1
|
Gujar S, Pol JG, Kumar V, Lizarralde-Guerrero M, Konda P, Kroemer G, Bell JC. Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy. Nat Protoc 2024; 19:2540-2570. [PMID: 38769145 DOI: 10.1038/s41596-024-00985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/12/2024] [Indexed: 05/22/2024]
Abstract
Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.
Collapse
Affiliation(s)
- Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Jonathan G Pol
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
| | - Vishnupriyan Kumar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Manuela Lizarralde-Guerrero
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Guido Kroemer
- INSERM, U1138, Paris, France.
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
- Université Paris Cité, Paris, France.
- Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France.
- Institut Universitaire de France, Paris, France.
- Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - John C Bell
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada.
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
2
|
Sakhi H, Arabi M, Ghaemi A, Movafagh A, Sheikhpour M. Oncolytic viruses in lung cancer treatment: a review article. Immunotherapy 2024; 16:75-97. [PMID: 38112057 DOI: 10.2217/imt-2023-0124] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
Lung cancer has a high morbidity rate worldwide due to its resistance to therapy. So new treatment options are needed to improve the outcomes of lung cancer treatment. This study aimed to evaluate the effectiveness of oncolytic viruses (OVs) as a new type of cancer treatment. In this study, 158 articles from PubMed and Scopus from 1994 to 2022 were reviewed on the effectiveness of OVs in the treatment of lung cancer. The oncolytic properties of eight categories of OVs and their interactions with treatment options were investigated. OVs can be applied as a promising immunotherapy option, as they are reproduced selectively in different types of cancer cells, cause tumor cell lysis and trigger efficient immune responses.
Collapse
Affiliation(s)
- Hanie Sakhi
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mohadeseh Arabi
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Abolfazl Movafagh
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 1983969411, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| |
Collapse
|
3
|
Ye J, Zhang J, Zhu Y, Wang L, Jiang X, Liu B, He G. Targeting autophagy and beyond: Deconvoluting the complexity of Beclin-1 from biological function to cancer therapy. Acta Pharm Sin B 2023; 13:4688-4714. [PMID: 38045051 PMCID: PMC10692397 DOI: 10.1016/j.apsb.2023.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/05/2023] [Accepted: 08/02/2023] [Indexed: 12/05/2023] Open
Abstract
Beclin-1 is the firstly-identified mammalian protein of the autophagy machinery, which functions as a molecular scaffold for the assembly of PI3KC3 (class III phosphatidylinositol 3 kinase) complex, thus controlling autophagy induction and other cellular trafficking events. Notably, there is mounting evidence establishing the implications of Beclin-1 in diverse tumorigenesis processes, including tumor suppression and progression as well as resistance to cancer therapeutics and CSC (cancer stem-like cell) maintenance. More importantly, Beclin-1 has been confirmed as a potential target for the treatment of multiple cancers. In this review, we provide a comprehensive survey of the structure, functions, and regulations of Beclin-1, and we discuss recent advances in understanding the controversial roles of Beclin-1 in oncology. Moreover, we focus on summarizing the targeted Beclin-1-regulating strategies in cancer therapy, providing novel insights into a promising strategy for regulating Beclin-1 to improve cancer therapeutics in the future.
Collapse
Affiliation(s)
- Jing Ye
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanghui Zhu
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lian Wang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease Related Molecular Network, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease Related Molecular Network, Chengdu 610041, China
| |
Collapse
|
4
|
Zhu L, Lei Y, Huang J, An Y, Ren Y, Chen L, Zhao H, Zheng C. Recent advances in oncolytic virus therapy for hepatocellular carcinoma. Front Oncol 2023; 13:1172292. [PMID: 37182136 PMCID: PMC10169724 DOI: 10.3389/fonc.2023.1172292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly refractory cancer and the fourth leading cause of cancer-related mortality worldwide. Despite the development of a detailed treatment strategy for HCC, the survival rate remains unsatisfactory. Oncolytic virus has been extensively researched as a new cancer therapeutic agent in the treatment of HCC. Researchers have designed a variety of recombinant viruses based on natural oncolytic diseases, which can increase the targeting of oncolytic viruses to HCC and their survival in tumors, as well as kill tumor cells and inhibit the growth of HCC through a variety of mechanisms. The overall efficacy of oncolytic virus therapy is known to be influenced by anti-tumor immunity, toxic killing effect and inhibition of tumor angiogenesis, etc. Therefore, a comprehensive review of the multiple oncolytic mechanisms of oncolytic viruses in HCC has been conducted. So far, a large number of relevant clinical trials are under way or have been completed, and some encouraging results have been obtained. Studies have shown that oncolytic virus combined with other HCC therapies may be a feasible method, including local therapy, chemotherapy, molecular targeted therapy and immunotherapy. In addition, different delivery routes for oncolytic viruses have been studied so far. These studies make oncolytic virus a new and attractive drug for the treatment of HCC.
Collapse
Affiliation(s)
- Licheng Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Lei
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Huang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yahang An
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yanqiao Ren
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huangxuan Zhao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Wu YY, Sun TK, Chen MS, Munir M, Liu HJ. Oncolytic viruses-modulated immunogenic cell death, apoptosis and autophagy linking to virotherapy and cancer immune response. Front Cell Infect Microbiol 2023; 13:1142172. [PMID: 37009515 PMCID: PMC10050605 DOI: 10.3389/fcimb.2023.1142172] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Recent reports have revealed that oncolytic viruses (OVs) play a significant role in cancer therapy. The infection of OVs such as oncolytic vaccinia virus (OVV), vesicular stomatitis virus (VSV), parvovirus, mammalian reovirus (MRV), human adenovirus, Newcastle disease virus (NDV), herpes simplex virus (HSV), avian reovirus (ARV), Orf virus (ORFV), inactivated Sendai virus (ISV), enterovirus, and coxsackievirus offer unique opportunities in immunotherapy through diverse and dynamic pathways. This mini-review focuses on the mechanisms of OVs-mediated virotherapy and their effects on immunogenic cell death (ICD), apoptosis, autophagy and regulation of the immune system.
Collapse
Affiliation(s)
- Yi-Ying Wu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Te-Kai Sun
- Tsairder Boitechnology Co. Ltd., Taichung, Taiwan
| | - Ming-Shan Chen
- Department of Anesthesiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Muhammad Munir
- Department of Biomedical and Life Sciences, Lancaster University, Lancashire, United Kingdom
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- *Correspondence: Hung-Jen Liu,
| |
Collapse
|
6
|
ENO2 Promotes Colorectal Cancer Metastasis by Interacting with the LncRNA CYTOR and Activating YAP1-Induced EMT. Cells 2022; 11:cells11152363. [PMID: 35954207 PMCID: PMC9367517 DOI: 10.3390/cells11152363] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
The glycolytic enzyme enolase 2 (ENO2) is dysregulated in many types of cancer. However, the roles and detailed molecular mechanism of ENO2 in colorectal cancer (CRC) metastasis remain unclear. Here, we performed a comprehensive analysis of ENO2 expression in 184 local CRC samples and samples from the TCGA and GEO databases and found that ENO2 upregulation in CRC samples was negatively associated with prognosis. By knocking down and overexpressing ENO2, we found that ENO2 promoted CRC cell migration and invasion, which is dependent on its interaction with the long noncoding RNA (lncRNA) CYTOR, but did not depend on glycolysis regulation. Furthermore, CYTOR mediated ENO2 binding to large tumor suppressor 1 (LATS1) and competitively inhibited the phosphorylation of Yes-associated protein 1 (YAP1), which ultimately triggered epithelial–mesenchymal transition (EMT). Collectively, these findings highlight the molecular mechanism of the ENO2–CYTOR interaction, and ENO2 could be considered a potential therapeutic target for CRC.
Collapse
|
7
|
Miri SM, Pourhossein B, Hosseini SY, Keshavarz M, Shahmahmoodi S, Zolfaghari MR, Mohebbi SR, Gorji A, Ghaemi A. Enhanced synergistic antitumor effect of a DNA vaccine with anticancer cytokine, MDA-7/IL-24, and immune checkpoint blockade. Virol J 2022; 19:106. [PMID: 35752792 PMCID: PMC9233788 DOI: 10.1186/s12985-022-01842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
Background MDA-7/IL-24 cytokine has shown potent antitumor properties in various types of cancer without exerting any significant toxicity on healthy cells. It has also been proved to encompass pro-immune Th1 cytokine-like behavior. Several E7 DNA vaccines have developed against human papillomavirus (HPV)-related cervical cancer. However, the restricted immunogenicity has limited their clinical applications individually. To address this deficiency, we investigated whether combining the E7 DNA vaccine with MDA-7/IL-24 as an adjuvant would elicit efficient antitumor responses in tumor-bearing mouse models. Next, we evaluated how suppression of immunosuppressive IL-10 cytokine would enhance the outcome of our candidate adjuvant vaccine.
Methods For this purpose, tumor-bearing mice received either E7 DNA vaccine, MDA-7/IL-24 cytokine or combination of E7 vaccine with MDA-7/IL-24 adjuvant one week after tumor challenge and boosted two times with one-week interval. IL-10 blockade was performed by injection of anti-IL-10 mAb before each immunization. One week after the last immunization, mice were sacrificed and the treatment efficacy was evaluated through immunological and immunohistochemical analysis. Moreover, the condition of tumors was monitored every two days for six weeks intervals from week 2 on, and the tumor volume was measured and compared within different groups. Results A highly significant synergistic relationship was observed between the E7 DNA vaccine and the MDA-7/IL-24 cytokine against HPV-16+ cervical cancer models. An increase in proliferation of lymphocytes, cytotoxicity of CD8+ T cells, the level of Th1 cytokines (IFN-γ, TNF-α) and IL-4, the level of apoptotic markers (TRAIL and caspase-9), and a decrease in the level of immunosuppressive IL-10 cytokine, together with the control of tumor growth and the induction of tumor regression, all prove the efficacy of adjuvant E7&IL-24 vaccine when compared to their individual administration. Surprisingly, vaccination with the DNA E7&IL-24 significantly reduced the population of Regulatory T cells (Treg) in the spleen of immunized mice compared to sole administration and control groups. Moreover, IL-10 blockade enhanced the effect of the co-administration by eliciting higher levels of IFN-γ and caspase-9, reducing Il-10 secretion and provoking the regression of tumor size. Conclusion The synergy between the E7 DNA vaccine and MDA-7/IL-24 suggests that DNA vaccines’ low immunogenicity can be effectively addressed by coupling them with an immunoregulatory agent. Moreover, IL-10 blockade can be considered a complementary treatment to improve the outcome of conventional or novel cancer therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01842-x.
Collapse
Affiliation(s)
- Seyed Mohammad Miri
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran
| | - Behzad Pourhossein
- Department of Medical Virology, Hamedan University of Medical Sciences, Hamedan, Iran.,Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Shohreh Shahmahmoodi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Gorji
- Department of Neurosurgery and Department of Neurology, Westfälische Wilhelms-Universität, Münster, Germany.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran.
