1
|
Nadal A, Cardesa A, Agaimy A, Almangush A, Franchi A, Hellquist H, Leivo I, Zidar N, Ferlito A. Massive parallel sequencing of head and neck conventional squamous cell carcinomas: A comprehensive review. Virchows Arch 2024; 485:965-976. [PMID: 39613893 DOI: 10.1007/s00428-024-03987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and is a cause of significant mortality and morbidity. The epidemiology of this cancer varies worldwide due to either genetic differences in populations or differences in carcinogen exposure. The application of massive parallel sequencing-based techniques in HNSCC should provide a helpful understanding of the genetic alterations that eventually lead to HNSCC development and progression, and ideally, could be used for personalized therapy. In this review, the reader will find an overview of the mutational profile of conventional HNSCC according to published results on massive parallel sequencing data that confirm the pivotal role of TP53 and the frequent involvement of CDKN2A and PIK3CA. The reader will also find a more detailed description of the genes, such as NOTCH1 and FBXW7, that were not identified in HNSCCs before the development of these techniques, the differences that can be site-specific, such as the different mutational signatures that indicate specific carcinogens for various subsites of the head and neck, and finally, the actionability of these findings that should allow more personalized therapy for patients.
Collapse
Affiliation(s)
- Alfons Nadal
- Pathology Department, Department of Clinical Fundamentals, Universitat de Barcelona, IDIBAPS, Clínic Barcelona, Barcelona, Spain.
| | | | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Alhadi Almangush
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Institute of Biomedicine, Pathology, University of Turku, Turku, Finland
| | - Alessandro Franchi
- Section of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Henrik Hellquist
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
| | - Ilmo Leivo
- Institute of Biomedicine, Pathology, University of Turku, Turku University Central Hospital, 20521, Turku, Finland
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alfio Ferlito
- International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
2
|
Hou X, Shi W, Luo W, Luo Y, Huang X, Li J, Ji N, Chen Q. FUS::DDIT3 Fusion Protein in the Development of Myxoid Liposarcoma and Possible Implications for Therapy. Biomolecules 2024; 14:1297. [PMID: 39456230 PMCID: PMC11506083 DOI: 10.3390/biom14101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The FUS::DDIT3 fusion protein, formed by the chromosomal translocation t (12;16) (q13;p11), is found in over 90% of myxoid liposarcoma (MLS) cases and is a crucial protein in its development. Many studies have explored the role of FUS::DDIT3 in MLS, and the prevailing view is that FUS::DDIT3 inhibits adipocyte differentiation and promotes MLS growth and invasive migration by functioning as an aberrant transcription factor that affects gene expression and regulates its downstream molecules. As fusion proteins are gradually showing their potential as targets for precision cancer therapy, FUS::DDIT3 has also been investigated as a therapeutic target. Drugs that target FUS::DDIT3 and its downstream molecules for treating MLS are widely utilized in both clinical practice and experimental studies, and some of them have demonstrated promising results. This article reviews the findings of relevant research, providing an overview of the oncogenic mechanisms of the FUS::DDIT3 fusion protein in MLS, as well as recent advancements in its therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.H.); (W.S.); (W.L.); (Y.L.); (X.H.); (J.L.); (Q.C.)
