1
|
Hou M, Zhang Z, Fan Z, Huang L, Wang L. The mechanisms of Ca2+ regulating autophagy and its research progress in neurodegenerative diseases: A review. Medicine (Baltimore) 2024; 103:e39405. [PMID: 39183424 PMCID: PMC11346841 DOI: 10.1097/md.0000000000039405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Neurodegenerative diseases are complex disorders that significantly challenge human health, with their incidence increasing with age. A key pathological feature of these diseases is the accumulation of misfolded proteins. The underlying mechanisms involve an imbalance in calcium homeostasis and disturbances in autophagy, indicating a likely correlation between them. As the most important second messenger, Ca2+ plays a vital role in regulating various cell activities, including autophagy. Different organelles within cells serve as Ca2+ storage chambers and regulate Ca2+ levels under different conditions. Ca2+ in these compartments can affect autophagy via Ca2+ channels or other related signaling proteins. Researchers propose that Ca2+ regulates autophagy through distinct signal transduction mechanisms, under normal or stressful conditions, and thereby contributing to the occurrence and development of neurodegenerative diseases. This review provides a systematic examination of the regulatory mechanisms of Ca2+ in cell membranes and different organelles, as well as its downstream pathways that influence autophagy and its implications for neurodegenerative diseases. This comprehensive analysis may facilitate the development of new drugs and provide more precise treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Meng Hou
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhixiao Zhang
- Department of Neurology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, China
| | - Zexin Fan
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lei Huang
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Wang
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Colognesi M, Shkodra A, Gabbia D, Kawamata H, Manfredi PL, Manfredi G, De Martin S. Sex-dependent effects of the uncompetitive N-methyl-D-aspartate receptor antagonist REL-1017 in G93A-SOD1 amyotrophic lateral sclerosis mice. Front Neurol 2024; 15:1384829. [PMID: 38765264 PMCID: PMC11100767 DOI: 10.3389/fneur.2024.1384829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/12/2024] [Indexed: 05/21/2024] Open
Abstract
Introduction The pathogenesis of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease caused by the demise of motor neurons has been linked to excitotoxicity caused by excessive calcium influx via N-methyl-D-aspartate receptors (NMDARs), suggesting that uncompetitive NMDAR antagonism could be a strategy to attenuate motor neuron degeneration. REL-1017, the dextro-isomer of racemic methadone, is a low-affinity uncompetitive NMDAR antagonist. Importantly, in humans REL-1017 has shown excellent tolerability in clinical trials for major depression. Methods Here, we tested if REL-1017 improves the disease phenotypes in the G93A SOD1 mouse, a well-established model of familial ALS, by examining survival and motor functions, as well as the expression of genes and proteins involved in neuroplasticity. Results We found a sex-dependent effect of REL-1017 in G93A SOD1 mice. A delay of ALS symptom onset, assessed as 10%-decrease of body weight (p < 0.01 vs. control untreated mice) and an extension of lifespan (p < 0.001 vs. control untreated mice) was observed in male G93A SOD1 mice. Female G93A SOD1 mice treated with REL-1017 showed an improvement of muscle strength (p < 0.01 vs. control untreated mice). Both males and females treated with REL-1017 showed a decrease in hind limb clasping. Sex-dependent effects of REL-1017 were also detected in molecular markers of neuronal plasticity (PSD95 and SYN1) in the spinal cord and in the GluN1 NMDAR subunit in quadricep muscles. Conclusion In conclusion, this study provides preclinical in vivo evidence supporting the clinical evaluation of REL-1017 in ALS.
Collapse
Affiliation(s)
- Martina Colognesi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Atea Shkodra
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Hibiki Kawamata
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | | | - Giovanni Manfredi
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Comparative assessment of blood Metal/metalloid levels, clinical heterogeneity, and disease severity in amyotrophic lateral sclerosis patients. Neurotoxicology 2022; 89:12-19. [PMID: 35007622 DOI: 10.1016/j.neuro.2022.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/10/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis is an unremitting neurodegenerative (ND) disease characterized by progressive and fatal loss of motor neuron function. While underlying mechanisms for ALS susceptibility are complex, current understanding suggests that interactions between age, genetic, and environmental factors may be the key. Environmental exposure to metal/metalloids has been implicated in various ND diseases including ALS, Alzheimer's Disease (AD), and Parkinson's Disease (PD). However, most of currently available population-based ALS studies in relation to metal exposure are based on individuals from European ancestry, while East Asian populations, especially cohorts from China, are less well-characterized. This study aims to examine the association between metal/metalloid levels and ALS onset by evaluating blood cadmium (Cd), lead (Pb), Cu, Zn, calcium (Ca), magnesium (Mg), and iron (Fe) levels in controls and sporadic ALS patients from North Western China. We report that Cu and Fe levels are found at higher levels in ALS patients compared to the controls. Spinal and bulbar onset patients show significant difference in Ca levels. Moreover, Cd, Pb, Cu, and Ca levels are positively correlated with high disease severity. Results from this study may provide new insights for understanding not only the role of metal/metalloids in ALS susceptibility, but also progression and forms of onset.
Collapse
|
4
|
Polgár TF, Meszlényi V, Nógrádi B, Körmöczy L, Spisák K, Tripolszki K, Széll M, Obál I, Engelhardt JI, Siklós L, Patai R. Passive Transfer of Blood Sera from ALS Patients with Identified Mutations Results in Elevated Motoneuronal Calcium Level and Loss of Motor Neurons in the Spinal Cord of Mice. Int J Mol Sci 2021; 22:ijms22189994. [PMID: 34576165 PMCID: PMC8470779 DOI: 10.3390/ijms22189994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023] Open
Abstract
Introduction: Previously, we demonstrated the degeneration of axon terminals in mice after repeated injections of blood sera from amyotrophic lateral sclerosis (ALS) patients with identified mutations. However, whether a similar treatment affects the cell body of motor neurons (MNs) remained unresolved. Methods: Sera from healthy individuals or ALS patients with a mutation in different ALS-related genes were intraperitoneally injected into ten-week-old male Balb/c mice (n = 3/serum) for two days. Afterward, the perikaryal calcium level was measured using electron microscopy. Furthermore, the optical disector method was used to evaluate the number of lumbar MNs. Results: The cytoplasmic calcium level of the lumbar MNs of the ALS-serum-treated mice, compared to untreated and healthy-serum-treated controls, was significantly elevated. While injections of the healthy serum did not reduce the number of MNs compared to the untreated control group, ALS sera induced a remarkable loss of MNs. Discussion: Similarly to the distant motor axon terminals, the injection of blood sera of ALS patients has a rapid degenerative effect on MNs. Analogously, the magnitude of the evoked changes was specific to the type of mutation; furthermore, the degeneration was most pronounced in the group treated with sera from ALS patients with a mutation in the chromosome 9 open reading frame 72 gene.
Collapse
Affiliation(s)
- Tamás F. Polgár
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., 6726 Szeged, Hungary; (T.F.P.); (V.M.); (B.N.); (L.K.); (K.S.)
- Theoretical Medicine Doctoral School, University of Szeged, 97 Tisza Lajos krt., 6722 Szeged, Hungary
| | - Valéria Meszlényi
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., 6726 Szeged, Hungary; (T.F.P.); (V.M.); (B.N.); (L.K.); (K.S.)
- Albert Szent-Györgyi Health Centre, Department of Neurology, University of Szeged, 6 Semmelweis u., 6725 Szeged, Hungary; (I.O.); (J.I.E.)
| | - Bernát Nógrádi
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., 6726 Szeged, Hungary; (T.F.P.); (V.M.); (B.N.); (L.K.); (K.S.)
- Albert Szent-Györgyi Health Centre, Department of Neurology, University of Szeged, 6 Semmelweis u., 6725 Szeged, Hungary; (I.O.); (J.I.E.)
| | - Laura Körmöczy
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., 6726 Szeged, Hungary; (T.F.P.); (V.M.); (B.N.); (L.K.); (K.S.)
| | - Krisztina Spisák
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., 6726 Szeged, Hungary; (T.F.P.); (V.M.); (B.N.); (L.K.); (K.S.)
| | - Kornélia Tripolszki
- Department of Medical Genetics, University of Szeged, 4/B Szőkefalvi-Nagy Béla u., 6720 Szeged, Hungary; (K.T.); (M.S.)
| | - Márta Széll
- Department of Medical Genetics, University of Szeged, 4/B Szőkefalvi-Nagy Béla u., 6720 Szeged, Hungary; (K.T.); (M.S.)
