus epidermidis and Staphylococcus aureus are important human pathogens responsible for two-thirds of all postsurgical infections of indwelling medical devices. Staphylococci form robust biofilms that provide a reservoir for chronic infection, and antibiotic-resistant isolates are increasingly common in both healthcare and community settings. Novel treatments that can simultaneously inhibit biofilm formation and antibiotic-resistance pathways are urgently needed to combat the increasing rates of antibiotic-resistant infections. Herein we report that loratadine, an FDA-approved antihistamine, significantly inhibits biofilm formation in both S. aureus and S. epidermidis. Furthermore, loratadine potentiates β-lactam antibiotics in methicillin-resistant strains of S. aureus and potentiates both β-lactam antibiotics and vancomycin in vancomycin-resistant strains of S. aureus. Additionally, we elucidate loratadine's mechanism of action as a novel inhibitor of the regulatory PASTA kinases Stk and Stk1 in S. epidermidis and S. aureus, respectively. Finally, we describe how Stk1 inhibition affects the expression of genes involved in both biofilm formation and antibiotic resistance in S. epidermidis and S. aureus.
Collapse
Affiliation(s)
- Nicholas Cutrona
- Department of Chemistry, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Kyra Gillard
- Department of Chemistry, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Rebecca Ulrich
- Department of Chemistry, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Mikaela Seemann
- Department of Chemistry, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Heather B. Miller
- Department of Chemistry, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Meghan S. Blackledge
- Department of Chemistry, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| |
Collapse
|
14
|
Zhu Q, Wen W, Wang W, Sun B. Transcriptional regulation of virulence factors Spa and ClfB by the SpoVG-Rot cascade in Staphylococcus aureus. Int J Med Microbiol 2018; 309:39-53. [PMID: 30392856 DOI: 10.1016/j.ijmm.2018.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/25/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus can produce numerous surface proteins involved in the adhesion and internalization of host cells, immune evasion, and inflammation initiation. Among these surface proteins, the microbial surface components recognizing adhesive matrix molecules contain many crucial cell wall-anchored virulence factors. The Sar-family regulatory protein Rot has been reported to regulate many important extracellular virulence factors at the transcriptional level, including Spa and clumping factor B. SpoVG, a global regulator in S. aureus, is known to control the expression of numerous genes. Here, we demonstrate that SpoVG can positively regulate the transcription of rot by directly binding to its promoter. SpoVG can also positively regulate the transcription of spa and clfB through direct-binding to their promoters and in a Rot-mediated manner. Furthermore, SpoVG can positively modulate the human fibrinogen-binding ability of S. aureus. In addition, phosphorylation of SpoVG by the serine/threonine kinase, Stk1, can positively regulate its binding to the promoters of rot, spa, and clfB. The human cell infection assay showed that the adhesion and internalization abilities were reduced in the spoVG mutant strain in comparison to those in the wild-type strain. Collectively, our data reveal a SpoVG-Rot regulatory cascade and novel molecular mechanisms in the virulence control in S. aureus.
Collapse
Affiliation(s)
- Qing Zhu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Wen Wen
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Wanying Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Baolin Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China.
| |
Collapse
|
15
|
Janczarek M, Vinardell JM, Lipa P, Karaś M. Hanks-Type Serine/Threonine Protein Kinases and Phosphatases in Bacteria: Roles in Signaling and Adaptation to Various Environments. Int J Mol Sci 2018; 19:ijms19102872. [PMID: 30248937 PMCID: PMC6213207 DOI: 10.3390/ijms19102872] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022] Open
Abstract
Reversible phosphorylation is a key mechanism that regulates many cellular processes in prokaryotes and eukaryotes. In prokaryotes, signal transduction includes two-component signaling systems, which involve a membrane sensor histidine kinase and a cognate DNA-binding response regulator. Several recent studies indicate that alternative regulatory pathways controlled by Hanks-type serine/threonine kinases (STKs) and serine/threonine phosphatases (STPs) also play an essential role in regulation of many different processes in bacteria, such as growth and cell division, cell wall biosynthesis, sporulation, biofilm formation, stress response, metabolic and developmental processes, as well as interactions (either pathogenic or symbiotic) with higher host organisms. Since these enzymes are not DNA-binding proteins, they exert the regulatory role via post-translational modifications of their protein targets. In this review, we summarize the current knowledge of STKs and STPs, and discuss how these enzymes mediate gene expression in prokaryotes. Many studies indicate that regulatory systems based on Hanks-type STKs and STPs play an essential role in the regulation of various cellular processes, by reversibly phosphorylating many protein targets, among them several regulatory proteins of other signaling cascades. These data show high complexity of bacterial regulatory network, in which the crosstalk between STK/STP signaling enzymes, components of TCSs, and the translational machinery occurs. In this regulation, the STK/STP systems have been proved to play important roles.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - José-María Vinardell
- Department of Microbiology, Faculty of Biology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Paulina Lipa
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - Magdalena Karaś
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| |
Collapse
|
16
|
The serine/threonine kinase Stk and the phosphatase Stp regulate cell wall synthesis in Staphylococcus aureus. Sci Rep 2018; 8:13693. [PMID: 30209409 PMCID: PMC6135852 DOI: 10.1038/s41598-018-32109-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/07/2018] [Indexed: 11/10/2022] Open
Abstract
The cell wall synthesis pathway producing peptidoglycan is a highly coordinated and tightly regulated process. Although the major components of bacterial cell walls have been known for decades, the complex regulatory network controlling peptidoglycan synthesis and many details of the cell division machinery are not well understood. The eukaryotic-like serine/threonine kinase Stk and the cognate phosphatase Stp play an important role in cell wall biosynthesis and drug resistance in S. aureus. We show that stp deletion has a pronounced impact on cell wall synthesis. Deletion of stp leads to a thicker cell wall and decreases susceptibility to lysostaphin. Stationary phase Δstp cells accumulate peptidoglycan precursors and incorporate higher amounts of incomplete muropeptides with non-glycine, monoglycine and monoalanine interpeptide bridges into the cell wall. In line with this cell wall phenotype, we demonstrate that the lipid II:glycine glycyltransferase FemX can be phosphorylated by the Ser/Thr kinase Stk in vitro. Mass spectrometric analyses identify Thr32, Thr36 and Ser415 as phosphoacceptors. The cognate phosphatase Stp dephosphorylates these phosphorylation sites. Moreover, Stk interacts with FemA and FemB, but is unable to phosphorylate them. Our data indicate that Stk and Stp modulate cell wall synthesis and cell division at several levels.
Collapse
|
17
|
Abstract
The extensive use of antibiotics has resulted in a situation where multidrug-resistant pathogens have become a severe menace to human health worldwide. A deeper understanding of the principles used by pathogens to adapt to, respond to, and resist antibiotics would pave the road to the discovery of drugs with novel mechanisms. For bacteria, antibiotics represent clinically relevant stresses that induce protective responses. The recent implication of regulatory RNAs (small RNAs [sRNAs]) in antibiotic response and resistance in several bacterial pathogens suggests that they should be considered innovative drug targets. This minireview discusses sRNA-mediated mechanisms exploited by bacterial pathogens to fight against antibiotics. A critical discussion of the newest findings in the field is provided, with emphasis on the implication of sRNAs in major mechanisms leading to antibiotic resistance, including drug uptake, active drug efflux, drug target modifications, biofilms, cell walls, and lipopolysaccharide (LPS) biosynthesis. Of interest is the lack of knowledge about sRNAs implicated in Gram-positive compared to Gram-negative bacterial resistance.
Collapse
|
18
|
Hu Q, Peng H, Rao X. Molecular Events for Promotion of Vancomycin Resistance in Vancomycin Intermediate Staphylococcus aureus. Front Microbiol 2016; 7:1601. [PMID: 27790199 PMCID: PMC5062060 DOI: 10.3389/fmicb.2016.01601] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/26/2016] [Indexed: 12/14/2022] Open
Abstract
Vancomycin has been used as the last resort in the clinical treatment of serious Staphylococcus aureus infections. Vancomycin-intermediate S. aureus (VISA) was discovered almost two decades ago. Aside from the vancomycin-intermediate phenotype, VISA strains from the clinic or laboratory exhibited common characteristics, such as thickened cell walls, reduced autolysis, and attenuated virulence. However, the genetic mechanisms responsible for the reduced vancomycin susceptibility in VISA are varied. The comparative genomics of vancomycin-susceptible S. aureus (VSSA)/VISA pairs showed diverse genetic mutations in VISA; only a small number of these mutations have been experimentally verified. To connect the diversified genotypes and common phenotypes in VISA, we reviewed the genetic alterations in the relative determinants, including mutations in the vraTSR, graSR, walKR, stk1/stp1, rpoB, clpP, and cmk genes. Especially, we analyzed the mechanism through which diverse mutations mediate vancomycin resistance. We propose a unified model that integrates diverse gene functions and complex biochemical processes in VISA upon the action of vancomycin.
Collapse
Affiliation(s)
- Qiwen Hu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University Chongqing, China
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University Chongqing, China
| |
Collapse
|