| |
Collapse
|
8
|
Deng L, Yang X, Ding Y, Fan J, Peng Y, Xu D, Huang B, Hu Z. Oncolytic therapy with vaccinia virus carrying IL-24 for hepatocellular carcinoma. Virol J 2022; 19:44. [PMID: 35292065 PMCID: PMC8922813 DOI: 10.1186/s12985-022-01779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly refractory cancer associated with increasing mortality, which currently lacks effective treatment options. Interleukin-24 (IL-24) is a novel tumor suppressor cytokine that can selectively induce cancer cell apoptosis, and it has been utilized as a cancer gene therapy strategy. The vaccinia virus is a promising strategy for cancer therapy, owing to its direct viral lytic effects, as well as a vehicle to overexpress therapeutic transgenes. METHODS We constructed a recombinant oncolytic vaccinia viruse (VG9-IL-24) based on vaccinia virus Guang9 (VG9) harboring the IL-24 gene. In vitro, we assessed the replication of VG9-IL-24 in HCC cell lines and normal liver cells and evaluated the cytotoxicity in different cell lines; then, we determined the expression of IL-24 by RT-PCR and ELISA. We examined apoptosis and cell cycle progression in SMMC-7721 cells treated with VG9-IL-24 by flow cytometry. In vivo, we established the SMMC-7721 xenograft mouse model to evaluate the antitumor effects of VG9-IL-24. RESULTS In vitro, VG9-IL-24 efficiently infected HCC cell lines, but not normal liver cells, and resulted in a high level of IL-24 expression and significant cytotoxicity. Moreover, VG9-IL-24 induced an increase in the proportion of apoptotic cells and blocked the SMMC-7721 cell cycle in the G2/M phase. In vivo, tumor growth was significantly suppressed and the survival was prolonged in VG9-IL-24-treated mice. CONCLUSIONS Vaccinia virus VG9-mediated gene therapy might be an innovative treatment for cancer with tumor-specific lysis and apoptosis-inducing effects. VG9-IL-24 exhibited enhanced antitumor effects and is a promising candidate for HCC therapy.
Collapse
Affiliation(s)
- Lili Deng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China.
| | - Xue Yang
- Wuxi Children's Hospital, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Yuedi Ding
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Jun Fan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Ying Peng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Dong Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Biao Huang
- School of Life Science, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
| | - Zhigang Hu
- Wuxi Children's Hospital, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
9
|
Resistance Mechanisms Influencing Oncolytic Virotherapy, a Systematic Analysis. Vaccines (Basel) 2021; 9:vaccines9101166. [PMID: 34696274 PMCID: PMC8537623 DOI: 10.3390/vaccines9101166] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Resistance to therapy is a frequently observed phenomenon in the treatment of cancer, and as with other cancer therapeutics, therapies based on oncolytic viruses also face the challenges of resistance, such as humoral and cellular antiviral responses, and tumor-associated interferon-mediated resistance. In order to identify additional mechanisms of resistance that may contribute to therapeutic failure, we developed a systematic search strategy for studies published in PubMed. We analyzed 6143 articles on oncolytic virotherapy and found that approximately 8% of these articles use resistance terms in the abstract and/or title. Of these 439 articles, 87 were original research. Most of the findings reported pertain to resistance mediated by tumor-cell-dependent interferon signaling. Yet, mechanisms such as epigenetic modifications, hypoxia-mediated inhibition, APOBEC-mediated resistance, virus entry barriers, and spatiotemporal restriction to viral spread, although not frequently assessed, were demonstrated to play a major role in resistance. Similarly, our results suggest that the stromal compartment consisting of, but not limited to, myeloid cells, fibroblasts, and epithelial cells requires more study in relation to therapy resistance using oncolytic viruses. Thus, our findings emphasize the need to assess the stromal compartment and to identify novel mechanisms that play an important role in conferring resistance to oncolytic virotherapy.
Collapse
|
10
|
Hu HJ, Liang X, Li HL, Wang HY, Gu JF, Sun LY, Xiao J, Hu JQ, Ni AM, Liu XY. Optimization of the Administration Strategy for the Armed Oncolytic Adenovirus ZD55-IL-24 in Both Immunocompromised and Immunocompetent Mouse Models. Hum Gene Ther 2021; 32:1481-1494. [PMID: 34155929 DOI: 10.1089/hum.2021.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ZD55-IL-24 is an armed oncolytic adenovirus similar but superior to ONYX-015. Virotherapeutic strategies using ZD55-IL-24 have been demonstrated to be effective against several cancer types. However, it is unclear whether the traditional administration strategy is able to exert the maximal antitumor efficacy of ZD55-IL-24. In this study, we sought to optimize the administration strategy of ZD55-IL-24 in both A375-bearing immunocompromised mouse model and B16-bearing immunocompetent mouse model. Although the underlying antitumor mechanisms are quite different, the obtained results are similar in these two mouse tumor models. We find that the antitumor efficacy of ZD55-IL-24 increases as injection times increase in both of these two models. However, no obvious increase of efficacy is observed as the dose of each injection increases. Our further investigation reveals that the administration strategy of sustained ZD55-IL-24 therapy can achieve a better therapeutic effect than the traditional administration strategy of short-term ZD55-IL-24 therapy. Furthermore, there is no need to inject every day; every 2 or 3 days of injection achieves an equivalent therapeutic efficacy. Finally, we find that the sustained rather than the traditional short-term ZD55-IL-24 therapy can synergize with anti-PD-1 therapy to reject tumors in B16-bearing immunocompetent mouse model. These findings suggest that the past administration strategy of ZD55-IL-24 is in fact suboptimal and the antitumor efficacy can be further enhanced through administration strategy optimization. This study might shed some light on the development of clinically applicable administration regimens for ZD55-IL-24 therapy.
Collapse
Affiliation(s)
- Hai-Jun Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiu Liang
- School of Life Sciences and Technology, Tongji University, Shanghai, China; and
| | - Hai-Lang Li
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Huai-Yuan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Fa Gu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Lan-Ying Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jing Xiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Qing Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ai-Min Ni
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
11
|
Ekeke CN, Russell KL, Joubert K, Bartlett DL, Luketich JD, Soloff AC, Guo ZS, Lotze MT, Dhupar R. Fighting Fire With Fire: Oncolytic Virotherapy for Thoracic Malignancies. Ann Surg Oncol 2021; 28:2715-2727. [PMID: 33575873 PMCID: PMC8043873 DOI: 10.1245/s10434-020-09477-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
Thoracic malignancies are associated with high mortality rates. Conventional therapy for many of the patients with thoracic malignancies is obviated by a high incidence of locoregional recurrence and distant metastasis. Fortunately, developments in immunotherapy provide effective strategies for both local and systemic treatments that have rapidly advanced during the last decade. One promising approach to cancer immunotherapy is to use oncolytic viruses, which have the advantages of relatively high tumor specificity, selective replication-mediated oncolysis, enhanced antigen presentation, and potential for delivery of immunogenic payloads such as cytokines, with subsequent elicitation of effective antitumor immunity. Several oncolytic viruses including adenovirus, coxsackievirus B3, herpes virus, measles virus, reovirus, and vaccinia virus have been developed and applied to thoracic cancers in preclinical murine studies and clinical trials. This review discusses the current state of oncolytic virotherapy in lung cancer, esophageal cancer, and metastatic malignant pleural effusions and considers its potential as an emergent therapeutic for these patients.
Collapse
Affiliation(s)
- Chigozirim N Ekeke
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kira L Russell
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kyla Joubert
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James D Luketich
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Adam C Soloff
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zong Sheng Guo
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Departments of Immunology and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rajeev Dhupar
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Veterans Affairs Pittsburgh Healthcare System, Surgical Services Division, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Wang C, Li Q, Xiao B, Fang H, Huang B, Huang F, Wang Y. Luteolin enhances the antitumor efficacy of oncolytic vaccinia virus that harbors IL-24 gene in liver cancer cells. J Clin Lab Anal 2021; 35:e23677. [PMID: 33274495 PMCID: PMC7957971 DOI: 10.1002/jcla.23677] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Interleukin 24 (IL-24) is an IL-10 family member and a secreted cytokine characterized by cancer-targeted toxicity and can activate apoptosis by sensitizing cancer cells to chemotherapy. Cytotoxic effects of luteolin on different types of cancer cells suppress their growth by acting on the components of the apoptosis signaling cascade. Therefore, our study aimed to prove whether oncolytic vaccinia virus (VV) that harbors IL-24 (VV-IL-24) combine with luteolin exerts a synergistic inhibitory effect in liver cancer cells. METHODS Impacts on cell viability of VV-IL-24 and luteolin were assessed by MTT in various liver cancer cell lines. Then, liver cancer cell apoptosis was analyzed via flow cytometry and Western blotting. Besides, the MHCC97-H xenograft mouse model was employed as a means of assessing in vivo antitumor efficacy. RESULTS MTT assay confirmed that the combination treatment decreased liver cancer cells viability to a greater degree than treatment with VV-IL-24 or luteolin alone. Flow cytometry and Western blot assay proved that VV-IL-24 plus luteolin induced more liver cancer cells apoptosis than single treatment. Furthermore, in the MHCC97-H xenograft model, 15 days of treatment with VV-IL-24 plus luteolin inhibited tumor growth significantly more than single treatment. CONCLUSION These data confirm that the synergistic mechanism of VV-IL-24 and luteolin elicits a stronger tumor growth inhibition than any single therapy. Thus, the combination of VV-IL-24 and luteolin could provide the basis for preclinical research in the treatment of liver cancer.
Collapse
Affiliation(s)
- Chunming Wang
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Qiang Li
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Boduan Xiao
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Huiling Fang
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Biao Huang
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Fang Huang
- Department of PathologyZhejiang Provincial People's HospitalPeople's Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Yigang Wang
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| |
Collapse
|
13
|
Jamieson TR, Poutou J, Ilkow CS. Redirecting oncolytic viruses: Engineering opportunists to take control of the tumour microenvironment. Cytokine Growth Factor Rev 2020; 56:102-114. [DOI: 10.1016/j.cytogfr.2020.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
|
14
|
SUMO-fusion and autoinduction-based combinatorial approach for enhanced production of bioactive human interleukin-24 in Escherichia coli. Appl Microbiol Biotechnol 2020; 104:9671-9682. [PMID: 33005978 DOI: 10.1007/s00253-020-10921-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
High-level production of recombinant human interleukin-24 (IL-24), a multifunctional immunomodulatory cytokine, has been challenging due primarily to its aggregation as inclusion bodies in the bacterial host while persistent poor-expression in the insect/mammalian expression systems. The present study presents a robust, vector-host combination (pE-SUMO-IL24), auto-inducible medium (YNG/M9NG), and a simple purification scheme for soluble, bioactive, and cost-effective production of native-like IL-24 (nIL-24) in Escherichia coli. The final protein yield, following a three-step purification scheme (IMAC, SEC, dialysis), was 98 mg/L in shake-flask culture (with scale-up potential), which was several folds higher than reported earlier. In vitro cytotoxicity assays with HeLa and HCT116 cancer cell lines (performed using different concentrations of nIL-24) and the fluorescence activated cell sorting analysis (FACS) revealed a dose- and concentration-dependent increase in the population of pro-apoptotic cells with concomitant, statistically significant drop in the number of cells existent at Go/G1-, S-, and G2/M-phases (P < 0.002). The bioactive nIL-24, developed through this study, holds promise for use in further functional characterizations/applications. KEY POINTS: • Yeast SUMO fusion partner at N-terminus for improved solubility of an otherwise insoluble IL-24 in E. coli. • Enhanced cell densities with concomitant several-fold increase in protein yield by lactose-inducible media. • Improved inhibition of cervical and colorectal carcinomas by native-like nIL-24 compared with Met-containing IL. • Heterologous nIL-24 may enable better understanding of the functional intricacies linked up with its unique cancer-specific features. Graphical abstract.