- Dermatological Research Group, Hungarian Academy of Sciences, University of Szeged, 4/B Szőkefalvi-Nagy Béla u., 6720 Szeged, Hungary
| | - Izabella Obál
- Albert Szent-Györgyi Health Centre, Department of Neurology, University of Szeged, 6 Semmelweis u., 6725 Szeged, Hungary; (I.O.); (J.I.E.)
- Department of Neurology, Aalborg University Hospital, 15 Skovvej Sdr., 9000 Aalborg, Denmark
| | - József I. Engelhardt
- Albert Szent-Györgyi Health Centre, Department of Neurology, University of Szeged, 6 Semmelweis u., 6725 Szeged, Hungary; (I.O.); (J.I.E.)
| | - László Siklós
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., 6726 Szeged, Hungary; (T.F.P.); (V.M.); (B.N.); (L.K.); (K.S.)
- Correspondence: (L.S.); (R.P.); Tel.: +36-62-599-611 (L.S.); +36-62-599-600/431 (R.P.)
| | - Roland Patai
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., 6726 Szeged, Hungary; (T.F.P.); (V.M.); (B.N.); (L.K.); (K.S.)
- Correspondence: (L.S.); (R.P.); Tel.: +36-62-599-611 (L.S.); +36-62-599-600/431 (R.P.)
| |
Collapse
|
5
|
Sun L, Wei H. Ryanodine Receptors: A Potential Treatment Target in Various Neurodegenerative Disease. Cell Mol Neurobiol 2020; 41:1613-1624. [PMID: 32833122 DOI: 10.1007/s10571-020-00936-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
Progressive neuronal demise is a key contributor to the key pathogenic event implicated in many different neurodegenerative disorders (NDDs). There are several therapeutic strategies available; however, none of them are particularly effective. Targeted neuroprotective therapy is one such therapy, which seems a compelling option, yet remains challenging due to the internal heterogeneity of the mechanisms underlying various NDDs. An alternative method to treat NDDs is to exploit common modalities involving molecularly distinct subtypes and thus develop specialized drugs with broad-spectrum characteristics. There is mounting evidence which supports for the theory that dysfunctional ryanodine receptors (RyRs) disrupt intracellular Ca2+ homeostasis, contributing to NDDs significantly. This review aims to provide direct and indirect evidence on the intersection of NDDs and RyRs malfunction, and to shed light on novel strategies to treat RyRs-mediated disease, modifying pharmacological therapies such as the potential therapeutic role of dantrolene, a RyRs antagonist.
Collapse
Affiliation(s)
- Liang Sun
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA
- Department of Anesthesiology, Peking University People's Hospital, Beijing, 100044, China
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Meszlényi V, Patai R, Polgár TF, Nógrádi B, Körmöczy L, Kristóf R, Spisák K, Tripolszki K, Széll M, Obál I, Engelhardt JI, Siklós L. Passive Transfer of Sera from ALS Patients with Identified Mutations Evokes an Increased Synaptic Vesicle Number and Elevation of Calcium Levels in Motor Axon Terminals, Similar to Sera from Sporadic Patients. Int J Mol Sci 2020; 21:ijms21155566. [PMID: 32756522 PMCID: PMC7432249 DOI: 10.3390/ijms21155566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022] Open
Abstract
Previously, we demonstrated increased calcium levels and synaptic vesicle densities in the motor axon terminals (MATs) of sporadic amyotrophic lateral sclerosis (ALS) patients. Such alterations could be conferred to mice with an intraperitoneal injection of sera from these patients or with purified immunoglobulin G. Later, we confirmed the presence of similar alterations in the superoxide dismutase 1 G93A transgenic mouse strain model of familial ALS. These consistent observations suggested that calcium plays a central role in the pathomechanism of ALS. This may be further reinforced by completing a similar analytical study of the MATs of ALS patients with identified mutations. However, due to the low yield of muscle biopsy samples containing MATs, and the low incidence of ALS patients with the identified mutations, these examinations are not technically feasible. Alternatively, a passive transfer of sera from ALS patients with known mutations was used, and the MATs of the inoculated mice were tested for alterations in their calcium homeostasis and synaptic activity. Patients with 11 different ALS-related mutations participated in the study. Intraperitoneal injection of sera from these patients on two consecutive days resulted in elevated intracellular calcium levels and increased vesicle densities in the MATs of mice, which is comparable to the effect of the passive transfer from sporadic patients. Our results support the idea that the pathomechanism underlying the identical manifestation of the disease with or without identified mutations is based on a common final pathway, in which increasing calcium levels play a central role.
Collapse
Affiliation(s)
- Valéria Meszlényi
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., H-6726 Szeged, Hungary; (V.M.); (R.P.); (T.F.P.); (B.N.); (L.K.); (R.K.); (K.S.)
- Foundation for the Future of Biomedical Sciences in Szeged, Szeged Scientists Academy, 15 Lechner tér, H-6721 Szeged, Hungary
| | - Roland Patai
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., H-6726 Szeged, Hungary; (V.M.); (R.P.); (T.F.P.); (B.N.); (L.K.); (R.K.); (K.S.)
| | - Tamás F. Polgár
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., H-6726 Szeged, Hungary; (V.M.); (R.P.); (T.F.P.); (B.N.); (L.K.); (R.K.); (K.S.)
| | - Bernát Nógrádi
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., H-6726 Szeged, Hungary; (V.M.); (R.P.); (T.F.P.); (B.N.); (L.K.); (R.K.); (K.S.)
- Foundation for the Future of Biomedical Sciences in Szeged, Szeged Scientists Academy, 15 Lechner tér, H-6721 Szeged, Hungary
| | - Laura Körmöczy
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., H-6726 Szeged, Hungary; (V.M.); (R.P.); (T.F.P.); (B.N.); (L.K.); (R.K.); (K.S.)
| | - Rebeka Kristóf
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., H-6726 Szeged, Hungary; (V.M.); (R.P.); (T.F.P.); (B.N.); (L.K.); (R.K.); (K.S.)
| | - Krisztina Spisák
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., H-6726 Szeged, Hungary; (V.M.); (R.P.); (T.F.P.); (B.N.); (L.K.); (R.K.); (K.S.)
| | - Kornélia Tripolszki
- Department of Medical Genetics, University of Szeged, 4/B Szőkefalvi-Nagy Béla u., H-6720 Szeged, Hungary; (K.T.); (M.S.)
| | - Márta Széll
- Department of Medical Genetics, University of Szeged, 4/B Szőkefalvi-Nagy Béla u., H-6720 Szeged, Hungary; (K.T.); (M.S.)
- Dermatological Research Group, University of Szeged, Hungarian Academy of Sciences, 4/B Szőkefalvi-Nagy Béla u., H-6720 Szeged, Hungary
| | - Izabella Obál
- Department of Neurology, Aalborg University Hospital, 15 Skovvej Sdr., DK-9000 Aalborg, Denmark;
- Department of Neurology, University of Szeged, 6 Semmelweis u., H-6725 Szeged, Hungary;
| | - József I. Engelhardt
- Department of Neurology, University of Szeged, 6 Semmelweis u., H-6725 Szeged, Hungary;
| | - László Siklós
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., H-6726 Szeged, Hungary; (V.M.); (R.P.); (T.F.P.); (B.N.); (L.K.); (R.K.); (K.S.)
- Correspondence: ; Tel.: +36-62-599-611
| |
Collapse
|
7
|
Ruiz-Ruiz C, Calzaferri F, García AG. P2X7 Receptor Antagonism as a Potential Therapy in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2020; 13:93. [PMID: 32595451 PMCID: PMC7303288 DOI: 10.3389/fnmol.2020.00093] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
This review focuses on the purinergic ionotropic receptor P2X7 (P2X7R) as a potential target for developing drugs that delay the onset and/or disease progression in patients with amyotrophic lateral sclerosis (ALS). Description of clinical and genetic ALS features is followed by an analysis of advantages and drawbacks of transgenic mouse models of disease based on mutations in a bunch of proteins, particularly Cu/Zn superoxide dismutase (SOD1), TAR-DNA binding protein-43 (TDP-43), Fused in Sarcoma/Translocated in Sarcoma (FUS), and Chromosome 9 open reading frame 72 (C9orf72). Though of limited value, these models are however critical to study the proof of concept of new compounds, before reaching clinical trials. The authors also provide a description of ALS pathogenesis including protein aggregation, calcium-dependent excitotoxicity, dysfunction of calcium-binding proteins, ultrastructural mitochondrial alterations, disruption of mitochondrial calcium handling, and overproduction of reactive oxygen species (ROS). Understanding disease pathogenic pathways may ease the identification of new drug targets. Subsequently, neuroinflammation linked with P2X7Rs in ALS pathogenesis is described in order to understand the rationale of placing the use of P2X7R antagonists as a new therapeutic pharmacological approach to ALS. This is the basis for the hypothesis that a P2X7R blocker could mitigate the neuroinflammatory state, indirectly leading to neuroprotection and higher motoneuron survival in ALS patients.
Collapse
Affiliation(s)
- Cristina Ruiz-Ruiz
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francesco Calzaferri
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio G García
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Diazoxide blocks or reduces microgliosis when applied prior or subsequent to motor neuron injury in mice. Brain Res 2020; 1741:146875. [PMID: 32389588 DOI: 10.1016/j.brainres.2020.146875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Diazoxide (DZX), an anti-hypertonic and anti-hypoglycemic drug, was shown to have anti-inflammatory effects in several injured cell types outside the central nervous system. In the brain, the neuroprotective potential of DZX is well described, however, its anticipated anti-inflammatory effect after acute injury has not been systematically analyzed. To disclose the anti-inflammatory effect of DZX in the central nervous system, an injury was induced in the hypoglossal and facial nuclei and in the oculomotor nucleus by unilateral axonal transection and unilateral target deprivation (enucleation), respectively. On the fourth day after surgery, microglial analysis was performed on tissue in which microglia were DAB-labeled and motoneurons were labeled with immunofluorescence. DZX treatment was given either prophylactically, starting 7 days prior to the injury and continuing until the animals were sacrificed, or postoperatively only, with daily intraperitoneal injections (1.25 mg/kg; in 10 mg/ml dimethyl sulfoxide in distilled water). Prophylactically + postoperatively applied DZX completely eliminated the microglial reaction in each motor nuclei. If DZX was applied only postoperatively, some microglial activation could be detected, but its magnitude was still significantly smaller than the non-DZX-treated controls. The effect of DZX could also be demonstrated through an extended period, as tested in the hypoglossal nucleus on day 7 after the operation. Neuronal counts, determined at day 4 after the operation in the hypoglossal nucleus, demonstrated no loss of motor neurons, however, an increased Feret's diameter of mitochondria could be measured, suggesting increased oxidative stress in the injured cells. The increase of mitochondrial Feret's diameter could also be prevented with DZX treatment.
Collapse
|
9
|
A Study of Gene Expression Changes in Human Spinal and Oculomotor Neurons; Identifying Potential Links to Sporadic ALS. Genes (Basel) 2020; 11:genes11040448. [PMID: 32325953 PMCID: PMC7230244 DOI: 10.3390/genes11040448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that causes compromised function of motor neurons and neuronal death. However, oculomotor neurons are largely spared from disease symptoms. The underlying causes for sporadic ALS as well as for the resistance of oculomotor neurons to disease symptoms remain poorly understood. In this bioinformatic-analysis, we compared the gene expression profiles of spinal and oculomotor tissue samples from control individuals and sporadic ALS patients. We show that the genes GAD2 and GABRE (involved in GABA signaling), and CALB1 (involved in intracellular Ca2+ ion buffering) are downregulated in the spinal tissues of ALS patients, but their endogenous levels are higher in oculomotor tissues relative to the spinal tissues. Our results suggest that the downregulation of these genes and processes in spinal tissues are related to sporadic ALS disease progression and their upregulation in oculomotor neurons confer upon them resistance to ALS symptoms. These results build upon prevailing models of excitotoxicity that are relevant to sporadic ALS disease progression and point out unique opportunities for better understanding the progression of neurodegenerative properties associated with sporadic ALS.
