1
|
Wysocki R, Rodrigues JI, Litwin I, Tamás MJ. Mechanisms of genotoxicity and proteotoxicity induced by the metalloids arsenic and antimony. Cell Mol Life Sci 2023; 80:342. [PMID: 37904059 PMCID: PMC10616229 DOI: 10.1007/s00018-023-04992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023]
Abstract
Arsenic and antimony are metalloids with profound effects on biological systems and human health. Both elements are toxic to cells and organisms, and exposure is associated with several pathological conditions including cancer and neurodegenerative disorders. At the same time, arsenic- and antimony-containing compounds are used in the treatment of multiple diseases. Although these metalloids can both cause and cure disease, their modes of molecular action are incompletely understood. The past decades have seen major advances in our understanding of arsenic and antimony toxicity, emphasizing genotoxicity and proteotoxicity as key contributors to pathogenesis. In this review, we highlight mechanisms by which arsenic and antimony cause toxicity, focusing on their genotoxic and proteotoxic effects. The mechanisms used by cells to maintain proteostasis during metalloid exposure are also described. Furthermore, we address how metalloid-induced proteotoxicity may promote neurodegenerative disease and how genotoxicity and proteotoxicity may be interrelated and together contribute to proteinopathies. A deeper understanding of cellular toxicity and response mechanisms and their links to pathogenesis may promote the development of strategies for both disease prevention and treatment.
Collapse
Affiliation(s)
- Robert Wysocki
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328, Wroclaw, Poland.
| | - Joana I Rodrigues
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden
| | - Ireneusz Litwin
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wroclaw, 50-328, Wroclaw, Poland
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden.
| |
Collapse
|
2
|
Farley FW, McCully RR, Maslo PB, Yu L, Sheff MA, Sadeghi H, Elion EA. Effects of HSP70 chaperones Ssa1 and Ssa2 on Ste5 scaffold and the mating mitogen-activated protein kinase (MAPK) pathway in Saccharomyces cerevisiae. PLoS One 2023; 18:e0289339. [PMID: 37851593 PMCID: PMC10584130 DOI: 10.1371/journal.pone.0289339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 07/17/2023] [Indexed: 10/20/2023] Open
Abstract
Ste5 is a prototype of scaffold proteins that regulate activation of mitogen-activated protein kinase (MAPK) cascades in all eukaryotes. Ste5 associates with many proteins including Gβγ (Ste4), Ste11 MAPKKK, Ste7 MAPKK, Fus3 and Kss1 MAPKs, Bem1, Cdc24. Here we show that Ste5 also associates with heat shock protein 70 chaperone (Hsp70) Ssa1 and that Ssa1 and its ortholog Ssa2 are together important for Ste5 function and efficient mating responses. The majority of purified overexpressed Ste5 associates with Ssa1. Loss of Ssa1 and Ssa2 has deleterious effects on Ste5 abundance, integrity, and localization particularly when Ste5 is expressed at native levels. The status of Ssa1 and Ssa2 influences Ste5 electrophoresis mobility and formation of high molecular weight species thought to be phosphorylated, ubiquitinylated and aggregated and lower molecular weight fragments. A Ste5 VWA domain mutant with greater propensity to form punctate foci has reduced predicted propensity to bind Ssa1 near the mutation sites and forms more punctate foci when Ssa1 Is overexpressed, supporting a dynamic protein quality control relationship between Ste5 and Ssa1. Loss of Ssa1 and Ssa2 reduces activation of Fus3 and Kss1 MAPKs and FUS1 gene expression and impairs mating shmoo morphogenesis. Surprisingly, ssa1, ssa2, ssa3 and ssa4 single, double and triple mutants can still mate, suggesting compensatory mechanisms exist for folding. Additional analysis suggests Ssa1 is the major Hsp70 chaperone for the mating and invasive growth pathways and reveals several Hsp70-Hsp90 chaperone-network proteins required for mating morphogenesis.