Collapse
|
15
|
Pelin A, Boulton S, Tamming LA, Bell JC, Singaravelu R. Engineering vaccinia virus as an immunotherapeutic battleship to overcome tumor heterogeneity. Expert Opin Biol Ther 2020; 20:1083-1097. [PMID: 32297534 DOI: 10.1080/14712598.2020.1757066] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Immunotherapy is a rapidly evolving area of cancer therapeutics aimed at driving a systemic immune response to fight cancer. Oncolytic viruses (OVs) are at the cutting-edge of innovation in the immunotherapy field. Successful OV platforms must be effective in reshaping the tumor microenvironment and controlling tumor burden, but also be highly specific to avoid off-target side effects. Large DNA viruses, like vaccinia virus (VACV), have a large coding capacity, enabling the encoding of multiple immunostimulatory transgenes to reshape the tumor immune microenvironment. VACV-based OVs have shown promising results in both pre-clinical and clinical studies, including safe and efficient intravenous delivery to metastatic tumors. AREA COVERED This review summarizes attenuation strategies to generate a recombinant VACV with optimal tumor selectivity and immunogenicity. In addition, we discuss immunomodulatory transgenes that have been introduced into VACV and summarize their effectiveness in controlling tumor burden. EXPERT OPINION VACV encodes several immunomodulatory genes which aid the virus in overcoming innate and adaptive immune responses. Strategic deletion of these virulence factors will enable an optimal balance between viral persistence and immunogenicity, robust tumor-specific expression of payloads and promotion of a systemic anti-cancer immune response. Rational selection of therapeutic transgenes will maximize the efficacy of OVs and their synergy in combinatorial immunotherapy schemes.
Collapse
Affiliation(s)
- Adrian Pelin
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa , Ottawa, Ontario, Canada
| | - Stephen Boulton
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa , Ottawa, Ontario, Canada
| | - Levi A Tamming
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa , Ottawa, Ontario, Canada
| | - John C Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa , Ottawa, Ontario, Canada
| | - Ragunath Singaravelu
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa , Ottawa, Ontario, Canada
| |
Collapse
|
16
|
Enhancing therapeutic efficacy of oncolytic vaccinia virus armed with Beclin-1, an autophagic Gene in leukemia and myeloma. Biomed Pharmacother 2020; 125:110030. [PMID: 32187960 DOI: 10.1016/j.biopha.2020.110030] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
Different strategies were taken to make virotherapy more effective at killing cancer cells. Among them, oncolytic virus which arms the therapeutic gene to enhance antitumor activity is a prevalent approach. In this study, a newly developed oncolytic vaccinia virus (OVV) that expresses Beclin-1 (OVV-BECN1) was tested for its in vitro and in vivo oncolytic activity in blood cancer. Results showed that the OVV exhibited higher infectivity for leukemia cells. OVV-BECN1 induced significant apoptosis-independent cell death either in wild-type leukemia and multiple myeloma (MM) cell lines or caspase-3 shRNA leukemia cell lines, and had a superior antitumor activity compared to the parent OVV. Autophagic cell death induced by OVV-BECN1 was demonstrated in vitro and in vivo experiments. Finally, upregulation of SIRT-1, a member of class III histone deacetylases, by OVV-BECN1 resulted in the deacetylation of LC3 and its distribution from the nucleus toward the cytoplasm, which might contribute to induction of autophagy. Overall, our data showed a favorable therapeutic effect of the oncolytic vaccinia virus on blood cancers through oncolytic and autophagic mechanisms, and may therefore constitute a promising and effective therapeutic strategy for treating human leukemia and MM. However, further studies are warranted for its reliable clinical translation.
Collapse
|
17
|
Zhang Z, Zhang J, Zhang Y, Xing J, Yu Z. Vaccinia virus expressing IL-37 promotes antitumor immune responses in hepatocellular carcinoma. Cell Biochem Funct 2019; 37:618-624. [PMID: 31710117 DOI: 10.1002/cbf.3438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/31/2019] [Accepted: 09/02/2019] [Indexed: 01/13/2023]
Abstract
The aim of this study was to investigate the effect of vaccinia virus expressing IL-37 (VV-IL-37) on cell proliferation, migration and invasion of hepatocellular carcinoma (HCC) and its possible underlying molecular mechanisms. In this study, we constructed a cancer-targeted vaccinia virus carrying the IL-37 gene knocked in the region of the viral thymidine kinase (TK) gene. Human HCC cell lines were assayed in vitro for cell proliferation, migration and invasion. Serum level, relative mRNA level and protein level of IL-37 in HCC cell lines SMMC7721 and Bel7402 were tested by ELISA assay, qRT-PCR and western blot, respectively. The levels of IL-2, IFN-γ and TNF-α in HCC tumor tissues were also analyzed by ELISA. STAT3 and p-STAT3 expression in tumor tissues were determined by western blot. Our results showed that VV-IL-37 efficiently infected and inhibited HCC cells proliferation, migration and invasion via decreasing STAT3 phosphorylation. In vivo, VV-IL-37 expressed IL-37 at a high level in the transplanted tumor, reduced STAT3 activity, and eventually inhibited tumor growth. In conclusion, we demonstrate that VV-IL-37 promotes antitumor immune responses in HCC.