| | | |
Collapse
|
3
|
Oikawa K, Kuroda M, Ehata S. Suppression of antitumor cytokine IL‑24 by PRG4 and PAI‑1 may promote myxoid liposarcoma cell survival. Biomed Rep 2023; 19:60. [PMID: 37614985 PMCID: PMC10442737 DOI: 10.3892/br.2023.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/27/2023] [Indexed: 08/25/2023] Open
Abstract
Suppression of the antitumor cytokine interleukin-24 (IL-24) is critical for the survival of myxoid liposarcoma (MLS) cells. It has been previously demonstrated by the authors that an MLS-specific chimeric oncoprotein, translocated in liposarcoma-CCAAT/enhancer-binding protein homologous protein (TLS-CHOP), supresses IL24 mRNA expression via induction of proteoglycan 4 (PRG4) to sustain MLS cell proliferation. However, IL-24 has also been revealed to be suppressed by the ubiquitin-proteasome system in human ovarian and lung cancer cells. Therefore, the aim of the present study was to elucidate the mechanism of IL-24 suppression in MLS cells. The results revealed that the proteasome inhibitor, MG-132, induced cell death in MLS cells in vitro; this effect was reduced following IL-24 knockdown. This indicated that proteasomal degradation of IL-24 may be an important process for MLS cell survival. In addition, it was also previously revealed by the authors that knockdown of plasminogen activator inhibitor-1 (PAI-1), a TLS-CHOP downstream molecule, suppressed the growth of MLS cells, thus instigating the investigation of the effect of PAI-1 on IL-24 expression in MLS cells. Double knockdown of PAI-1 and IL-24 negated the growth-suppressive effect of PAI-1 single knockdown in MLS cells. Interestingly, PAI-1 single knockdown did not increase the mRNA expression of IL24, but it did increase the protein abundance of IL-24, indicating that PAI-1 suppressed IL-24 expression by promoting its proteasomal degradation. Moreover, treatment of MLS cells with a PAI-1 inhibitor, TM5275, induced IL-24 protein expression and apoptosis. Collectively, the results of the present as well as previous studies indicated that IL-24 expression may be suppressed at the transcriptional level by PRG4 and at the protein level by PAI-1 in MLS cells. Accordingly, PAI-1 may represent an effective therapeutic target for MLS treatment.
Collapse
Affiliation(s)
- Kosuke Oikawa
- Department of Pathology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Shogo Ehata
- Department of Pathology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| |
Collapse
|
4
|
Guo Y, Hu HT, Xu SJ, Xia WL, Zhao Y, Zhao XH, Zhu WB, Li FT, Li HL. Proteoglycan-4 predicts good prognosis in patients with hepatocellular carcinoma receiving transcatheter arterial chemoembolization and inhibits cancer cell migration in vitro. Front Oncol 2022; 12:1023801. [PMID: 36439456 PMCID: PMC9691762 DOI: 10.3389/fonc.2022.1023801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/24/2022] [Indexed: 08/26/2023] Open
Abstract
PURPOSE To search for adaptive response molecules that affect the efficacy of transcatheter arterial chemoembolization (TACE), analyze their clinical correlation with and prognostic value for hepatocellular carcinoma (HCC), and explore their impact on cell biological behavior and their mechanisms of action. METHODS HCC tissue gene sequencing was used to identify differentially expressed genes. The expression of proteoglycan 4 (PRG4) in the serum of 117 patients with HCC who received TACE was detected by enzyme-linked immunosorbent assay. Serum-free medium mimicked TACE-induced nutrient deprivation. Cells with stable knockdown of PRG4 (shPRG4) were constructed to verify the effect and mechanism of PRG4 on the biological behavior of HCC cells in vitro. RESULTS The expression of PRG4 was significantly elevated under TACE-induced starvation conditions. Low PRG4 expression was associated with worse response to TACE treatment, shorter survival time, and stronger HCC migration ability. Furthermore, in vitro experiments showed that knockdown of PRG4 promoted HCC cell migration by enhancing epithelial-mesenchymal transition (EMT) while did not affect proliferation. When PRG4 expression was low, starvation treatment impaired the migratory ability of HCC cells and reduced the chemosensitivity of HCC cells to epirubicin. CONCLUSIONS PRG4 expression predicts survival and TACE treatment response in patients with HCC. Furthermore, knockdown of PRG4 enhanced EMT, leading to HCC cell migration. PRG4 may serve as a biomarker for HCC patients receiving TACE.