Collapse
Affiliation(s)
- Francis W. Farley
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Ryan R. McCully
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Paul B. Maslo
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Lu Yu
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Mark A. Sheff
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Homayoun Sadeghi
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Elaine A. Elion
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
3
|
Grosfeld EV, Beizer AY, Dergalev AA, Agaphonov MO, Alexandrov AI. Fusion of Hsp70 to GFP Impairs Its Function and Causes Formation of Misfolded Protein Deposits under Mild Stress in Yeast. Int J Mol Sci 2023; 24:12758. [PMID: 37628938 PMCID: PMC10454418 DOI: 10.3390/ijms241612758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Protein misfolding is a common feature of aging, various diseases and stresses. Recent work has revealed that misfolded proteins can be gathered into specific compartments, which can limit their deleterious effects. Chaperones play a central role in the formation of these misfolded protein deposits and can also be used to mark them. While studying chimeric yeast Hsp70 (Ssa1-GFP), we discovered that this protein was prone to the formation of large insoluble deposits during growth on non-fermentable carbon sources under mild heat stress. This was mitigated by the addition of antioxidants, suggesting that either Ssa1 itself or some other proteins were affected by oxidative damage. The protein deposits colocalized with a number of other chaperones, as well as model misfolded proteins, and could be disassembled by the Hsp104 chaperone. Notably, the wild-type protein, as well as a fusion protein of Ssa1 to the fluorescent protein Dendra2, were much less prone to forming similar foci, indicating that this phenomenon was related to the perturbation of Ssa1 function by fusion to GFP. This was also confirmed by monitoring Hsp104-GFP aggregates in the presence of known Ssa1 point mutants. Our data indicate that impaired Ssa1 function can favor the formation of large misfolded protein deposits under various conditions.
Collapse
Affiliation(s)
- Erika V. Grosfeld
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the RAS, 119071 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 141700 Dolgoprudny, Russia
| | - Anastasia Yu. Beizer
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the RAS, 119071 Moscow, Russia
| | - Alexander A. Dergalev
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the RAS, 119071 Moscow, Russia
| | - Michael O. Agaphonov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the RAS, 119071 Moscow, Russia
| | - Alexander I. Alexandrov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the RAS, 119071 Moscow, Russia
- Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
4
|
González B, Cullen PJ. Regulation of Cdc42 protein turnover modulates the filamentous growth MAPK pathway. J Cell Biol 2022; 221:213675. [PMID: 36350310 PMCID: PMC9811999 DOI: 10.1083/jcb.202112100] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/25/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022] Open
Abstract
Rho GTPases are central regulators of cell polarity and signaling. How Rho GTPases are directed to function in certain settings remains unclear. Here, we show the protein levels of the yeast Rho GTPase Cdc42p are regulated, which impacts a subset of its biological functions. Specifically, the active conformation of Cdc42p was ubiquitinated by the NEDD4 ubiquitin ligase Rsp5p and HSP40/HSP70 chaperones and turned over in the proteasome. A GTP-locked (Q61L) turnover-defective (TD) version, Cdc42pQ61L+TD, hyperactivated the MAPK pathway that regulates filamentous growth (fMAPK). Cdc42pQ61L+TD did not influence the activity of the mating pathway, which shares components with the fMAPK pathway. The fMAPK pathway adaptor, Bem4p, stabilized Cdc42p levels, which resulted in elevated fMAPK pathway signaling. Our results identify Cdc42p turnover regulation as being critical for the regulation of a MAPK pathway. The control of Rho GTPase levels by stabilization and turnover may be a general feature of signaling pathway regulation, which can result in the execution of a specific developmental program.