Collapse
Affiliation(s)
- Zhihao Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jingwen Zhang
- Henan Institute of Respiratory Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yingying Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiyuan Xing
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
18
|
Emdad L, Bhoopathi P, Talukdar S, Pradhan AK, Sarkar D, Wang XY, Das SK, Fisher PB. Recent insights into apoptosis and toxic autophagy: The roles of MDA-7/IL-24, a multidimensional anti-cancer therapeutic. Semin Cancer Biol 2019; 66:140-154. [PMID: 31356866 DOI: 10.1016/j.semcancer.2019.07.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/21/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Apoptosis and autophagy play seminal roles in maintaining organ homeostasis. Apoptosis represents canonical type I programmed cell death. Autophagy is viewed as pro-survival, however, excessive autophagy can promote type II cell death. Defective regulation of these two obligatory cellular pathways is linked to various diseases, including cancer. Biologic or chemotherapeutic agents, which can reprogram cancer cells to undergo apoptosis- or toxic autophagy-mediated cell death, are considered effective tools for treating cancer. Melanoma differentiation associated gene-7 (mda-7) selectively promotes these effects in cancer cells. mda-7 was identified more than two decades ago by subtraction hybridization showing elevated expression during induction of terminal differentiation of metastatic melanoma cells following treatment with recombinant fibroblast interferon and mezerein (a PKC activating agent). MDA-7 was classified as a member of the IL-10 gene family based on its chromosomal location, and the presence of an IL-10 signature motif and a secretory sequence, and re-named interleukin-24 (MDA-7/IL-24). Multiple studies have established MDA-7/IL-24 as a potent anti-cancer agent, which when administered at supra-physiological levels induces growth arrest and cell death through apoptosis and toxic autophagy in a wide variety of tumor cell types, but not in corresponding normal/non-transformed cells. Furthermore, in a phase I/II clinical trial, MDA-7/IL-24 administered by means of a non-replicating adenovirus was well tolerated and displayed significant clinical activity in patients with multiple advanced cancers. This review examines our current comprehension of the role of MDA-7/IL-24 in mediating cancer-specific cell death via apoptosis and toxic autophagy.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
19
|
Fu LQ, Wang SB, Cai MH, Wang XJ, Chen JY, Tong XM, Chen XY, Mou XZ. Recent advances in oncolytic virus-based cancer therapy. Virus Res 2019; 270:197675. [PMID: 31351879 DOI: 10.1016/j.virusres.2019.197675] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022]
Abstract
Administration of oncolytic viruses (OVs) is an emerging anticancer strategy that exploits the lytic nature of viral replication to enhance the killing of malignant cells. OVs can be used as tools to directly induce cancer cell death and to trigger local and/or systemic immune responses to metastatic cancer in vivo. The effectiveness of OV therapy was initially highlighted by the clinical use of the genetically modified herpes virus, talimogene laherparepvec, for melanoma therapy. A number of OVs are now being evaluated as potential treatments for cancer in clinical trials. In spite of being engineered to specifically target tumor cells, the safety and off-target effects of OV therapy are a concern. The potential safety concerns of OVs are highlighted by current clinical trial criteria, which exclude individuals harbouring other viral infections and people who are immunocompromised. Despite the potential for adverse effects, clinical trials to date revealed relatively minimal adverse immune-related effects, such as fever. With advances in our understanding of virus replication cycles, several novel OVs have emerged. Reverse genetic systems have facilitated the insertion of anticancer genes into a range of OVs to further enhance their tumor-killing capacity. In this review, we highlight the recent advances in OV therapy for a range of human cancers in in vitro and in in vivo animal studies. We further discuss the future of OVs as a therapeutic strategy for a range of life-threatening cancers.
Collapse
Affiliation(s)
- Luo-Qin Fu
- Department of General Surgery, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital Chun'an Branch), Hangzhou 311700, Zhejiang Province, China; State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 21513, Jiangsu Province, China
| | - Shi-Bing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, China
| | - Mao-Hua Cai
- Department of General Surgery, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital Chun'an Branch), Hangzhou 311700, Zhejiang Province, China
| | - Xue-Jun Wang
- Department of General Surgery, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital Chun'an Branch), Hangzhou 311700, Zhejiang Province, China
| | - Jin-Yang Chen
- Research and Development Department, Zhejiang Healthfuture Institute For Cell-Based Applied Technology, Hangzhou 310052, Zhejiang Province, China
| | - Xiang-Min Tong
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, China
| | - Xiao-Yi Chen
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, China.
| | - Xiao-Zhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, China.
| |
Collapse
|
20
|
Pearl TM, Markert JM, Cassady KA, Ghonime MG. Oncolytic Virus-Based Cytokine Expression to Improve Immune Activity in Brain and Solid Tumors. MOLECULAR THERAPY-ONCOLYTICS 2019; 13:14-21. [PMID: 30997392 PMCID: PMC6453942 DOI: 10.1016/j.omto.2019.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oncolytic viral therapy has gained significant traction as cancer therapy over the past 2 decades. Oncolytic viruses are uniquely designed both to lyse tumor cells through their replication and to recruit immune responses against virally infected cells. Increasingly, investigators are leveraging this immune response to target the immunosuppressive tumor microenvironment and improve immune effector response against bystander tumor cells. In this article, we review the spectrum of preclinical, early-stage clinical, and potential future efforts with cytokine-secreting oncolytic viruses, with a focus on the treatment of brain tumors and solid tumors.
Collapse
Affiliation(s)
- Taylor M. Pearl
- The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - James M. Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kevin A. Cassady
- The Ohio State University College of Medicine, Columbus, OH 43205, USA
- The Research Institute at Nationwide Children’s Hospital Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Corresponding author: Kevin A. Cassady, Department of Pediatrics, Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital, Columbus, OH 43205, USA.
| | - Mohammed G. Ghonime
- The Research Institute at Nationwide Children’s Hospital Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA
| |
Collapse
|
21
|
Guo ZS, Lu B, Guo Z, Giehl E, Feist M, Dai E, Liu W, Storkus WJ, He Y, Liu Z, Bartlett DL. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. J Immunother Cancer 2019; 7:6. [PMID: 30626434 PMCID: PMC6325819 DOI: 10.1186/s40425-018-0495-7] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer vaccines and oncolytic immunotherapy are promising treatment strategies with potential to provide greater clinical benefit to patients with advanced-stage cancer. In particular, recombinant vaccinia viruses (VV) hold great promise as interventional agents. In this article, we first summarize the current understanding of virus biology and viral genes involved in host-virus interactions to further improve the utility of these agents in therapeutic applications. We then discuss recent findings from basic and clinical studies using VV as cancer vaccines and oncolytic immunotherapies. Despite encouraging results gleaned from translational studies in animal models, clinical trials implementing VV vectors alone as cancer vaccines have yielded largely disappointing results. However, the combination of VV vaccines with alternate forms of standard therapies has resulted in superior clinical efficacy. For instance, combination regimens using TG4010 (MVA-MUC1-IL2) with first-line chemotherapy in advanced-stage non-small cell lung cancer or combining PANVAC with docetaxel in the setting of metastatic breast cancer have clearly provided enhanced clinical benefits to patients. Another novel cancer vaccine approach is to stimulate anti-tumor immunity via STING activation in Batf3-dependent dendritic cells (DC) through the use of replication-attenuated VV vectors. Oncolytic VVs have now been engineered for improved safety and superior therapeutic efficacy by arming them with immune-stimulatory genes or pro-apoptotic molecules to facilitate tumor immunogenic cell death, leading to enhanced DC-mediated cross-priming of T cells recognizing tumor antigens, including neoantigens. Encouraging translational and early phase clinical results with Pexa-Vec have matured into an ongoing global phase III trial for patients with hepatocellular carcinoma. Combinatorial approaches, most notably those using immune checkpoint blockade, have produced exciting pre-clinical results and warrant the development of innovative clinical studies. Finally, we discuss major hurdles that remain in the field and offer some perspectives regarding the development of next generation VV vectors for use as cancer therapeutics.
Collapse
Affiliation(s)
- Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Binfeng Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zongbi Guo
- Fujian Tianjian Pharmaceutical Co. Ltd., Sanming, Fujian, China
| | - Esther Giehl
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mathilde Feist
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Enyong Dai
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Weilin Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Walter J Storkus
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yukai He
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zuqiang Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L Bartlett
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Ma M, Zhao R, Yang X, Zhao L, Liu L, Zhang C, Wang X, Shan B. The clinical significance of Mda-7/IL-24 and C-myb expression in tumor tissues of patients with diffuse large B cell lymphoma. Exp Ther Med 2018; 16:649-656. [PMID: 30112030 PMCID: PMC6090436 DOI: 10.3892/etm.2018.6230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 05/14/2018] [Indexed: 02/06/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin's lymphoma in adults. Mda-7/IL-24 had been identified as a differentiation inducer of B phenotype lymphoma cells. Previous studies have revealed that knockdown of C-myb also leads to the terminal differentiation of B cell lymphoma. The aim of the present study was to investigate the association between the expression of Mda-7/IL-24 and C-myb, and their prognostic significance for DLBCL patients. The tumor tissues were collected from 72 cases of DLBCL patients and detected with reverse transcription-quantitative polymerase chain reaction, western blotting and immunohistochemistry assays. The results showed that, the expression of Mda-7/IL-24 mRNA and protein was lower while the expression of C-myb was higher in DLBCL tissues, compared with the specimens of normal lymph node tissues. Furthermore, C-myb expression was negatively correlated with Mda-7/IL-24 expression at mRNA and protein levels in DLBCL tissues. The expression of Mda-7/IL-24 and C-myb in DLBCL tissues was associated with some clinicopathological parameters such as clinical stage, infiltration in bone marrow, Ki67 expression level in the tumor tissues and overall survival rates. These results indicated that low expression of Mda-7/IL-24, along with high expression of C-myb, are predictor for poor prognosis of DLBCL patients, suggesting that Mda-7/IL-24 and C-myb may be potential targets for clinical treatment of DLBCL.
Collapse
Affiliation(s)
- Ming Ma
- Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Riyang Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xingxiao Yang
- Department of Infection Management, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Lihua Liu
- Department of Biotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Cong Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xuexiao Wang
- Department of Biotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Baoen Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
23
|
Abstract
Subtraction hybridization identified genes displaying differential expression as metastatic human melanoma cells terminally differentiated and lost tumorigenic properties by treatment with recombinant fibroblast interferon and mezerein. This approach permitted cloning of multiple genes displaying enhanced expression when melanoma cells terminally differentiated, called melanoma differentiation associated (mda) genes. One mda gene, mda-7, has risen to the top of the list based on its relevance to cancer and now inflammation and other pathological states, which based on presence of a secretory sequence, chromosomal location, and an IL-10 signature motif has been named interleukin-24 (MDA-7/IL-24). Discovered in the early 1990s, MDA-7/IL-24 has proven to be a potent, near ubiquitous cancer suppressor gene capable of inducing cancer cell death through apoptosis and toxic autophagy in cancer cells in vitro and in preclinical animal models in vivo. In addition, MDA-7/IL-24 embodied profound anticancer activity in a Phase I/II clinical trial following direct injection with an adenovirus (Ad.mda-7; INGN-241) in tumors in patients with advanced cancers. In multiple independent studies, MDA-7/IL-24 has been implicated in many pathological states involving inflammation and may play a role in inflammatory bowel disease, psoriasis, cardiovascular disease, rheumatoid arthritis, tuberculosis, and viral infection. This review provides an up-to-date review on the multifunctional gene mda-7/IL-24, which may hold potential for the therapy of not only cancer, but also other pathological states.