Collapse
Affiliation(s)
- Yuan Guo
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Hong Tao Hu
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Shi Jun Xu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wei Li Xia
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yan Zhao
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiao Hui Zhao
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wen Bo Zhu
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Fang Ting Li
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Hai Liang Li
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
5
|
Kamikawa Y, Yokota K, Oikawa K, Sato F, Muragaki Y. Suppression of MKL1 promotes adipocytic differentiation and reduces the proliferation of myxoid liposarcoma cells. Oncol Lett 2020; 20:369. [PMID: 33154767 DOI: 10.3892/ol.2020.12232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/23/2020] [Indexed: 11/05/2022] Open
Abstract
Myxoid liposarcoma (MLS) is thought to occur due to defective adipocytic differentiation in mesenchymal stem cells. A promising strategy for MLS treatment is the prevention of sarcomagenesis by promoting the terminal differentiation of MLS cells into adipocytes. Previous studies have reported that the suppression of megakaryoblastic leukemia 1 (MKL1) expression induces adipocytic differentiation in preadipocyte cell lines. The present study aimed to investigate the effects of MKL1 suppression on MLS cells. In the present study, MKL1 knockdown was demonstrated to promote the adipocytic differentiation of an MLS-derived cell line, designated 1955/91, under adipogenic conditions. This suggests that therapeutic targeting of the MKL1-associated molecular pathway has potential as a promising method of MLS treatment. However, the induction of adipogenesis by MKL knockdown was incomplete, and Oil Red O staining indicated that intracellular lipid droplets were only sporadically generated. Conversely, MKL1 knockdown reduced the growth of the MLS cells. As adipocytic differentiation in vitro requires cellular confluence, the decreased growth rate of the MLS cells following MKL1 knockdown could be attributed to the incomplete induction of adipogenesis. Translocated in liposarcoma-CCAAT/enhancer-binding protein homologous protein (TLS-CHOP) is an MLS-specific oncoprotein that is thought to play key roles in sarcomagenesis and the suppression of adipocytic differentiation. However, the results of western blotting analyses suggest that TLS-CHOP has limited effects on MKL1 expression in MLS cells and that MKL1 knockdown hardly affects TLS-CHOP expression. Thus, it is postulated that the inhibitory effect of TLS-CHOP on adipogenesis is not associated with MKL1 expression. However, MKL1 and the molecular pathway involving MKL1 appear to be attractive targets for the differentiation therapy of MLS.
Collapse
Affiliation(s)
- Yohei Kamikawa
- Department of Pathology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Kento Yokota
- Department of Pathology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Kosuke Oikawa
- Department of Pathology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Fuyuki Sato
- Department of Pathology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Yasuteru Muragaki
- Department of Pathology, Wakayama Medical University, Wakayama 641-8509, Japan
| |
Collapse
|
6
|
Zhang H, Song Y, Du Z, Li X, Zhang J, Chen S, Chen F, Li T, Zhan Q. Exome sequencing identifies new somatic alterations and mutation patterns of tongue squamous cell carcinoma in a Chinese population. J Pathol 2020; 251:353-364. [PMID: 32432340 DOI: 10.1002/path.5467] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 04/08/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022]
Abstract
Tongue squamous cell carcinoma (TSCC) is an aggressive group of tumors characterized by high rates of regional lymph node metastasis and local recurrence. Emerging evidence has revealed genetic variations of TSCC across different geographical regions due to the impact of multiple risk factors such as chewing betel-quid. However, we know little of the mutational processes of TSCC in the Chinese population without the history of chewing betel-quid/tobacco. To explore the mutational spectrum of this disease, we performed whole-exome sequencing of sample pairs, comprising tumors and normal tissue, from 82 TSCC patients. In addition to identifying seven previously known TSCC-associated genes (TP53, CDKN2A, PIK3CA, NOTCH1, ASXL1, USH2A, and CSMD3), the analysis revealed six new genes (GNAQ, PRG4, RP1, ZNF16, NBEA, and PTPRC) that had not been reported previously in TSCC. Our in vitro experiments identified ZNF16 for the first time as a solid tumor associated gene to promote malignancy of TSCC cells. We also identified a microRNA (miR-585-5p) encoded by the 5q35.1 region and characterized it as a tumor suppressor by targeting SOX9. At least one non-silent mutation of genes involved in the 10 canonical oncogenic pathways (Notch, RTK-RAS, PI3K, Wnt, Cell cycle, p53, Myc, Hippo, TGFβ, and Nrf2) was found in 82.9% of cases. Collectively, our data extend the spectrum of TSCC mutations and define novel diagnosis markers and potential clinical targets for TSCC. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Heyu Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China.,National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, PR China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, PR China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Zhenglin Du
- China National Center for Bioinformation & National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China
| | - Xuefen Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, PR China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, PR China
| | - Shuai Chen
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Tiejun Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China.,Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, PR China.,National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, PR China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, PR China
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, PR China.,State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
7
|
Sebastian A, Hum NR, Martin KA, Gilmore SF, Peran I, Byers SW, Wheeler EK, Coleman MA, Loots GG. Single-Cell Transcriptomic Analysis of Tumor-Derived Fibroblasts and Normal Tissue-Resident Fibroblasts Reveals Fibroblast Heterogeneity in Breast Cancer. Cancers (Basel) 2020; 12:cancers12051307. [PMID: 32455670 PMCID: PMC7281266 DOI: 10.3390/cancers12051307] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a prominent stromal cell type in solid tumors and molecules secreted by CAFs play an important role in tumor progression and metastasis. CAFs coexist as heterogeneous populations with potentially different biological functions. Although CAFs are a major component of the breast cancer stroma, molecular and phenotypic heterogeneity of CAFs in breast cancer is poorly understood. In this study, we investigated CAF heterogeneity in triple-negative breast cancer (TNBC) using a syngeneic mouse model, BALB/c-derived 4T1 mammary tumors. Using single-cell RNA sequencing (scRNA-seq), we identified six CAF subpopulations in 4T1 tumors including: 1) myofibroblastic CAFs, enriched for α-smooth muscle actin and several other contractile proteins; 2) ‘inflammatory’ CAFs with elevated expression of inflammatory cytokines; and 3) a CAF subpopulation expressing major histocompatibility complex (MHC) class II proteins that are generally expressed in antigen-presenting cells. Comparison of 4T1-derived CAFs to CAFs from pancreatic cancer revealed that these three CAF subpopulations exist in both tumor types. Interestingly, cells with inflammatory and MHC class II-expressing CAF profiles were also detected in normal breast/pancreas tissue, suggesting that these phenotypes are not tumor microenvironment-induced. This work enhances our understanding of CAF heterogeneity, and specifically targeting these CAF subpopulations could be an effective therapeutic approach for treating highly aggressive TNBCs.
Collapse
Affiliation(s)
- Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.S.); (N.R.H.); (K.A.M.); (S.F.G.); (M.A.C.)
| | - Nicholas R. Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.S.); (N.R.H.); (K.A.M.); (S.F.G.); (M.A.C.)
- School of Natural Sciences, University of California Merced, Merced, CA 95343, USA
| | - Kelly A. Martin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.S.); (N.R.H.); (K.A.M.); (S.F.G.); (M.A.C.)
| | - Sean F. Gilmore
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.S.); (N.R.H.); (K.A.M.); (S.F.G.); (M.A.C.)
| | - Ivana Peran
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC 20007, USA; (I.P.); (S.W.B.)
| | - Stephen W. Byers
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC 20007, USA; (I.P.); (S.W.B.)
| | - Elizabeth K. Wheeler
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA;
| | - Matthew A. Coleman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.S.); (N.R.H.); (K.A.M.); (S.F.G.); (M.A.C.)
| | - Gabriela G. Loots
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.S.); (N.R.H.); (K.A.M.); (S.F.G.); (M.A.C.)