Collapse
Affiliation(s)
- Beatriz González
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY
| | - Paul J. Cullen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY,Correspondence to Paul J. Cullen:
| |
Collapse
|
5
|
Engineering a Cysteine-Deficient Functional Candida albicans Cdr1 Molecule Reveals a Conserved Region at the Cytosolic Apex of ABCG Transporters Important for Correct Folding and Trafficking of Cdr1. mSphere 2021; 6:6/1/e01318-20. [PMID: 33568458 PMCID: PMC8544900 DOI: 10.1128/msphere.01318-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pleiotropic drug resistance (PDR) ATP-binding cassette (ABC) transporters of the ABCG family are eukaryotic membrane proteins that pump an array of compounds across organelle and cell membranes. Overexpression of the archetype fungal PDR transporter Cdr1 is a major cause of azole antifungal drug resistance in Candida albicans, a significant fungal pathogen that can cause life-threatening invasive infections in immunocompromised individuals. To date, no structure for any PDR transporter has been solved. The objective of this project was to investigate the role of the 23 Cdr1 cysteine residues in the stability, trafficking, and function of the protein when expressed in the eukaryotic model organism, Saccharomyces cerevisiae. The biochemical characterization of 18 partially cysteine-deficient Cdr1 variants revealed that the six conserved extracellular cysteines were critical for proper expression, localization, and function of Cdr1. They are predicted to form three covalent disulfide bonds that stabilize the large extracellular domains of fungal PDR transporters. Our investigations also revealed a novel nucleotide-binding domain motif, GX2[3]CPX3NPAD/E, at the peripheral cytosolic apex of ABCG transporters that possibly contributes to the unique ABCG transport cycle. With this knowledge, we engineered an “almost cysteine-less,” yet fully functional, Cdr1 variant, Cdr1P-CID, that had all but the six extracellular cysteines replaced with serine, alanine, or isoleucine (C1106I of the new motif). It is now possible to perform cysteine-cross-linking studies that will enable more detailed biochemical investigations of fungal PDR transporters and confirm any future structure(s) solved for this important protein family. IMPORTANCE Overexpression of the fungal pleiotropic drug resistance (PDR) transporter Cdr1 is a major cause of antifungal drug resistance in Candida albicans, a significant fungal pathogen that can cause life-threatening invasive infections in immunocompromised individuals. To date, no structure for any PDR ABC transporter has been solved. Cdr1 contains 23 cysteines; 10 are cytosolic and 13 are predicted to be in the transmembrane or the extracellular domains. The objective of this project was to create, and biochemically characterize, CDR1 mutants to reveal which cysteines are most important for Cdr1 stability, trafficking, and function. During this process we discovered a novel motif at the cytosolic apex of PDR transporters that ensures the structural and functional integrity of the ABCG transporter family. The creation of a functional Cys-deficient Cdr1 molecule opens new avenues for cysteine-cross-linking studies that will facilitate the detailed characterization of an important ABCG transporter family member.
Collapse
|
6
|
Abildgaard AB, Gersing SK, Larsen-Ledet S, Nielsen SV, Stein A, Lindorff-Larsen K, Hartmann-Petersen R. Co-Chaperones in Targeting and Delivery of Misfolded Proteins to the 26S Proteasome. Biomolecules 2020; 10:E1141. [PMID: 32759676 PMCID: PMC7463752 DOI: 10.3390/biom10081141] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis (proteostasis) is essential for the cell and is maintained by a highly conserved protein quality control (PQC) system, which triages newly synthesized, mislocalized and misfolded proteins. The ubiquitin-proteasome system (UPS), molecular chaperones, and co-chaperones are vital PQC elements that work together to facilitate degradation of misfolded and toxic protein species through the 26S proteasome. However, the underlying mechanisms are complex and remain partly unclear. Here, we provide an overview of the current knowledge on the co-chaperones that directly take part in targeting and delivery of PQC substrates for degradation. While J-domain proteins (JDPs) target substrates for the heat shock protein 70 (HSP70) chaperones, nucleotide-exchange factors (NEFs) deliver HSP70-bound substrates to the proteasome. So far, three NEFs have been established in proteasomal delivery: HSP110 and the ubiquitin-like (UBL) domain proteins BAG-1 and BAG-6, the latter acting as a chaperone itself and carrying its substrates directly to the proteasome. A better understanding of the individual delivery pathways will improve our ability to regulate the triage, and thus regulate the fate of aberrant proteins involved in cell stress and disease, examples of which are given throughout the review.