Collapse
|
24
|
Ma M, Zhao R, Yang X, Zhao L, Liu L, Zhang C, Wang X, Shan B. Low expression of Mda-7/IL-24 and high expression of C-myb in tumour tissues are predictors of poor prognosis for Burkitt lymphoma patients. ACTA ACUST UNITED AC 2018; 23:448-455. [PMID: 29415639 DOI: 10.1080/10245332.2018.1435046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objectives Burkitt lymphoma is one of the most common types of haematopoietic malignancy in children and adolescents. Mda-7/IL-24 had been identified as a differentiation inducer of Burkitt lymphoma cells. Previous studies have revealed that knockdown of C-myb can also lead to the terminal differentiation of Burkitt lymphoma cells. The aim of the present study was to investigate the correlation between the expression of Mda-7/IL-24 and C-myb, as well as their prognostic significance, for Burkitt lymphoma patients. Methods The tumour tissues were collected from 59 cases of Burkitt lymphoma patients and detected with Western blotting and immunohistochemistry. Results The results showed that the expression of Mda-7/IL-24 was lower, whereas the expression of C-myb was higher in Burkitt lymphoma tissues compared to specimens of normal lymph node tissues. Furthermore, C-myb expression was negatively correlated with Mda-7/IL-24 expression at the protein level in Burkitt lymphoma tissues and cell lines. Both the expression of Mda-7/IL-24 and C-myb in Burkitt lymphoma tissues was associated with some clinicopathological parameters, such as clinical stage, infiltration in the bone marrow, Ki67 and overall survival rates. Conclusion These results indicated that low expression of Mda-7/IL-24 along with high expression of C-myb are predictors for poor prognosis of Burkitt lymphoma patients; this outcome suggests that Mda-7/IL-24 and C-myb might be potential targets for clinical treatment of Burkitt lymphoma. ABBREVIATIONS Mda-7/IL-24: melanoma differentiation associated gene7/interleukin 24; FCM: flow cytometry; Ecog: Eastern Cooperative Oncology Group; IPI: International lymphoma prognosis index.
Collapse
Affiliation(s)
- Ming Ma
- a Clinical Laboratory, The Fourth Hospital of Hebei Medical University , Shijiazhuang , People's Republic of China
| | - Riyang Zhao
- b Research Center, The Fourth Hospital of Hebei Medical University , Shijiazhuang , People's Republic of China
| | - Xingxiao Yang
- c Department of Infection Management , The Fourth Hospital of Hebei Medical University , Shijiazhuang , People's Republic of China
| | - Lianmei Zhao
- b Research Center, The Fourth Hospital of Hebei Medical University , Shijiazhuang , People's Republic of China
| | - Lihua Liu
- d Department of Biotherapy , The Fourth Hospital of Hebei Medical University , Shijiazhuang , People's Republic of China
| | - Cong Zhang
- b Research Center, The Fourth Hospital of Hebei Medical University , Shijiazhuang , People's Republic of China
| | - Xuexiao Wang
- d Department of Biotherapy , The Fourth Hospital of Hebei Medical University , Shijiazhuang , People's Republic of China
| | - Baoen Shan
- b Research Center, The Fourth Hospital of Hebei Medical University , Shijiazhuang , People's Republic of China
| |
Collapse
|
25
|
Xu M, Tang X, Guo J, Sun W, Tang F. Reversal effect of adenovirus-mediated human interleukin 24 transfection on the cisplatin resistance of A549/DDP lung cancer cells. Oncol Rep 2017; 38:2843-2851. [PMID: 29048638 PMCID: PMC5780038 DOI: 10.3892/or.2017.6002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 09/18/2017] [Indexed: 01/11/2023] Open
Abstract
Interleukin-24 (IL-24) is a tumor-suppressor gene that has been documented in human melanoma cells. IL-24 has marked antitumor activities on various types of human cancer, but its underlying mechanism remains unclear. In the present, we investigated the effects of human IL-24 (hIL-24) on the chemotherapy resistance of lung cancer cells. The cisplatin (DDP)-resistant lung carcinoma cell line A549/DDP was subjected to adenovirus-mediated transfection with the human IL-24 gene (Ad-hIL-24). The growth-inhibitory and apoptotic effects of Ad-hIL-24 on A549/DDP cells were observed, and the expression levels of AKT, phosphorylated-AKT (p-AKT) and P-glycoprotein (P-gp) were detected. Ad-hIL-24 significantly decreased the levels of p-AKT and P-gp, and effectively inhibited A549/DDP cell growth. Furthermore, A549/DDP cells exhibited a significantly increased rate of apoptosis, as well as G2/M-phase arrest, following transfection with Ad-hIL-24, and these effects were increased in cells treated with Ad-IL-24 combined with DDP when compared with those treated with Ad-hIL-24 or DDP alone. These results suggest that hIL-24 can reverse the DDP resistance of lung cancer cells, and that the associated mechanism involves the induction of apoptosis and G2/M-phase arrest through the phosphoinositide3-kinase (PI3K)/AKT signaling pathway, as well as a decrease in drug resistance through P-gp expression.
Collapse
Affiliation(s)
- Mingju Xu
- Department of Clinical Laboratory of Zhuhai Hospital, Jinan University and Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Xioawei Tang
- Metallurgical Science and Engineering, Central South University, Changsha, Hunan 410083, P.R. China
| | - Jinjin Guo
- Zhuhai Campus, Zunyi Medical College, Zhuhai, Guangdong 519041, P.R. China
| | - Wangbang Sun
- Zhuhai Campus, Zunyi Medical College, Zhuhai, Guangdong 519041, P.R. China
| | - Faqing Tang
- Department of Clinical Laboratory of Zhuhai Hospital, Jinan University and Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| |
Collapse
|
26
|
Abstract
Oncolytic viruses (OVs) are being extensively studied for their potential roles in the development of cancer therapy regimens. In addition to their direct lytic effects, OVs can initiate and drive systemic antitumor immunity indirectly via release of tumor antigen, as well as by encoding and delivering immunostimulatory molecules. This combination makes them an effective platform for the development of immunotherapeutic strategies beyond their primary lytic function. Engineering the viruses to also express tumor-associated antigens (TAAs) allows them to simultaneously serve as therapeutic vaccines, targeting and amplifying an immune response to TAAs. Our group and others have shown that vaccinating intratumorally with a poxvirus that encodes TAAs, in addition to immune stimulatory molecules, can modulate the tumor microenvironment, overcome immune inhibitory pathways, and drive both local and systemic tumor specific immune responses.
Collapse
|