1
|
Jiang Y, MacRenaris K, O'Halloran TV, Hu J. Determination of metal ion transport rate of human ZIP4 using stable zinc isotopes. J Biol Chem 2024; 300:107661. [PMID: 39128710 DOI: 10.1016/j.jbc.2024.107661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024] Open
Abstract
The essential microelement zinc is absorbed in the small intestine mainly by the zinc transporter ZIP4, a representative member of the Zrt/Irt-like protein (ZIP) family. ZIP4 is reportedly upregulated in many cancers, making it a promising oncology drug target. To date, there have been no reports on the turnover number of ZIP4, which is a crucial missing piece of information needed to better understand the transport mechanism. In this work, we used a nonradioactive zinc isotope, 70Zn, and inductively coupled plasma mass spectrometry to study human ZIP4 (hZIP4) expressed in Human embryonic kidney 293 cells. Our data showed that 70Zn can replace the radioactive 65Zn as a tracer in kinetic evaluation of hZIP4 activity. This approach, combined with the quantification of the cell surface expression of hZIP4 using biotinylation or surface-bound antibody, allowed us to estimate the apparent turnover number of hZIP4 to be in the range of 0.08 to 0.2 s-1. The turnover numbers of the truncated hZIP4 variants are significantly smaller than that of the full-length hZIP4, confirming a crucial role for the extracellular domain in zinc transport. Using 64Zn and 70Zn, we measured zinc efflux during the cell-based transport assay and found that it has little effect on the zinc import analysis under these conditions. Finally, we demonstrated that use of laser ablation inductively coupled plasma-TOF-mass spectrometry on samples applied to a solid substrate significantly increased the throughput of the transport assay. We envision that the approach reported here can be applied to the studies of metal transporters beyond the ZIP family.
Collapse
Affiliation(s)
- Yuhan Jiang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Keith MacRenaris
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA; Elemental Health Institute, Michigan State University, East Lansing, Michigan, USA; Quantitative Bio Element Analysis and Mapping (QBEAM) Center, Michigan State University, East Lansing, Michigan, USA
| | - Thomas V O'Halloran
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA; Elemental Health Institute, Michigan State University, East Lansing, Michigan, USA; Quantitative Bio Element Analysis and Mapping (QBEAM) Center, Michigan State University, East Lansing, Michigan, USA.
| | - Jian Hu
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
2
|
Bendellaa M, Lelièvre P, Coll JL, Sancey L, Deniaud A, Busser B. Roles of zinc in cancers: From altered metabolism to therapeutic applications. Int J Cancer 2024; 154:7-20. [PMID: 37610131 DOI: 10.1002/ijc.34679] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
Zinc (Zn) is a crucial trace element involved in various cellular processes, including oxidative stress, apoptosis and immune response, contributing to cellular homeostasis. Dysregulation of Zn homeostasis occurs in certain cancers. This review discusses the role of Zn in cancer and its associated components, such as Zn-related proteins, their potential as biomarkers and the use of Zn-based strategies for tumor treatment. ZIP and ZnT proteins regulate Zn metabolism under normal conditions, but their expression is aberrant in cancer. These Zn proteins can serve as prognostic or diagnostic biomarkers, aiding in early cancer detection and disease monitoring. Moreover, targeting Zn and its pathways offers potential therapeutic approaches for cancer treatment. Modulating Zn biodistribution within cells using metal-binding agents allows for the control of downstream signaling pathways. Direct utilization of zinc as a therapeutic agent, including Zn supplementation or Zn oxide nanoparticle administration, holds promise for improving the prognosis of cancer patients.
Collapse
Affiliation(s)
- Mohamed Bendellaa
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Pierre Lelièvre
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Jean-Luc Coll
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Lucie Sancey
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Aurélien Deniaud
- Grenoble Alpes University, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Grenoble, France
| | - Benoit Busser
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
- Department of Laboratory Medicine, Grenoble Alpes University Hospital, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
3
|
Fan YG, Wu TY, Zhao LX, Jia RJ, Ren H, Hou WJ, Wang ZY. From zinc homeostasis to disease progression: Unveiling the neurodegenerative puzzle. Pharmacol Res 2024; 199:107039. [PMID: 38123108 DOI: 10.1016/j.phrs.2023.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Zinc is a crucial trace element in the human body, playing a role in various physiological processes such as oxidative stress, neurotransmission, protein synthesis, and DNA repair. The zinc transporters (ZnTs) family members are responsible for exporting intracellular zinc, while Zrt- and Irt-like proteins (ZIPs) are involved in importing extracellular zinc. These processes are essential for maintaining cellular zinc homeostasis. Imbalances in zinc metabolism have been linked to the development of neurodegenerative diseases. Disruptions in zinc levels can impact the survival and activity of neurons, thereby contributing to the progression of neurodegenerative diseases through mechanisms like cell apoptosis regulation, protein phase separation, ferroptosis, oxidative stress, and neuroinflammation. Therefore, conducting a systematic review of the regulatory network of zinc and investigating the relationship between zinc dysmetabolism and neurodegenerative diseases can enhance our understanding of the pathogenesis of these diseases. Additionally, it may offer new insights and approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Rong-Jun Jia
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Wen-Jia Hou
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
4
|
Zhang Y, Jiang Y, Gao K, Sui D, Yu P, Su M, Wei GW, Hu J. Structural insights into the elevator-type transport mechanism of a bacterial ZIP metal transporter. Nat Commun 2023; 14:385. [PMID: 36693843 PMCID: PMC9873690 DOI: 10.1038/s41467-023-36048-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
The Zrt-/Irt-like protein (ZIP) family consists of ubiquitously expressed divalent metal transporters critically involved in maintaining systemic and cellular homeostasis of zinc, iron, and manganese. Here, we present a study on a prokaryotic ZIP from Bordetella bronchiseptica (BbZIP) by combining structural biology, evolutionary covariance, computational modeling, and a variety of biochemical assays to tackle the issue of the transport mechanism which has not been established for the ZIP family. The apo state structure in an inward-facing conformation revealed a disassembled transport site, altered inter-helical interactions, and importantly, a rigid body movement of a 4-transmembrane helix (TM) bundle relative to the other TMs. The computationally generated and biochemically validated outward-facing conformation model revealed a slide of the 4-TM bundle, which carries the transport site(s), by approximately 8 Å toward the extracellular side against the static TMs which mediate dimerization. These findings allow us to conclude that BbZIP is an elevator-type transporter.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Yuhan Jiang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Kaifu Gao
- Department of Mathematics, Michigan State University, East Lansing, MI, USA
| | - Dexin Sui
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Peixuan Yu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Min Su
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Guo-Wei Wei
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Mathematics, Michigan State University, East Lansing, MI, USA
| | - Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
5
|
Hu J. Toward unzipping the ZIP metal transporters: structure, evolution, and implications on drug discovery against cancer. FEBS J 2020; 288:5805-5825. [PMID: 33296542 DOI: 10.1111/febs.15658] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
The Zrt-/Irt-like protein (ZIP) family consists of divalent metal transporters, ubiquitous in all kingdoms of life. Since the discovery of the first ZIPs in the 1990s, the ZIP family has been expanding to contain tens of thousands of members playing key roles in uptake and homeostasis of life-essential trace elements, primarily zinc, iron and manganese. Some family members are also responsible for toxic metal (particularly cadmium) absorption and distribution. Their central roles in trace element biology, and implications in many human diseases, including cancers, have elicited interest across multiple disciplines for potential applications in biomedicine, agriculture and environmental protection. In this review and perspective, selected areas under rapid progress in the last several years, including structural biology, evolution, and drug discovery against cancers, are summarised and commented. Future research to address the most prominent issues associated with transport and regulation mechanisms are also discussed.