Collapse
|
10
|
Zhang X, Chen S, Lu K, Wang F, Deng J, Xu Z, Wang X, Zhou Q, Le W, Zhao Y. Verapamil Ameliorates Motor Neuron Degeneration and Improves Lifespan in the SOD1 G93A Mouse Model of ALS by Enhancing Autophagic Flux. Aging Dis 2019; 10:1159-1173. [PMID: 31788329 PMCID: PMC6844595 DOI: 10.14336/ad.2019.0228] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, paralytic disorder caused by selective degeneration of motor neurons in the brain and spinal cord. Our previous studies indicated that abnormal protein aggregation and dysfunctional autophagic flux might contribute to the disease pathogenesis. In this study, we have detected the role of the Ca2+ dependent autophagic pathway in ALS by using the L-type channel Ca2+ blocker, verapamil. We have found that verapamil significantly delayed disease onset, prolonged the lifespan and extended disease duration in SOD1G93A mice. Furthermore, verapamil administration rescued motor neuron survival and ameliorated skeletal muscle denervation in SOD1G93A mice. More interestingly, verapamil significantly reduced SOD1 aggregation and improved autophagic flux, which might be mediated the inhibition of calpain 1 activation in the spinal cord of SOD1G93A mice. Furthermore, we have demonstrated that verapamil reduced endoplasmic reticulum stress and suppressed glia activation in SOD1G93A mice. Collectively, our study indicated that verapamil is neuroprotective in the ALS mouse model and the Ca2+-dependent autophagic pathway is a possible therapeutic target for the treatment of ALS.
Collapse
Affiliation(s)
- Xiaojie Zhang
- 1Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Sheng Chen
- 2Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kaili Lu
- 1Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Wang
- 1Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiangshan Deng
- 1Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhouwei Xu
- 1Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiuzhe Wang
- 1Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qinming Zhou
- 2Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weidong Le
- 3Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,4Liaoning Provincial Kay Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,5Collaborative Innovation Center for Brain Science, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yuwu Zhao
- 1Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
11
|
Saba L, Viscomi MT, Martini A, Caioli S, Mercuri NB, Guatteo E, Zona C. Modified age-dependent expression of NaV1.6 in an ALS model correlates with motor cortex excitability alterations. Neurobiol Dis 2019; 130:104532. [PMID: 31302244 DOI: 10.1016/j.nbd.2019.104532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/28/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Cortical hyperexcitability is an early and intrinsic feature of Amyotrophic Lateral Sclerosis (ALS), but the mechanisms underlying this critical neuronal dysfunction are poorly understood. Recently, we have demonstrated that layer V pyramidal neurons (PNs) in the primary motor cortex (M1) of one-month old (P30) G93A ALS mice display an early hyperexcitability status compared to Control mice. In order to investigate the time-dependent evolution of the cortical excitability in the G93A ALS model, here we have performed an electrophysiological and immunohistochemical study at three different mouse ages. M1 PNs from 14-days old (P14) G93A mice have shown no excitability alterations, while M1 PNs from 3-months old (P90) G93A mice have shown a hypoexcitability status, compared to Control mice. These age-dependent cortical excitability dysfunctions correlate with a similar time-dependent trend of the persistent sodium current (INaP) amplitude alterations, suggesting that INaP may play a crucial role in the G93A cortical excitability aberrations. Specifically, immunohistochemistry experiments have indicated that the expression level of the NaV1.6 channel, one of the voltage-gated Na+ channels mainly distributed within the central nervous system, varies in G93A primary motor cortex during disease progression, according to the excitability and INaP alterations, but not in other cortical areas. Microfluorometry experiments, combined with electrophysiological recordings, have verified that P30 G93A PNs hyperexcitability is associated to a greater accumulation of intracellular calcium ([Ca2+]i) compared to Control PNs, and that this difference is still present when G93A and Control PNs fire action potentials at the same frequency. These results suggest that [Ca2+]i de-regulation in G93A PNs may contribute to neuronal demise and that the NaV1.6 channels could be a potential therapeutic target to ameliorate ALS disease progression.