Collapse
Affiliation(s)
- Amanda B. Abildgaard
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sarah K. Gersing
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sven Larsen-Ledet
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sofie V. Nielsen
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (S.V.N.); (A.S.)
| | - Amelie Stein
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (S.V.N.); (A.S.)
| | - Kresten Lindorff-Larsen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Rasmus Hartmann-Petersen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| |
Collapse
|
7
|
Senohrabkova L, Malcova I, Hasek J. An aggregation-prone mutant of eIF3a forms reversible assemblies escaping spatial control in exponentially growing yeast cells. Curr Genet 2019; 65:919-940. [PMID: 30715564 DOI: 10.1007/s00294-019-00940-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
Cells have elaborated a complex strategy to maintain protein homeostasis under physiological as well as stress conditions with the aim to ensure the smooth functioning of vital processes and producing healthy offspring. Impairment of one of the most important processes in living cells, translation, might have serious consequences including various brain disorders in humans. Here, we describe a variant of the translation initiation factor eIF3a, Rpg1-3, mutated in its PCI domain that displays an attenuated translation efficiency and formation of reversible assemblies at physiological growth conditions. Rpg1-3-GFP assemblies are not sequestered within mother cells only as usual for misfolded-protein aggregates and are freely transmitted from the mother cell into the bud although they are of non-amyloid nature. Their bud-directed transmission and the active movement within the cell area depend on the intact actin cytoskeleton and the related molecular motor Myo2. Mutations in the Rpg1-3 protein render not only eIF3a but, more importantly, also the eIF3 core complex prone to aggregation that is potentiated by the limited availability of Hsp70 and Hsp40 chaperones. Our results open the way to understand mechanisms yeast cells employ to cope with malfunction and aggregation of essential proteins and their complexes.
Collapse
Affiliation(s)
- Lenka Senohrabkova
- Laboratory of Cell Reproduction, Institute of Microbiology of the CAS, Videnska 1083, 14220, Prague 4, Czech Republic
- First Faculty of Medicine, Charles University, Katerinska 42, 12108, Prague 2, Czech Republic
| | - Ivana Malcova
- Laboratory of Cell Reproduction, Institute of Microbiology of the CAS, Videnska 1083, 14220, Prague 4, Czech Republic.
| | - Jiri Hasek
- Laboratory of Cell Reproduction, Institute of Microbiology of the CAS, Videnska 1083, 14220, Prague 4, Czech Republic.
| |
Collapse
|
8
|
Kandasamy G, Andréasson C. Hsp70-Hsp110 chaperones deliver ubiquitin dependent and independent substrates to the 26S proteasome for proteolysis. J Cell Sci 2018; 131:jcs.210948. [DOI: 10.1242/jcs.210948] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/14/2018] [Indexed: 02/01/2023] Open
Abstract
In protein quality control, proteotoxic misfolded proteins are recognized by molecular chaperones, ubiquitylated by dedicated quality-control ligases and delivered to 26S proteasome for degradation. The chaperone Hsp70 and its nucleotide exchange factor Hsp110 functions in the degradation of misfolded proteins by the ubiquitin-proteasome system via poorly understood mechanisms. Here we report that yeast Hsp110 (Sse1 and Sse2) functions in the degradation of Hsp70-associated ubiquitin conjugates at the post-ubiquitylation step and is required for the proteasomal degradation of ubiquitin-independent substrates. Hsp110 associates with the 19S regulatory particle of the 26S proteasome and interacts with Hsp70 to facilitate the delivery of Hsp70 substrates for proteasomal degradation. Using a highly defined ubiquitin-independent proteasome substrate we show that the mere introduction of a single Hsp70-binding site renders its degradation dependent on Hsp110. The findings define a dedicated and chaperone-dependent pathway for the efficient shuttling of cellular proteins to the proteasome with profound implications for understanding protein quality control and cellular stress management.