Collapse
Affiliation(s)
- Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.,Department of Chemistry, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Xia C, Chen X, Li J, Chen P. SLC39A4 as a Novel Prognosis Marker Promotes Tumor Progression in Esophageal Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:3999-4008. [PMID: 32494154 PMCID: PMC7227820 DOI: 10.2147/ott.s245094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/24/2020] [Indexed: 01/14/2023] Open
Abstract
Background Solute carrier family 39 member 4 (SLC39A4) has been reported to play an oncogenic role in several cancers. However, the role of SLC39A4 in esophageal squamous cell carcinoma (ESCC) remains unclear. In this study, we aimed to explore the clinical significance and function of SLC39A4 in ESCC. Methods The Cancer Genome Atlas and Gene Expression Omnibus databases were analyzed to assess the level of SLC39A4 in ESCC. The expression level of SLC39A4 was measured by RT-qPCR and immunohistochemistry in a cohort of 73 patients aged 45-65 years with ESCC. Kaplan-Meier analysis was used to identify the correlation between SLC39A4 and the prognosis of ESCC patients. In vitro experiments were conducted to explore the biological function of SLC39A4 in ESCC cell line TE-1 and TE-10. Results The mRNA level of SLC39A4 was significantly enhanced in ESCC specimens, which was in line with the outcome of online databases analysis. Moreover, the aberrant expression of SLC39A4 was positively correlated with clinical stage, T categories and lymph node metastasis. Kaplan-Meier analysis indicated that elevated SLC39A4 expression predicted poor prognosis of patients with ESCC. Furthermore, the in vitro experiments showed that SLC39A4 knockdown not only impaired the proliferation and motility capacities of ESCC cells but also enhanced the sensitivity to cisplatin treatment. Conclusion Our findings suggest that SLC39A4 could serve as a novel prognosis biomarker to promote ESCC progression; however, the mechanism of SLC39A4 in ESCC remains to be further explored.
Collapse
Affiliation(s)
- Chenmei Xia
- Department of Gastroenterology, The First People's Hospital of Wenling, Wenling 317500, People's Republic of China
| | - Xia Chen
- Department of Gastroenterology, The First People's Hospital of Wenling, Wenling 317500, People's Republic of China
| | - Jun Li
- Department of Joint Surgery, The First People's Hospital of Wenling, Wenling 317500, People's Republic of China
| | - Peng Chen
- Department of Gastrointestinal Surgery, The First People's Hospital of Wenling, Wenling 317500, People's Republic of China
| |
Collapse
|
7
|
Wang J, Zhao H, Xu Z, Cheng X. Zinc dysregulation in cancers and its potential as a therapeutic target. Cancer Biol Med 2020; 17:612-625. [PMID: 32944394 PMCID: PMC7476080 DOI: 10.20892/j.issn.2095-3941.2020.0106] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Zinc is an essential element and serves as a structural or catalytic component in many proteins. Two families of transporters are involved in maintaining cellular zinc homeostasis: the ZIP (SLC39A) family that facilitates zinc influx into the cytoplasm, and the ZnT (SLC30A) family that facilitates zinc efflux from the cytoplasm. Zinc dyshomeostasis caused by the dysfunction of zinc transporters can contribute to the initiation or progression of various cancers, including prostate cancer, breast cancer, and pancreatic cancer. In addition, intracellular zinc fluctuations lead to the disturbance of certain signaling pathways involved in the malignant properties of cancer cells. This review briefly summarizes our current understanding of zinc dyshomeostasis in cancer, and discusses the potential roles of zinc or zinc transporters in cancer therapy.
Collapse
Affiliation(s)
- Jie Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Huanhuan Zhao
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Xinxin Cheng
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
8
|
Eizuka K, Nakashima D, Oka N, Wagai S, Takahara T, Saito T, Koike K, Kasamatsu A, Shiiba M, Tanzawa H, Uzawa K. SYT12 plays a critical role in oral cancer and may be a novel therapeutic target. J Cancer 2019; 10:4913-4920. [PMID: 31598163 PMCID: PMC6775516 DOI: 10.7150/jca.32582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Synaptotagmin12 (SYT12) has been well characterized as the regulator of transmitter release in the nervous system, however the relevance and molecular mechanisms of SYT12 in oral squamous cell carcinoma (OSCC) are not understood. In the current study, we investigated the expression of SYT12 and its molecular biological functions in OSCC by quantitative reverse transcriptase polymerase chain reaction, immunoblot analysis, and immunohistochemistry. SYT12 were up-regulated significantly in OSCC-derived cell lines and primary OSCC tissue compared with the normal counterparts (P<0.05) and the SYT12 expression levels were correlated significantly with clinical indicators, such as the primary tumoral size, lymph node metastasis, and TNM stage (P<0.05). SYT12 knockdown OSCC cells showed depressed cellular proliferation, migration, and invasion with cell cycle arrest at G1 phase. Surprisingly, we found increased calcium/calmodulin-dependent protein kinase 2 (CAMK2) inhibitor 1 (CAMK2N1) and decreased CAMK2-phosphorylation in the knockdown cells. Furthermore, treatment with L-3, 4-dihydroxyphenylalanine (L-dopa), a drug approved for Parkinson's disease, led to down-regulation of SYT12 and similar phenotypes to SYT12 knockdown cells. Taken together, we concluded that SYT12 plays a significant role in OSCC progression via CAMK2N1 and CAMK2, and that L-dopa would be a new drug for OSCC treatment through the SYT12 expression.
Collapse
Affiliation(s)
- Keitaro Eizuka
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Dai Nakashima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Noritoshi Oka
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sho Wagai
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshikazu Takahara
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Tomoaki Saito
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Kazuyuki Koike
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
9
|
The histidine-rich loop in the extracellular domain of ZIP4 binds zinc and plays a role in zinc transport. Biochem J 2019; 476:1791-1803. [PMID: 31164399 DOI: 10.1042/bcj20190108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 02/04/2023]
Abstract
The Zrt-/Irt-like protein (ZIP) family mediates zinc influx from extracellular space or intracellular vesicles/organelles, playing a central role in systemic and cellular zinc homeostasis. Out of the 14 family members encoded in human genome, ZIP4 is exclusively responsible for zinc uptake from dietary food and dysfunctional mutations of ZIP4 cause a life-threatening genetic disorder, Acrodermatitis Enteropathica (AE). About half of the missense AE-causing mutations occur within the large N-terminal extracellular domain (ECD), and our previous study has shown that ZIP4-ECD is crucial for optimal zinc uptake but the underlying mechanism has not been clarified. In this work, we examined zinc binding to the isolated ZIP4-ECD from Pteropus Alecto (black fruit bat) and located zinc-binding sites with a low micromolar affinity within a histidine-rich loop ubiquitously present in ZIP4 proteins. Zinc binding to this protease-susceptible loop induces a small and highly localized structural perturbation. Mutagenesis and functional study on human ZIP4 by using an improved cell-based zinc uptake assay indicated that the histidine residues within this loop are not involved in preselection of metal substrate but play a role in promoting zinc transport. The possible function of the histidine-rich loop as a metal chaperone facilitating zinc binding to the transport site and/or a zinc sensor allosterically regulating the transport machinery was discussed. This work helps to establish the structure/function relationship of ZIP4 and also sheds light on other metal transporters and metalloproteins with clustered histidine residues.
