1
|
López-Acosta O, Ruiz-Ramírez A, Barrios-Maya MÁ, Alarcon-Aguilar J, Alarcon-Enos J, Céspedes Acuña CL, El-Hafidi M. Lipotoxicity, glucotoxicity and some strategies to protect vascular smooth muscle cell against proliferative phenotype in metabolic syndrome. Food Chem Toxicol 2023; 172:113546. [PMID: 36513245 DOI: 10.1016/j.fct.2022.113546] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Metabolic syndrome (MetS) is a risk factor for the development of cardiovascular disease (CVD) and atherosclerosis through a mechanism that involves vascular smooth muscle cell (VSMC) proliferation, lipotoxicity and glucotoxicity. Several molecules found to be increased in MetS, including free fatty acids, fatty acid binding protein 4, leptin, resistin, oxidized lipoprotein particles, and advanced glycation end products, influence VSMC proliferation. Most of these molecules act through their receptors on VSMCs by activating several signaling pathways associated with ROS generation in various cellular compartments. ROS from NADPH-oxidase and mitochondria have been found to promote VSMC proliferation and cell cycle progression. In addition, most of the natural or synthetic substances described in this review, including pharmaceuticals with hypoglycemic and hypolipidemic properties, attenuate VSMC proliferation by their simultaneous modulation of cell signaling and their scavenging property due to the presence of a phenolic ring in their structure. This review discusses recent data in the literature on the role that several MetS-related molecules and ROS play in the change from contractile to proliferative phenotype of VSMCs. Hence the importance of proposing an appropriate strategy to prevent uncontrolled VSMC proliferation using antioxidants, hypoglycemic and hypolipidemic agents.
Collapse
Affiliation(s)
- Ocarol López-Acosta
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico
| | - Angélica Ruiz-Ramírez
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico
| | - Miguel-Ángel Barrios-Maya
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico
| | - Javier Alarcon-Aguilar
- Laboratorio de Farmacología, Depto. de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Iztapalapa, Iztapalapa, Mexico
| | - Julio Alarcon-Enos
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Av. Andres Bello 720, Chillan, Chile
| | - Carlos L Céspedes Acuña
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Av. Andres Bello 720, Chillan, Chile.
| | - Mohammed El-Hafidi
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico.
| |
Collapse
|
2
|
Weng Z, