1
|
Ye Z, Li L, Yang L, Zhuang L, Aspatwar A, Wang L, Gong W. Impact of diabetes mellitus on tuberculosis prevention, diagnosis, and treatment from an immunologic perspective. EXPLORATION (BEIJING, CHINA) 2024; 4:20230138. [PMID: 39439490 PMCID: PMC11491313 DOI: 10.1002/exp.20230138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
The coexistence of diabetes mellitus (DM) and tuberculosis (TB) presents a significant global burden, with DM being recognized as a major risk factor for TB. This review comprehensively analyzes the immunological aspects of DM-TB comorbidity, shedding light on the impact of DM on TB pathogenesis and immune responses. It reveals that high blood glucose levels in TB patients contribute to reduced innate immune cell count, compromised phagocytic function, and delayed antigen presentation. These factors ultimately impair the clearance of Mycobacterium tuberculosis (MTB) and delay adaptive immune responses. With the interaction between TB and DM, there is an increase in inflammation and elevated secretion of pro-inflammatory cytokines by immune cells. This exacerbates the inflammatory response and contributes to poor treatment outcomes in TB. Moreover, the review explores the effects of DM on TB prevention, diagnosis, and treatment. It highlights how poor glycemic control, insulin resistance (IR), DM complications, and genetic factors increase the risk of MTB infection in individuals with DM. Additionally, DM-related immune suppression adversely affects the sensitivity of traditional diagnostic tests for TB, potentially resulting in underdiagnosis and delayed intervention. To mitigate the burden of TB in DM patients, the review emphasizes the need for further research on the mechanisms underlying DM reactivation in latent TB infection (LTBI). It shows how important it is to find and treat LTBI in DM patients as soon as possible and suggests looking into biomarkers that are specific to DM to make diagnosis more accurate.
Collapse
Affiliation(s)
- Zhaoyang Ye
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and TreatmentSenior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
- Hebei North UniversityZhangjiakouHebeiChina
- Department of GeriatricsThe Eighth Medical Center of PLA General HospitalBeijingChina
| | | | - Ling Yang
- Hebei North UniversityZhangjiakouHebeiChina
| | - Li Zhuang
- Hebei North UniversityZhangjiakouHebeiChina
| | - Ashok Aspatwar
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Liang Wang
- Department of GeriatricsThe Eighth Medical Center of PLA General HospitalBeijingChina
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and TreatmentSenior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
2
|
Roshdy M, Zaky DA, Abbas SS, Abdallah DM. Niacin, an innovative protein kinase-C-dependent endoplasmic reticulum stress reticence in murine Parkinson's disease. Life Sci 2024; 351:122865. [PMID: 38914304 DOI: 10.1016/j.lfs.2024.122865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/08/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
AIMS Niacin (NIA) supplementation showed effectiveness against Parkinson's disease (PD) in clinical trials. The depletion of NAD and endoplasmic reticulum stress response (ERSR) are implicated in the pathogenesis of PD, but the potential role for NAD precursors on ERSR is not yet established. This study was undertaken to decipher NIA molecular mechanisms against PD-accompanied ERSR, especially in relation to PKC. METHODS Alternate-day-low-dose-21 day-subcutaneous exposure to rotenone (ROT) in rats induced PD. Following the 5th ROT injection, rats received daily doses of either NIA alone or preceded by the PKC inhibitor tamoxifen (TAM). Extent of disease progression was assessed by behavioral, striatal biochemical and striatal/nigral histopathological/immunohistochemical analysis. KEY FINDINGS Via activating PKC/LKB1/AMPK stream, NIA post-treatment attenuated the ERSR reflected by the decline in ATF4, ATF6 and XBP1s to downregulate the apoptotic markers, CHOP/GADD153, p-JNK and active caspase-3. Such amendments congregated in motor activity/coordination improvements in open field and rotarod tasks, enhanced grid test latency and reduced overall PD scores, while boosting nigral/striatal tyrosine hydroxylase immunoreactivity and increasing intact neurons (Nissl stain) in both SNpc and striatum that showed less neurodegeneration (H&E stain). To different extents, TAM reverted all the NIA-related actions to prove PKC as a fulcrum in conveying the drug neurotherapeutic potential. SIGNIFICANCE PKC activation is a pioneer mechanism in the drug ERSR inhibitory anti-apoptotic modality to clarify NIA promising clinical and potent preclinical anti-PD efficacy. This kinase can be tagged as a druggable target for future add-on treatments that can assist dopaminergic neuronal aptitude against this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Merna Roshdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Ahmed Orabi District, Cairo 44971, Egypt
| | - Doaa A Zaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Samah S Abbas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Ahmed Orabi District, Cairo 44971, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
3
|
Delligatti CE, Kirk JA. Glycation in the cardiomyocyte. VITAMINS AND HORMONES 2024; 125:47-88. [PMID: 38997172 PMCID: PMC11578284 DOI: 10.1016/bs.vh.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Glycation is a protein post-translational modification that can occur on lysine and arginine residues as a result of a non-enzymatic process known as the Maillard reaction. This modification is irreversible, so the only way it can be removed is by protein degradation and replacement. Small reactive carbonyl species, glyoxal and methylglyoxal, are the primary glycating agents and are elevated in several conditions associated with an increased risk of cardiovascular disease, including diabetes, rheumatoid arthritis, smoking, and aging. Thus, how protein glycation impacts the cardiomyocyte is of particular interest, to both understand how these conditions increase the risk of cardiovascular disease and how glycation might be targeted therapeutically. Glycation can affect the cardiomyocyte through extracellular mechanisms, including RAGE-based signaling, glycation of the extracellular matrix that modifies the mechanical environment, and signaling from the vasculature. Intracellular glycation of the cardiomyocyte can impact calcium handling, protein quality control and cell death pathways, as well as the cytoskeleton, resulting in a blunted contractility. While reducing protein glycation and its impact on the heart has been an active area of drug development, multiple clinical trials have had mixed results and these compounds have not been translated to the clinic-highlighting the challenges of modulating myocyte glycation. Here we will review protein glycation and its effects on the cardiomyocyte, therapeutic attempts to reverse these, and offer insight as to the future of glycation studies and patient treatment.
Collapse
Affiliation(s)
- Christine E Delligatti
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States.
| |
Collapse
|
4
|
Peyret H, Konecki C, Terryn C, Dubuisson F, Millart H, Feliu C, Djerada Z. Methylglyoxal induces cardiac dysfunction through mechanisms involving altered intracellular calcium handling in the rat heart. Chem Biol Interact 2024; 394:110949. [PMID: 38555048 DOI: 10.1016/j.cbi.2024.110949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/19/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
Methylglyoxal (MGO) is an endogenous, highly reactive dicarbonyl metabolite generated under hyperglycaemic conditions. MGO plays a role in developing pathophysiological conditions, including diabetic cardiomyopathy. However, the mechanisms involved and the molecular targets of MGO in the heart have not been elucidated. In this work, we studied the exposure-related effects of MGO on cardiac function in an isolated perfused rat heart ex vivo model. The effect of MGO on calcium homeostasis in cardiomyocytes was studied in vitro by the fluorescence indicator of intracellular calcium Fluo-4. We demonstrated that MGO induced cardiac dysfunction, both in contractility and diastolic function. In rat heart, the effects of MGO treatment were significantly limited by aminoguanidine, a scavenger of MGO, ruthenium red, a general cation channel blocker, and verapamil, an L-type voltage-dependent calcium channel blocker, demonstrating that this dysfunction involved alteration of calcium regulation. MGO induced a significant concentration-dependent increase of intracellular calcium in neonatal rat cardiomyocytes, which was limited by aminoguanidine and verapamil. These results suggest that the functionality of various calcium channels is altered by MGO, particularly the L-type calcium channel, thus explaining its cardiac toxicity. Therefore, MGO could participate in the development of diabetic cardiomyopathy through its impact on calcium homeostasis in cardiac cells.
Collapse
Affiliation(s)
- Hélène Peyret
- Université de Reims Champagne Ardenne, UR 3801 PPF, Reims, 51100, France
| | - Céline Konecki
- Université de Reims Champagne Ardenne, UR 3801 PPF, Reims, 51100, France; Centre Hospitalier Universitaire de Reims, Service Pharmacologie-Toxicologie, Pôle de Biologie Territoriale, Reims, 51100, France
| | - Christine Terryn
- Université de Reims Champagne Ardenne, PICT, Reims, 51100, France
| | - Florine Dubuisson
- Université de Reims Champagne Ardenne, UR 3801 PPF, Reims, 51100, France
| | - Hervé Millart
- Université de Reims Champagne Ardenne, UR 3801 PPF, Reims, 51100, France
| | - Catherine Feliu
- Université de Reims Champagne Ardenne, UR 3801 PPF, Reims, 51100, France; Centre Hospitalier Universitaire de Reims, Service Pharmacologie-Toxicologie, Pôle de Biologie Territoriale, Reims, 51100, France
| | - Zoubir Djerada
- Université de Reims Champagne Ardenne, UR 3801 PPF, Reims, 51100, France; Centre Hospitalier Universitaire de Reims, Service Pharmacologie-Toxicologie, Pôle de Biologie Territoriale, Reims, 51100, France.
| |
Collapse
|
5
|
Yin X, Guo Z, Song C. AMPK, a key molecule regulating aging-related myocardial ischemia-reperfusion injury. Mol Biol Rep 2024; 51:257. [PMID: 38302614 DOI: 10.1007/s11033-023-09050-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/10/2023] [Indexed: 02/03/2024]
Abstract
Aging leads to the threat of more diseases to the biological anatomical structure and the decline of disease resistance, increasing the incidence and mortality of myocardial ischemia-reperfusion injury (MI/RI). Moreover, MI/RI promotes damage to an aging heart. Notably, 5'-adenosine monophosphate-activated protein kinase (AMPK) regulates cellular energy metabolism, stress response, and protein metabolism, participates in aging-related signaling pathways, and plays an essential role in ischemia-reperfusion (I/R) injury diseases. This study aims to introduce the aging theory, summarize the interaction between aging and MI/RI, and describe the crosstalk of AMPK in aging and MI/RI. We show how AMPK can offer protective effects against age-related stressors, lifestyle factors such as alcohol consumption and smoking, and hypertension. We also review some of the clinical prospects for the development of interventions that harness the effect of AMPK to treat MI/RI and other age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaorui Yin
- Department of Cardiology, Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130041, China
| | - Ziyuan Guo
- Department of Cardiology, Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130041, China
| | - Chunli Song
- Department of Cardiology, Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
6
|
Sekar P, Hsiao G, Hsu SH, Huang DY, Lin WW, Chan CM. Metformin inhibits methylglyoxal-induced retinal pigment epithelial cell death and retinopathy via AMPK-dependent mechanisms: Reversing mitochondrial dysfunction and upregulating glyoxalase 1. Redox Biol 2023; 64:102786. [PMID: 37348156 PMCID: PMC10363482 DOI: 10.1016/j.redox.2023.102786] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Diabetic retinopathy (DR) is a major cause of blindness in adult, and the accumulation of advanced glycation end products (AGEs) is a major pathologic event in DR. Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is a precursor of AGEs. Although the therapeutic potential of metformin for retinopathy disorders has recently been elucidated, possibly through AMPK activation, it remains unknown how metformin directly affects the MGO-induced stress response in retinal pigment epithelial cells. Therefore, in this study, we compared the effects of metformin and the AMPK activator A769662 on MGO-induced DR in mice, as well as evaluated cytotoxicity, mitochondrial dynamic changes and dysfunction in ARPE-19 cells. We found MGO can induce mitochondrial ROS production and mitochondrial membrane potential loss, but reduce cytosolic ROS level in ARPE-19 cells. Although these effects of MGO can be reversed by both metformin and A769662, we demonstrated that reduction of mitochondrial ROS production rather than restoration of cytosolic ROS level contributes to cell protective effects of metformin and A769662. Moreover, MGO inhibits AMPK activity, reduces LC3II accumulation, and suppresses protein and gene expressions of MFN1, PGC-1α and TFAM, leading to mitochondrial fission, inhibition of mitochondrial biogenesis and autophagy. In contrast, these events of MGO were reversed by metformin in an AMPK-dependent manner as evidenced by the effects of compound C and AMPK silencing. In addition, we observed an AMPK-dependent upregulation of glyoxalase 1, a ubiquitous cellular enzyme that participates in the detoxification of MGO. In intravitreal drug-treated mice, we found that AMPK activators can reverse the MGO-induced cotton wool spots, macular edema and retinal damage. Functional, histological and optical coherence tomography analysis support the protective actions of both agents against MGO-elicited retinal damage. Metformin and A769662 via AMPK activation exert a strong protection against MGO-induced retinal pigment epithelial cell death and retinopathy. Therefore, metformin and AMPK activator can be therapeutic agents for DR.
Collapse
Affiliation(s)
- Ponarulselvam Sekar
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - George Hsiao
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Shu-Hao Hsu
- Medical Research Center, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan.
| | - Chi-Ming Chan
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
7
|
Kırça M, Yeşilkaya A. Methylglyoxal stimulates endoplasmic reticulum stress in vascular smooth muscle cells. J Recept Signal Transduct Res 2021; 42:279-284. [PMID: 33896363 DOI: 10.1080/10799893.2021.1918167] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Methylglyoxal (MGO) is considered responsible for the detrimental effects of high blood glucose. MGO is produced as a by-product of the glycolysis pathway. While the glyoxalase system removes it, the system fails in people with diabetes. MGO concentration is detected as elevated in these patients. Endoplasmic reticulum (ER) stress may play a role in atherosclerosis progression and vascular diseases. If ER stress persists, it may result in apoptosis of the cell. As a result, stabilized plaque structure by these cells may be ruptured and cause a stroke. This study aimed to investigate whether MGO can induce ER stress and apoptosis in vascular smooth muscle cells (VSMCs). Also, the effects of aminoguanidine hydrochloride (AGH), 4-phenylbutyric acid (4-PBA), and tauroursodeoxycholic acid (TUDCA) were scrutinized to relieve ER stress. VSMCs were isolated from rat aorta and cultured primary. PERK phosphorylation, IRE1α, ATF6, BiP (Grp78), and CHOP expressions were detected by the western blot technique. A caspase-3 assay kit measured the apoptosis. MGO could stimulate the main three ER stress pathways, PERK phosphorylation, IRE1α, and ATF6 expressions in a time- and concentration-dependent manner. Furthermore, AGH, 4-PBA, and TUDCA alleviated MGO-induced ER stress. However, we detected neither an increase in CHOP expression nor apoptosis in VSMCs. This study shows that MGO induces ER stress even at low concentrations in VSMCs. The impaired glyoxalase system may cause MGO accumulation and result in persisted ER stress. Supposing that ER stress is not mitigated, this table might be finalized in cell apoptosis, plaque rupture, and stroke.
Collapse
Affiliation(s)
- Mustafa Kırça
- Department of Biochemistry, School of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Akın Yeşilkaya
- Department of Biochemistry, Medical School of Akdeniz University, Antalya, Turkey
| |
Collapse
|
8
|
Chronic metformin treatment decreases cardiac injury during ischemia-reperfusion by attenuating endoplasmic reticulum stress with improved mitochondrial function. Aging (Albany NY) 2021; 13:7828-7845. [PMID: 33746115 PMCID: PMC8034968 DOI: 10.18632/aging.202858] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/11/2021] [Indexed: 11/25/2022]
Abstract
Aging impairs mitochondrial function that leads to greater cardiac injury during ischemia and reperfusion. Cardiac endoplasm reticulum (ER) stress increases with age and contributes to mitochondrial dysfunction. Metformin is an anti-diabetic drug that protects cardiac mitochondria during acute ER stress. We hypothesized that metformin treatment would improve preexisting mitochondrial dysfunction in aged hearts by attenuating ER stress, followed by a decrease in cardiac injury during subsequent ischemia and reperfusion. Male young (3 mo.) and aged mice (24 mo.) received metformin (300 mg/kg/day) dissolved in drinking water with sucrose (0.2 g/100 ml) as sweetener for two weeks versus sucrose vehicle alone. Cytosol, subsarcolemmal (SSM), and interfibrillar mitochondria (IFM) were isolated. In separate groups, cardioprotection was evaluated using ex vivo isolated heart perfusion with 25 min. global ischemia and 60 min. reperfusion. Infarct size was measured. The contents of CHOP and cleaved ATF6 were decreased in metformin-treated 24 mo. mice compared to vehicle, supporting a decrease in ER stress. Metformin treatment improved OXPHOS in IFM in 24 mo. using a complex I substrate. Metformin treatment decreased infarct size following ischemia-reperfusion. Thus, metformin feeding decreased cardiac injury in aged mice during ischemia-reperfusion by improving pre-ischemic mitochondrial function via inhibition of ER stress.
Collapse
|
9
|
Gao F, Fan H. Heat shock protein 5 and inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2020; 28:802-806. [DOI: 10.11569/wcjd.v28.i16.802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease is a kind of chronic recurrent intestinal inflammatory disease whose occurrence and development are affected by the integrity of the mucosal barrier. As the main component of the mucosal barrier, intestinal epithelial cells mainly include Paneth cells, goblet cells, etc. Heat shock protein 5 is a key factor for endoplasmic reticulum stress, and it affects the survival and apoptosis of intestinal epithelial cells mainly through endoplasmic reticulum stress pathways, and then participates in the process of inflammatory bowel disease.
Collapse
Affiliation(s)
- Fei Gao
- Department of Integrated Chinese and Western Medicine, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Heng Fan
- Department of Integrated Chinese and Western Medicine, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
10
|
Li T, Mu N, Yin Y, Yu L, Ma H. Targeting AMP-Activated Protein Kinase in Aging-Related Cardiovascular Diseases. Aging Dis 2020; 11:967-977. [PMID: 32765957 PMCID: PMC7390518 DOI: 10.14336/ad.2019.0901] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/01/2019] [Indexed: 12/11/2022] Open
Abstract
Aging is a pivotal risk factor for developing cardiovascular diseases (CVD) due to the lifelong exposure to various risk factors that may affect the heart and vasculature during aging. AMP-activated protein kinase (AMPK), a serine/threonine protein kinase, is a pivotal endogenous energy regulator that protects against various pathological alterations. In this report, we first introduced the protective mechanisms of AMPK signaling in myocardium, such as oxidative stress, apoptosis, inflammation, autophagy and inflammatory response. Next, we introduced the potential correlation between AMPK and cardiac aging. Then, we highlighted the roles of AMPK signaling in cardiovascular diseases, including myocardial ischemia, cardiomyopathy, and heart failure. Lastly, some potential directions and further perspectives were expanded. The information extends our understanding on the protective roles of AMPK in myocardial aging, which may contribute to the design of drug targets and sheds light on potential treatments of AMPK for aging-related CVD.
Collapse
Affiliation(s)
- Tian Li
- 1Department of physiology and pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Nan Mu
- 1Department of physiology and pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yue Yin
- 1Department of physiology and pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Lu Yu
- 2Department of pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Heng Ma
- 1Department of physiology and pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
11
|
Apelin-13 Inhibits Methylglyoxal-Induced Unfolded Protein Responses and Endothelial Dysfunction via Regulating AMPK Pathway. Int J Mol Sci 2020; 21:ijms21114069. [PMID: 32517197 PMCID: PMC7313041 DOI: 10.3390/ijms21114069] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
It has been suggested that methylglyoxal (MGO), a glycolytic metabolite, has more detrimental effects on endothelial dysfunction than glucose itself. Recent reports showed that high glucose and MGO induced endoplasmic reticulum (ER) stress and myocyte apoptosis in ischemic heart disease was inhibited by apelin. The goal of the study is to investigate the molecular mechanism by which MGO induces endothelial dysfunction via the regulation of ER stress in endothelial cells, and to examine whether apelin-13, a cytoprotective polypeptide ligand, protects MGO-induced aortic endothelial dysfunction. MGO-induced ER stress and apoptosis were determined by immunoblotting and MTT assay in HUVECs. Aortic endothelial dysfunction was addressed by en face immunostaining and acetylcholine-induced vasodilation analysis with aortic rings from mice treated with MGO in the presence or absence of apelin ex vivo. TUDCA, an inhibitor of ER stress, inhibited MGO-induced apoptosis and reduction of cell viability, suggesting that MGO signaling to endothelial apoptosis is mediated via ER stress, which leads to activation of unfolded protein responses (UPR). In addition, MGO-induced UPR and aortic endothelial dysfunction were significantly diminished by apelin-13. Finally, this study showed that apelin-13 protects MGO-induced UPR and endothelial apoptosis through the AMPK pathway. Apelin-13 reduces MGO-induced UPR and endothelial dysfunction via regulating the AMPK activating pathway, suggesting the therapeutic potential of apelin-13 in diabetic cardiovascular complications.
Collapse
|
12
|
Wang J, Rao G, Ma Y, Zhang J, Shen J, Shi C. Neuroprotective Effect of Activated Protein C on Blood-Brain Barrier Injury During Focal Cerebral Ischemia/Reperfusion. Dose Response 2020; 18:1559325820917288. [PMID: 32425720 PMCID: PMC7218308 DOI: 10.1177/1559325820917288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 11/17/2022] Open
Abstract
Although the effect of activated protein C (APC) on neuronal injury and neuroinflammatory responses has been extensively studied, the detailed mechanism underlying APC-protective effect in the blood–brain barrier (BBB) injury during ischemia is still not clear. In this study, the APC effect against neuroinflammatory responses was evaluated in the model of right middle cerebral artery occlusion in male Sprague-Dawley rats with 2 hours of ischemia and 22 hours of reperfusion. The results showed that APC can significantly improve the neurological function scoring and reduce the infarct volume and BBB permeability. Moreover, the expression of protein nuclear factor-kappa B (NF-κB), both in cytoplasm and nuclei, was reduced. The downstream of NF-κB activation, including tumor necrosis factor-α and interleukin-1β secretion, was inhibited. In all, APC exerts a neuroprotective effect in focal cerebral ischemia–reperfusion in rats by inhibiting the activation and nuclear translocation of NF-κB. It may indicate a therapeutic approach for ischemic brain injury.
Collapse
Affiliation(s)
- Jinqiao Wang
- Department of Rehabilitation Medicine, The First People's Hospital of Wenling, Wenzhou Medical University, Wenling, China
| | - Gaofeng Rao
- Department of Rehabilitation Medicine, The First People's Hospital of Wenling, Wenzhou Medical University, Wenling, China
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Jingjing Zhang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Jingjing Shen
- School of Civil Engineering & Architecture, Taizhou University, Taizhou, China
| | - Chaohong Shi
- Department of Rehabilitation Medicine, The First People's Hospital of Wenling, Wenzhou Medical University, Wenling, China
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The serine protease activated protein C (aPC) was initially characterized as an endogenous anticoagulant, but in addition conveys anti-inflammatory, barrier-protective, and pro cell-survival functions. Its endogenous anticoagulant function hampered the successful and continuous implantation of aPC as a therapeutic agent in septic patients. However, it became increasingly apparent that aPC controls cellular function largely independent of its anticoagulant effects through cell-specific and context-specific receptor complexes and intracellular signaling pathways. The purpose of this review is to outline the mechanisms of aPC-dependent cell signaling and its intracellular molecular targets. RECENT FINDINGS With the advent of new therapeutic agents either modulating directly and specifically the activity of coagulation proteases or interfering with protease-activated receptor signaling a better understanding not only of the receptor mechanisms but also of the intracellular signaling mechanisms controlled by aPC in a disease-specific and context-specific fashion, is required to tailor new therapeutic approaches based on aPC's anti-inflammatory, barrier-protective, and pro cell-survival functions. SUMMARY This review summarizes recent insights into the intracellular signaling pathways controlled by aPC in a cell-specific and context-specific fashion. We focus on aPC-mediated barrier protection, inhibition of inflammation, and cytoprotecting within this review.