- School of Natural Sciences, University of California Merced, Merced, CA 95343, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA
- Correspondence: ; Tel.: +1-925-423-0923
| |
Collapse
|
8
|
Qu J, Wang W, Feng Y, Niu L, Li M, Yang J, Xie Y. Cationic Antheraea pernyi Silk Fibroin-Modified Adenovirus-Mediated ING4 and IL-24 Dual Gene Coexpression Vector Suppresses the Growth of Hepatoma Carcinoma Cells. Int J Nanomedicine 2019; 14:9745-9761. [PMID: 31849466 PMCID: PMC6911339 DOI: 10.2147/ijn.s230693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/25/2019] [Indexed: 12/29/2022] Open
Abstract
Introduction Cancer gene therapy requires both effective tumor suppressor genes and safe vectors that express target genes efficiently. Inhibitor of growth 4 (ING4) inhibits tumor growth via multiple pathways. Interleukin-24 (IL-24) also has tumor-suppressive activity against a broad spectrum of human cancers. Adenovirus (Ad) vectors exhibit high infection efficiency, but potential toxicity related to high doses of adenovirus has led to careful reconsideration of their use in human clinical trials. Antheraea pernyi silk fibroin (ASF) is a cytocompatible and biodegradable natural polymer, and it possesses Arg–Gly–Asp sequences exhibiting a high binding affinity and selectivity for αvβ3 and αvβ5 integrin receptors, which are overexpressed in tumor vessels and most tumor cells. Methods In this study, an Arg-Gly-Asp peptide-modified Ad vector coexpressing ING4 and IL-24 was constructed by homologous recombination of the dual gene coexpression transfer plasmid and RGD-modified pAdEasy-1 adenoviral backbone plasmid. The cationic ASF (CASF) was prepared by modifying ASF with low-molecular-weight PEI. The negatively charged Ad vector was modified with CASF to form a CASF/Ad complex. Results Human hepatoma carcinoma SMMC-7721 cells and normal hepatic L-02 cells were infected with the CASF/Ad complex, which showed significantly higher infection efficiency than the naked Ad. The CASF/Ad complex could effectively mediate the expression of the target gene ING4 in SMMC-7721 cells and the secretion of the target gene IL-24 from SMMC-7721 cells, thus inducing apoptosis of hepatoma carcinoma SMMC-7721 cells. The viability of SMMC-7721 and L-02 cells infected with the CASF/Ad complex was further assessed, and it was found that the growth of SMMC-7721 cells was significantly inhibited but that the growth and proliferation of L-02 cells were not affected. Conclusion The CASF/Ad complex constructed in this study, showing improved infection efficiency and enhanced suppressive effects on human hepatoma carcinoma SMMC-7721 cells, has the potential to reduce the dose of adenovirus and still maintain high infection efficiency and tumor inhibition.