Collapse
Affiliation(s)
- Ganapathi Kandasamy
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| |
Collapse
|
9
|
Comyn SA, Mayor T. A Method to Monitor Protein Turnover by Flow Cytometry and to Screen for Factors that Control Degradation by Fluorescence-Activated Cell Sorting. Methods Mol Biol 2018; 1844:137-153. [PMID: 30242708 DOI: 10.1007/978-1-4939-8706-1_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The protein quality control network consists of multiple proteins or protein complexes that monitor proteome integrity by mediating protein folding and the removal of proteins that cannot be folded. An integral component of this network is the ubiquitin-proteasome system, which controls the degradation of thousands of cellular proteins. A number of questions remain unanswered regarding the degradation of misfolded proteins. For example, how are substrates recognized and triaged? What are the identities of the components involved? And finally, what substrates are targeted by any given component of the quality control network? Finding answers to these questions is what inspires our work in protein quality control. Further characterization of protein quality control mechanisms requires methods that can reliably quantify turnover rates of model substrates. One such method is based on flow cytometry. Here, we present protocols detailing how to assess protein stability with flow cytometry and how fluorescence-activated cell sorting (FACS) can be used to screen for factors important for protein quality control and protein turnover.
Collapse
Affiliation(s)
- Sophie A Comyn
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Yu XW, Sun WH, Wang YZ, Xu Y. Identification of novel factors enhancing recombinant protein production in multi-copy Komagataella phaffii based on transcriptomic analysis of overexpression effects. Sci Rep 2017; 7:16249. [PMID: 29176680 PMCID: PMC5701153 DOI: 10.1038/s41598-017-16577-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/15/2017] [Indexed: 12/19/2022] Open
Abstract
The methylotrophic yeast Komagataella phaffii (Pichia pastoris) has been developed into a highly successful system for heterologous protein expression in both academia and industry. However, overexpression of recombinant protein often leads to severe burden on the physiology of K. phaffii and triggers cellular stress. To elucidate the global effect of protein overexpression, we set out to analyze the differential transcriptome of recombinant strains with 12 copies and a single copy of phospholipase A2 gene (PLA2) from Streptomyces violaceoruber. Through GO, KEGG and heat map analysis of significantly differentially expressed genes, the results indicated that the 12-copy strain suffered heavy cellular stress. The genes involved in protein processing and stress response were significantly upregulated due to the burden of protein folding and secretion, while the genes in ribosome and DNA replication were significantly downregulated possibly contributing to the reduced cell growth rate under protein overexpression stress. Three most upregulated heat shock response genes (CPR6, FES1, and STI1) were co-overexpressed in K. phaffii and proved their positive effect on the secretion of reporter enzymes (PLA2 and prolyl endopeptidase) by increasing the production up to 1.41-fold, providing novel helper factors for rational engineering of K. phaffii.
Collapse
Affiliation(s)
- Xiao-Wei Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P.R. China.
| | - Wei-Hong Sun
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P.R. China
| | - Ying-Zheng Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P.R. China
| | - Yan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P.R. China.
| |
Collapse
|
11
|
Comyn SA, Flibotte S, Mayor T. Recurrent background mutations in WHI2 impair proteostasis and degradation of misfolded cytosolic proteins in Saccharomyces cerevisiae. Sci Rep 2017. [PMID: 28646136 PMCID: PMC5482819 DOI: 10.1038/s41598-017-04525-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Proteostasis promotes viability at both the cellular and organism levels by maintaining a functional proteome. This requires an intricate protein quality control (PQC) network that mediates protein folding by molecular chaperones and removes terminally misfolded proteins via the ubiquitin proteasome system and autophagy. How changes within the PQC network can perturb proteostasis and shift the balance between protein folding and proteolysis remain poorly understood. However, given that proteostasis is altered in a number of conditions such as cancer and ageing, it is critical that we identify the factors that mediate PQC and understand the interplay between members of the proteostatic network. In this study, we investigated the degradation of a thermally unstable cytosolic model substrate and identified a surprisingly high number of strains in the yeast knockout collection that displayed impaired turnover of the misfolded substrate. We found that this phenotype was caused by frequent background mutations in the general stress response gene WHI2. We linked this proteostatic defect to the lack of activity of the stress response transcription factor Msn2, potentially under conditions where the TOR pathway is active. Our results underscore how changes to the elaborate PQC network can perturb proteostasis and impair degradation of misfolded cytosolic proteins.
Collapse
Affiliation(s)
- Sophie A Comyn
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Stéphane Flibotte
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
12
|
Sugiyama T, Nobuta R, Ando K, Matsuki Y, Inada T. Crucial role of ATP-bound Sse1 in Upf1-dependent degradation of the truncated product. Biochem Biophys Res Commun 2017; 488:122-128. [PMID: 28483531 DOI: 10.1016/j.bbrc.2017.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 05/03/2017] [Indexed: 02/01/2023]
Abstract
Up-frameshift (Upf) complex facilitates the degradation of aberrant mRNAs containing a premature termination codon (PTC) and its products in yeast. Here we report that Sse1, a member of the Hsp110 family, and Hsp70 play a crucial role in Upf-dependent degradation of the truncated FLAG-Pgk1-300 protein derived from PGK1 mRNA harboring a PTC at codon position 300. Sse1 was required for Upf-dependent rapid degradation of the FLAG-Pgk1-300. FLAG-Pgk1-300 was significantly destabilized in ATP hydrolysis defective sse1-1 mutant cells than in wild type cells. Consistently, Sse1 and Hsp70 reduced the level of an insoluble form of FLAG-Pgk1-300. We propose that the Sse1/Hsp70 complex maintains the solubility of FLAG-Pgk1-300, thereby stimulating its Upf-dependent degradation by the proteasomes.
Collapse
Affiliation(s)
- Takato Sugiyama
- Graduate School of Pharmaceutical Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Risa Nobuta
- Graduate School of Pharmaceutical Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Koji Ando
- Graduate School of Pharmaceutical Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Yasuko Matsuki
- Graduate School of Pharmaceutical Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
13
|
Prefoldin Promotes Proteasomal Degradation of Cytosolic Proteins with Missense Mutations by Maintaining Substrate Solubility. PLoS Genet 2016; 12:e1006184. [PMID: 27448207 PMCID: PMC4957761 DOI: 10.1371/journal.pgen.1006184] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/21/2016] [Indexed: 12/14/2022] Open
Abstract
Misfolded proteins challenge the ability of cells to maintain protein homeostasis and can accumulate into toxic protein aggregates. As a consequence, cells have adopted a number of protein quality control pathways to prevent protein aggregation, promote protein folding, and target terminally misfolded proteins for degradation. In this study, we employed a thermosensitive allele of the yeast Guk1 guanylate kinase as a model misfolded protein to investigate degradative protein quality control pathways. We performed a flow cytometry based screen to identify factors that promote proteasomal degradation of proteins misfolded as the result of missense mutations. In addition to the E3 ubiquitin ligase Ubr1, we identified the prefoldin chaperone subunit Gim3 as an important quality control factor. Whereas the absence of GIM3 did not impair proteasomal function or the ubiquitination of the model substrate, it led to the accumulation of the poorly soluble model substrate in cellular inclusions that was accompanied by delayed degradation. We found that Gim3 interacted with the Guk1 mutant allele and propose that prefoldin promotes the degradation of the unstable model substrate by maintaining the solubility of the misfolded protein. We also demonstrated that in addition to the Guk1 mutant, prefoldin can stabilize other misfolded cytosolic proteins containing missense mutations. Most polypeptides by necessity must fold into three-dimensional structures in order to become functional proteins. Misfolding, either during or subsequent to initial folding, can result in toxic protein aggregation. As a consequence, cells have adopted a number of protein quality control pathways to prevent protein aggregation, promote protein folding, and target terminally misfolded proteins for degradation. One cause of misfolding is the presence of missense mutations, which account for over half of all the reported mutations in the Human Gene Mutation Database. Here we establish a model cytosolic protein substrate whose stability is temperature dependent. We then perform a flow cytometry based screen to identify factors that promote the degradation of our model substrate. We identified the E3 ubiquitin ligase Ubr1 and the prefoldin chaperone complex subunit Gim3. Prefoldin forms a “jellyfish-like” structure and aids in nascent protein folding and prevents protein aggregation. We show that prefoldin promotes protein degradation by maintaining substrate solubility. Our work adds to that of others highlighting the importance of the prefoldin complex in preventing potentially toxic protein aggregation.
Collapse
|