Collapse
Affiliation(s)
- Luana Saba
- Department of Systems Medicine, University of Rome "Tor Vergata" via Montpellier 1, Rome 00133, Italy
| | - Maria Teresa Viscomi
- Università Cattolica del Sacro Cuore, Istituto di Istologia ed Embriologia, Fondazione Policlinico Universitario A. Gemelli, Largo F. Vito 1, Rome 00168, Italy
| | - Alessandro Martini
- IRCCS Fondazione Santa Lucia, via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Silvia Caioli
- IRCCS Fondazione Santa Lucia, via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata" via Montpellier 1, Rome 00133, Italy; IRCCS Fondazione Santa Lucia, via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Ezia Guatteo
- IRCCS Fondazione Santa Lucia, via del Fosso di Fiorano 64, Rome 00143, Italy; Department of Motor Science and Wellness, University of Naples 'Parthenope', Via Medina 40, Naples 80133, Italy
| | - Cristina Zona
- Department of Systems Medicine, University of Rome "Tor Vergata" via Montpellier 1, Rome 00133, Italy; IRCCS Fondazione Santa Lucia, via del Fosso di Fiorano 64, Rome 00143, Italy.
| |
Collapse
|
12
|
Obál I, Nógrádi B, Meszlényi V, Patai R, Ricken G, Kovacs GG, Tripolszki K, Széll M, Siklós L, Engelhardt JI. Experimental Motor Neuron Disease Induced in Mice with Long-Term Repeated Intraperitoneal Injections of Serum from ALS Patients. Int J Mol Sci 2019; 20:ijms20102573. [PMID: 31130623 PMCID: PMC6566871 DOI: 10.3390/ijms20102573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/02/2019] [Accepted: 05/23/2019] [Indexed: 01/18/2023] Open
Abstract
In an earlier study, signs of commencing degeneration of spinal motor neurons were induced in mice with short-term intraperitoneal injections of immunoglobulin G (IgG) taken from patients with amyotrophic lateral sclerosis (ALS). Since in that study, neither weakness nor loss of motor neurons was noted, to test whether the ALS IgG in this paradigm has the potential to evoke relentless degeneration of motor neurons, treatment with repeated injections over a longer period was carried out. Mice were systematically injected intraperitoneally with serum taken from ALS patients over a 75-day period. At selected time points, the isometric force of the limbs, number of spinal motor neurons and their intracellular calcium levels were determined. Furthermore, markers of glial activation and the motoneuronal uptake of human IgG were monitored. During this period, gliosis and progressive motoneuronal degeneration developed, which led to gradual loss of spinal motor neurons, more than 40% at day 21, along with decreasing muscle strength in the limbs. The inclusion-like accumulation of IgG appeared in the perikarya with the increase of intracellular calcium in the cell bodies and motor nerve terminals. Our results demonstrate that ALS serum can transfer motor neuron disease to mice.
Collapse
Affiliation(s)
- Izabella Obál
- Department of Neurology, University of Szeged, H-6725 Szeged, Hungary.
- Department of Neurology, Aalborg University Hospital, DK-9000 Aalborg, Denmark.
| | - Bernát Nógrádi
- Department of Neurology, University of Szeged, H-6725 Szeged, Hungary.
- Foundation for the Future of Biomedical Sciences in Szeged, Szeged Scientist Academy, H-6721 Szeged, Hungary.
| | - Valéria Meszlényi
- Department of Neurology, University of Szeged, H-6725 Szeged, Hungary.
- Foundation for the Future of Biomedical Sciences in Szeged, Szeged Scientist Academy, H-6721 Szeged, Hungary.
| | - Roland Patai
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, H-6726 Szeged, Hungary.
| | - Gerda Ricken
- Clinical Institute of Neurology, Medical University of Vienna, Vienna A-1090, Austria.
| | - Gabor G Kovacs
- Clinical Institute of Neurology, Medical University of Vienna, Vienna A-1090, Austria.
| | - Kornélia Tripolszki
- Department of Medical Genetics, University of Szeged, H-6720 Szeged, Hungary.
| | - Márta Széll
- Department of Medical Genetics, University of Szeged, H-6720 Szeged, Hungary.