Collapse
|
10
|
Oka N, Kasamatsu A, Endo-Sakamoto Y, Eizuka K, Wagai S, Koide-Ishida N, Miyamoto I, Iyoda M, Tanzawa H, Uzawa K. Centromere Protein N Participates in Cellular Proliferation of Human Oral Cancer by Cell-Cycle Enhancement. J Cancer 2019; 10:3728-3734. [PMID: 31333790 PMCID: PMC6636300 DOI: 10.7150/jca.32281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/11/2019] [Indexed: 12/25/2022] Open
Abstract
Centromere protein N (CENP-N), an important member of the centromere protein family, is essential for kinetochore assembly and chromosome segregation; however, the relevance of CENP-N in cancers remains unknown. The aim of this study was to investigate CENP-N expression and its functional mechanisms in oral squamous cell carcinoma (OSCC). CENP-N expression was up-regulated significantly in vitro and in vivo in OSCCs. Overexpressed CENP-N was closely (p < 0.05) correlated with tumor growth using quantitative reverse transcriptase-polymerase chain reaction, immunoblot analysis, and immunohistochemistry. CENP-N knockdown (shCENP-N) cells showed depressed cellular proliferation by cell-cycle arrest at the G1 phase with up-regulation of p21Cip1 and p27Kip1 and down-regulation of cyclin D1, CDK2, and CDK4. Interestingly, we newly discovered that calcitriol (1, 25-dihydroxyvitamin D3) controlled the CENP-N expression level, leading to inhibition of tumor growth similar to shCENP-N cells. These results suggested that CENP-N plays a critical role in determining proliferation of OSCCs and that calcitriol might be a novel therapeutic drug for OSCCs by regulating CENP-N.
Collapse
Affiliation(s)
- Noritoshi Oka
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Yosuke Endo-Sakamoto
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Keitaro Eizuka
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sho Wagai
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Nao Koide-Ishida
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Isao Miyamoto
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Manabu Iyoda
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
11
|
Wagai S, Kasamatsu A, Iyoda M, Hayashi F, Hiroshima K, Yoshimura S, Miyamoto I, Nakashima D, Endo-Sakamoto Y, Shiiba M, Tanzawa H, Uzawa K. UNC93B1 promotes tumoral growth by controlling the secretion level of granulocyte macrophage colony-stimulating factor in human oral cancer. Biochem Biophys Res Commun 2019; 513:81-87. [PMID: 30935694 DOI: 10.1016/j.bbrc.2019.03.172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022]
Abstract
Unc-93 homolog B1 (UNC93B1), a transmembrane protein, is correlated with immune diseases, such as influenza, herpes simplex encephalitis, and the pathogenesis of systemic lupus erythematosus; however, the role of UNC93B1 in cancers including human oral squamous cell carcinomas (OSCCs) remains unknown. In the current study, we investigated the UNC93B1expression level in OSCCs using quantitative reverse transcription-polymerase chain reaction, immunoblot analysis, and immunohistochemistry. Our data showed that UNC93B1 mRNA and protein expressions increased markedly (p < 0.05) in OSCCs compared with normal cells and tissues and that high expression of UNC93B1 in OSCCs was related closely to tumoral size. UNC93B1 knockdown (shUNC93B1) OSCC cells showed decreased cellular proliferation by cell-cycle arrest in the G1 phase with up-regulation of p21Cip1 and down-regulation of CDK4, CDK6, cyclin D1, and cyclin E. We also found that granulocyte macrophage colony-stimulating factor (GM-CSF) was down-regulated significantly (p < 0.05) in shUNC93B1 OSCC cells. Moreover, inactivation of GM-CSF using neutralization antibody led to cell-cycle arrest at the G1 phase similar to the phenotype of the shUNC93B1 cells. The current findings indicated that UNC93B1 might play a crucial role in OSCC by controlling the secretion level of GM-CSF involved in tumoral growth and could be a potential therapeutic target for OSCCs.
Collapse
Affiliation(s)
- Sho Wagai
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Manabu Iyoda
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Fumihiko Hayashi
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuya Hiroshima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shusaku Yoshimura
- Division of Oral Surgery, Eastern Chiba Medical Center, Chiba, Japan
| | - Isao Miyamoto
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Dai Nakashima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yosuke Endo-Sakamoto
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan.
| |
Collapse
|
12
|
Okubo Y, Kasamatsu A, Yamatoji M, Fushimi K, Ishigami T, Shimizu T, Kasama H, Shiiba M, Tanzawa H, Uzawa K. Diacylglycerol lipase alpha promotes tumorigenesis in oral cancer by cell-cycle progression. Exp Cell Res 2018; 367:112-118. [PMID: 29614312 DOI: 10.1016/j.yexcr.2018.03.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 11/24/2022]
Abstract
Diacylglycerol lipase alpha (DAGLA), which catalyzes the hydrolysis of diacylglycerol to 2-arachidonoylglycerol and free fatty acid, is required for axonal growth during the brain development and for retrograde synaptic signaling at mature synapses. So far, no information was found regarding the possible role of DAGLA in human tumorigenesis. Thus, the current study sought to clarify the contribution of DAGLA in oral squamous cell carcinomas (OSCCs) and assess the clinical possibilities for OSCC treatment. Using real-time quantitative reverse transcription-polymerase chain reaction, immunoblotting, and immunohistochemistry, we found a significant up-regulation of DAGLA in OSCCs compared with normal cells and tissues both at mRNA and protein expression levels. Knockdown models in OSCC-derived cell lines for DAGLA (siDAGLA) and treatment with a lipase inhibitor (orlistat) showed several depressed cellular functions, including cellular proliferation and migratory activities through cell-cycle arrest at G1 phase. Furthermore, we found that DAGLA-positive OSCC samples were correlated highly with the primary tumoral size. We concluded that DAGLA may be a key determinant in tumoral progression and might be a therapeutic target for OSCCs.
Collapse
Affiliation(s)
- Yasuhiko Okubo
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan.
| | - Masanobu Yamatoji
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Kazuaki Fushimi
- Division of Oral Surgery, Eastern Chiba Medical Center, Chiba, Japan
| | - Takashi Ishigami
- Department of Dentistry and Oral Surgery, Asahi General Hospital, Asahi, Chiba, Japan
| | | | - Hiroki Kasama
- Division of Oral Surgery, Eastern Chiba Medical Center, Chiba, Japan
| | - Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan.
| |
Collapse
|
13
|
Yamamoto JI, Kasamatsu A, Okubo Y, Nakashima D, Fushimi K, Minakawa Y, Kasama H, Shiiba M, Tanzawa H, Uzawa K. Evaluation of tryptophan-aspartic acid repeat-containing protein 34 as a novel tumor-suppressor molecule in human oral cancer. Biochem Biophys Res Commun 2017; 495:2469-2474. [PMID: 29278705 DOI: 10.1016/j.bbrc.2017.12.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
Tryptophan-aspartic acid (WD) repeat-containing protein 34 (WDR34), one of the WDR protein superfamilies with five WD40 domains, inhibits a transforming growth factor-beta (TGF-β) activated kinase 1 (TAK1)-associated NF-κB activation pathway. Nevertheless, little is known about the roles of WDR34 in cancer. The current study sought to elucidate the clinical relevance of WDRsfb34 in oral squamous cell carcinoma (OSCC). We found WDR34 down-regulation in OSCCs compared with normal control tissues using real-time quantitative reverse transcription-polymerase chain reaction, immunoblotting, and immunohistochemistry. Models of overexpression of WDR34 (oeWDR34) showed depressed cellular growth through cell-cycle arrest at the G1 phase. To investigate the inhibitory function of WDR34, we challenged oeWDR34 cells with interleukin (IL)-1, a ligand for activation of the TAK1-NF-κB pathway and assessed the expression of a target gene of the pathway. oeWDR34 strongly inhibited IL-6 expression, which is closely related to tumoral growth, compared with control cells, suggesting that WDR34 would be a critical molecule for control of tumoral progression. In addition to the in vitro experiments, WDR34 negativity was correlated with tumoral growth of OSCCs. Our findings suggested that WDR34 inhibits OSCC progression and might be a potential tumor-suppressor molecule in OSCCs.
Collapse
Affiliation(s)
- Jun-Ichiro Yamamoto
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan.
| | - Yasuhiko Okubo
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Dai Nakashima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuaki Fushimi
- Division of Oral Surgery, Eastern Chiba Medical Center, Chiba, Japan
| | - Yasuyuki Minakawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan; Division of Dentistry, Chiba Prefectural Sawara Hospital, Chiba, Japan
| | - Hiroki Kasama
- Division of Oral Surgery, Eastern Chiba Medical Center, Chiba, Japan
| | - Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| |
Collapse
|