Collapse
Affiliation(s)
- Jing Qu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Weiwei Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Yanfei Feng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Longxing Niu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Jicheng Yang
- Cell and Molecular Biology Institute, College of Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Yufeng Xie
- Department of Oncology, First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| |
Collapse
|
9
|
Zhang C, Zhang J, Xu FP, Wang YG, Xie Z, Su J, Dong S, Nie Q, Shao Y, Zhou Q, Yang JJ, Yang XN, Zhang XC, Li Z, Wu YL, Zhong WZ. Genomic Landscape and Immune Microenvironment Features of Preinvasive and Early Invasive Lung Adenocarcinoma. J Thorac Oncol 2019; 14:1912-1923. [PMID: 31446140 DOI: 10.1016/j.jtho.2019.07.031] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/06/2019] [Accepted: 07/23/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Understanding the genomic landscape and immune microenvironment features of preinvasive and early invasive lung adenocarcinoma may provide critical insight and facilitate development of novel strategies for early detection and intervention. METHODS A total of 80 tumor tissue samples and 30 paired histologically normal lung tissue samples from 30 patients with adenocarcinoma in situ (AIS) (n = 8), minimally invasive adenocarcinoma (MIA) (n = 8), and invasive adenocarcinoma (IAC) (n = 14) were subjected to multiregion whole exome sequencing and immunohistochemistry staining for CD8 and programmed death ligand 1 (PD-L1). RESULTS All tumors, including AIS, exhibited evidence of genomic intratumor heterogeneity. Canonical cancer gene mutations in EGFR, erb-b2 receptor tyrosine kinase 2 gene (ERBB2), NRAS, and BRAF were exclusively trunk mutations detected in all regions within each tumor, whereas genes associated with cell mobility, gap junction, and metastasis were all subclonal mutations. EGFR mutation represented the most common driver alterations across AIS, MIA, and IAC, whereas tumor protein p53 gene (TP53) was identified in MIA and IAC but not in AIS. There was no difference in PD-L1 expression among AIS, MIA, and IAC, but the CD8 positivity rate was higher in IAC. Tumors positive for both PD-L1 and CD8 had a larger proportion of subclonal mutations. CONCLUSIONS Mutations in EGFR, ERBB2, NRAS, and BRAF are early clonal genomic events during carcinogenesis of lung adenocarcinoma, whereas TP53 and cell mobility, gap junction, and metastasis-related genes may be late events associated with subclonal diversification and neoplastic progression. Genomic intratumor heterogeneity and immunoediting are common and early phenomena that may have occurred before the acquisition of invasion.
Collapse
Affiliation(s)
- Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China; School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas; Department of Genomic Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Fang-Ping Xu
- Department of Pathology, Guangdong Provincial Peoples' Hospital, Guangzhou, People's Republic of China
| | - Yin-Guang Wang
- Nanjing Geneseeq Technology Inc., Najing, Jiangsu, People's Republic of China
| | - Zhi Xie
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Jian Su
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Song Dong
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Qiang Nie
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Yang Shao
- Translational Medicine Research Institute, Geneseeq Technology Inc., Toronto, Ontario, Canada
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Jin-Ji Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Xue-Ning Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Xu-Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Zhi Li
- Department of Pathology, Guangdong Provincial Peoples' Hospital, Guangzhou, People's Republic of China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China.
| |
Collapse
|
10
|
Efremov YR, Proskurina AS, Potter EA, Dolgova EV, Efremova OV, Taranov OS, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. Cancer Stem Cells: Emergent Nature of Tumor Emergency. Front Genet 2018; 9:544. [PMID: 30505319 PMCID: PMC6250818 DOI: 10.3389/fgene.2018.00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
A functional analysis of 167 genes overexpressed in Krebs-2 tumor initiating cells was performed. In the first part of the study, the genes were analyzed for their belonging to one or more of the three groups, which represent the three major phenotypic manifestation of malignancy of cancer cells, namely (1) proliferative self-sufficiency, (2) invasive growth and metastasis, and (3) multiple drug resistance. 96 genes out of 167 were identified as possible contributors to at least one of these fundamental properties. It was also found that substantial part of these genes are also known as genes responsible for formation and/or maintenance of the stemness of normal pluri-/multipotent stem cells. These results suggest that the malignancy is simply the ability to maintain the stem cell specific genes expression profile, and, as a consequence, the stemness itself regardless of the controlling effect of stem niches. In the second part of the study, three stress factors combined into the single concept of "generalized cellular stress," which are assumed to activate the expression of these genes, were defined. In addition, possible mechanisms for such activation were identified. The data obtained suggest the existence of a mechanism for the de novo formation of a pluripotent/stem phenotype in the subpopulation of "committed" tumor cells.
Collapse
Affiliation(s)
- Yaroslav R Efremov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenia V Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oksana V Efremova
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Oleg S Taranov
- The State Research Center of Virology and Biotechnology Vector, Koltsovo, Russia
| | - Aleksandr A Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|