- Hungarian Academy of Sciences - University of Szeged, Dermatological Research Group, H-6720 Szeged, Hungary.
| | - László Siklós
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, H-6726 Szeged, Hungary.
| | | |
Collapse
|
13
|
Transcriptomic Analysis of MAPK Signaling in NSC-34 Motor Neurons Treated with Vitamin E. Nutrients 2019; 11:nu11051081. [PMID: 31096690 PMCID: PMC6566669 DOI: 10.3390/nu11051081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
Vitamin E family is composed of different tocopherols and tocotrienols that are well-known as antioxidants but that exert also non-antioxidant effects. Oxidative stress may be involved in the progression of neurodegenerative disorders including amyotrophic lateral sclerosis (ALS), characterized by motor neuron death. The aim of the study was the evaluation of the changes induced in the transcriptional profile of NSC-34 motor neurons treated with α-tocopherol. In particular, cells were treated for 24 h with 10 µM α-tocopherol, RNA was extracted and transcriptomic analysis was performed using Next Generation Sequencing. Vitamin E treatment modulated MAPK signaling pathway. The evaluation revealed that 34 and 12 genes, respectively belonging to “Classical MAP kinase pathway” and “JNK and p38 MAP kinase pathway”, were involved. In particular, a downregulation of the genes encoding for p38 (Log2 fold change −0.87 and −0.67) and JNK (Log2 fold change −0.16) was found. On the contrary, the gene encoding for ERK showed a higher expression in cells treated with vitamin E (Log2 fold change 0.30). Since p38 and JNK seem more involved in cell death, while ERK in cell survival, the data suggested that vitamin E treatment may exert a protective role in NSC-34 motor neurons. Moreover, Vitamin E treatment reduced the expression of the genes which encode proteins involved in mitophagy. These results indicate that vitamin E may be an efficacious therapy in preventing motor neuron death, opening new strategies for those diseases that involve motor neurons, including ALS.
Collapse
|
14
|
Sengupta S, Le TT, Adam A, Tadić V, Stubendorff B, Keiner S, Kloss L, Prell T, Witte OW, Grosskreutz J. Interferon-γ Receptor 1 and GluR1 upregulated in motor neurons of symptomatic hSOD1G93A mice. Eur J Neurosci 2019; 49:62-78. [PMID: 30457201 DOI: 10.1111/ejn.14276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/18/2018] [Accepted: 11/08/2018] [Indexed: 01/21/2023]
Abstract
Motor neurons are markedly vulnerable to excitotoxicity mostly by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor (AMPAR) stimulation and are principal targets in the neurodegenerative disease Amyotrophic Lateral Sclerosis. Interferon-gamma (IFN-γ), a pro-inflammatory cytokine, can independently cause neuronal dysfunction by triggering calcium influx through a calcium-permeable complex of IFN-γ receptor 1(IFNGR1) subunit and AMPAR subunit GluR1. This receptor complex is formed via a non-canonical neuron-specific IFN-γ pathway that involves Jak1/Stat1 and Protein Kinase A. In this study, we explore the expression of the pathway's participants for the first time in the hSOD1G93A Amyotrophic Lateral Sclerosis mouse model. Elevated IFNGR1 and GluR1 are detected in motor neurons of hSOD1G93A symptomatic mice ex vivo, unlike the downstream targets - Jak1, Stat1, and Protein Kinase A. We, also, determine effects of IFN-γ alone or in the presence of an excitotoxic agent, kainate, on motor neuron survival in vitro. IFN-γ induces neuronal damage, but does not influence kainate-mediated excitotoxicity. Increased IFNGR1 can most likely sensitize motor neurons to excitotoxic insults involving GluR1 and/or pathways mediated by IFN-γ, thus, serving as a potential direct link between neurodegeneration and inflammation in Amyotrophic Lateral Sclerosis.
Collapse
Affiliation(s)
- Saikata Sengupta
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Thanh Tu Le
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Adam Adam
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Vedrana Tadić
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Silke Keiner
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Linda Kloss
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Tino Prell
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Julian Grosskreutz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
15
|
Misery loves company - shared features of neurodegenerative disorders. Biochem Biophys Res Commun 2017; 483:979-980. [PMID: 28189152 DOI: 10.1016/j.bbrc.2017.01.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|