Collapse
|
14
|
Liu F, Zhang H, Zhang Z, Lu Y, Lu X. MiR-208a aggravates H2O2-induced cardiomyocyte injury by targeting APC. Eur J Pharmacol 2019; 864:172668. [DOI: 10.1016/j.ejphar.2019.172668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/03/2019] [Accepted: 09/18/2019] [Indexed: 12/31/2022]
|
15
|
Ni XQ, Lu WW, Zhang JS, Zhu Q, Ren JL, Yu YR, Liu XY, Wang XJ, Han M, Jing Q, Du J, Tang CS, Qi YF. Inhibition of endoplasmic reticulum stress by intermedin1-53 attenuates angiotensin II-induced abdominal aortic aneurysm in ApoE KO Mice. Endocrine 2018; 62:90-106. [PMID: 29943223 DOI: 10.1007/s12020-018-1657-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/15/2018] [Indexed: 12/23/2022]
Abstract
Endoplasmic reticulum stress (ERS) is involved in the development of abdominal aortic aneurysm (AAA). Since bioactive peptide intermedin (IMD)1-53 protects against AAA formation, here we investigated whether IMD1-53 attenuates AAA by inhibiting ERS. AAA model was induced by angiotensin II (AngII) in ApoE KO mouse background. AngII-treated mouse aortas showed increased ERS gene transcription of caspase12, eukaryotic translation initiation factor 2a (eIf2a) and activating transcription factor 4(ATF4).The protein level of ERS marker glucose regulated protein 94(GRP94), ATF4 and C/EBP homologous protein 10(CHOP) was also up-regulated by AngII. Increased ERS levels were accompanied by severe VSMC apoptosis in human AAA aorta. In vivo administration of IMD1-53 greatly reduced AngII-induced AAA and abrogated the activation of ERS. To determine whether IMD inhibited AAA by ameliorating ERS, we used 2 non-selective ERS inhibitors phenyl butyrate (4-PBA) and taurine (TAU). Similar to IMD, PBA, and TAU significantly reduced the incidence of AAA and AAA-related pathological disorders. In vitro, AngII infusion up-regulated CHOP, caspase12 expression and led to VSMC apoptosis. IMD siRNA aggravated the CHOP, caspase12-mediated VSMC apoptosis, which was abolished by ATF4 silencing. IMD infusion promoted the phosphorylation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) in aortas in ApoE KO mice, and the AMPK inhibitor compound C abolished the protective effect of IMD on VSMC ERS and apoptosis induced by AngII. In conclusion, IMD may protect against AAA formation by inhibiting ERS via activating AMPK phosphorylation.
Collapse
MESH Headings
- Adenylate Kinase/metabolism
- Angiotensin II
- Animals
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/drug therapy
- Aortic Aneurysm, Abdominal/metabolism
- Apolipoproteins E/genetics
- Apolipoproteins E/metabolism
- Endoplasmic Reticulum Stress/drug effects
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Peptide Hormones/pharmacology
- Peptide Hormones/therapeutic use
- Phosphorylation/drug effects
Collapse
Affiliation(s)
- Xian-Qiang Ni
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, 100083, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China
- Department of Microbiology and Parasitology, School of Basic Medical Science, Peking University, 100083, Beijing, China
| | - Wei-Wei Lu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, 100083, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China
- Department of Microbiology and Parasitology, School of Basic Medical Science, Peking University, 100083, Beijing, China
| | - Jin-Sheng Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, 100083, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China
- Department of Microbiology and Parasitology, School of Basic Medical Science, Peking University, 100083, Beijing, China
| | - Qing Zhu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, 100083, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China
- Department of Microbiology and Parasitology, School of Basic Medical Science, Peking University, 100083, Beijing, China
| | - Jin-Ling Ren
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, 100083, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China
- Department of Microbiology and Parasitology, School of Basic Medical Science, Peking University, 100083, Beijing, China
| | - Yan-Rong Yu
- Department of Microbiology and Parasitology, School of Basic Medical Science, Peking University, 100083, Beijing, China
| | - Xiu-Ying Liu
- Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiu-Jie Wang
- Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, 050017, Shijiazhuang, China
| | - Qing Jing
- Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Science, Shanghai, China
| | - Jie Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Ministry of Education, Capital Medical University, 100029, Beijing, China
| | - Chao-Shu Tang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, 100083, Beijing, China.
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China.
| |
Collapse
|
16
|
Yang M, Fan J, Zhang J, Du J, Peng X. Visualization of methylglyoxal in living cells and diabetic mice model with a 1,8-naphthalimide-based two-photon fluorescent probe. Chem Sci 2018; 9:6758-6764. [PMID: 30310608 PMCID: PMC6115615 DOI: 10.1039/c8sc02578a] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/13/2018] [Indexed: 12/16/2022] Open
Abstract
Methylglyoxal (MGO), a dicarbonyl metabolite, is the most studied precursor of advanced glycation end-products (AGEs) and its elevated levels have also been associated with various pathologies. Hence, the development of effective methods for monitoring MGO in live cells and in vivo is of great importance for ascertaining the onset and progress of related diseases. Herein, we designed and synthesized an endoplasmic reticulum-targeting two-photon fluorescent probe called NI-OPD for the detection of MGO with high selectivity, sensitivity, and hypotoxicity. The probe was successfully applied for monitoring MGO in living cells and a diabetic mice model. The two-photon fluorescence images confirmed that the endogenous MGO in the liver and kidney tissues of diabetic mice is higher than that of normal mice. Furthermore, it revealed that after treatment with metformin, a widely used hypoglycemia drug, the diabetic mice showed a decreased concentration of MGO in liver and kidney tissues. Thus, NI-OPD may serve as a useful tool for the detection of MGO and for studying the relationships between MGO and pathological and biological processes in biosystems.
Collapse
Affiliation(s)
- Mingwang Yang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , No. 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , No. 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Junwei Zhang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , No. 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , No. 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , No. 2 Linggong Road , Dalian 116024 , P. R. China .
| |
Collapse
|
17
|
Lee TW, Kao YH, Lee TI, Chen YJ. ADAM10 modulates calcitriol-regulated RAGE in cardiomyocytes. Eur J Clin Invest 2017; 47:675-683. [PMID: 28722189 DOI: 10.1111/eci.12789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/15/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Receptor for advanced glycation end products (RAGE) signalling plays a critical role in the pathogenesis of cardiovascular disease. Calcitriol modulates cardiac RAGE expression. This study explored the mechanisms underlying the effect of calcitriol on RAGE and soluble RAGE (sRAGE) expression in cardiomyocytes. MATERIALS AND METHODS Western blot, ELISA, fluorometric assay and PCR analyses were used to evaluate the RAGE, sRAGE, endogenous secretory RAGE (esRAGE), Jun N-terminal kinase (JNK), and a disintegrin and metalloprotease 10 (ADAM10) expression and enzyme activity in HL-1 atrial myocytes without and with calcitriol (10 and 100 nM), nuclear factor-κB (NF-κB) inhibitor (50 μg/mL), or ADAM10 inhibitor (5 μM) incubation for 48 h. RESULTS Calcitriol (10 nM) significantly reduced RAGE protein expression and increased sRAGE concentrations in HL-1 cardiomyocytes compared with control cells. These changes were associated with increased protein expression and enzyme activity of ADAM10 and higher mRNA expression of esRAGE. In the presence of ADAM10 inhibitor, however, the suppressive effect of calcitriol on RAGE was diminished. Methylglyoxal (500 μM for 10 min)-mediated JNK phosphorylation was attenuated in the presence of calcitriol (10 nM). Moreover, control and NF-κB inhibitor-treated HL-1 cells had similar RAGE and sRAGE expression, suggesting that calcitriol-mediated RAGE modulation was independent of NF-κB signalling. CONCLUSIONS We showed that RAGE downregulation and increased sRAGE production by calcitriol were mediated through ADAM10 activation in cardiomyocytes. The results suggest that calcitriol has therapeutic potential in treating RAGE-mediated cardiovascular complications.
Collapse
Affiliation(s)
- Ting-Wei Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
18
|
Signal integration at the PI3K-p85-XBP1 hub endows coagulation protease activated protein C with insulin-like function. Blood 2017; 130:1445-1455. [PMID: 28687614 DOI: 10.1182/blood-2017-02-767921] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
Coagulation proteases have increasingly recognized functions beyond hemostasis and thrombosis. Disruption of activated protein C (aPC) or insulin signaling impair function of podocytes and ultimately cause dysfunction of the glomerular filtration barrier and diabetic kidney disease (DKD). We here show that insulin and aPC converge on a common spliced-X-box binding protein-1 (sXBP1) signaling pathway to maintain endoplasmic reticulum (ER) homeostasis. Analogous to insulin, physiological levels of aPC maintain ER proteostasis in DKD. Accordingly, genetically impaired protein C activation exacerbates maladaptive ER response, whereas genetic or pharmacological restoration of aPC maintains ER proteostasis in DKD models. Importantly, in mice with podocyte-specific deficiency of insulin receptor (INSR), aPC selectively restores the activity of the cytoprotective ER-transcription factor sXBP1 by temporally targeting INSR downstream signaling intermediates, the regulatory subunits of PI3Kinase, p85α and p85β. Genome-wide mapping of condition-specific XBP1-transcriptional regulatory patterns confirmed that concordant unfolded protein response target genes are involved in maintenance of ER proteostasis by both insulin and aPC. Thus, aPC efficiently employs disengaged insulin signaling components to reconfigure ER signaling and restore proteostasis. These results identify ER reprogramming as a novel hormonelike function of coagulation proteases and demonstrate that targeting insulin signaling intermediates may be a feasible therapeutic approach ameliorating defective insulin signaling.
Collapse
|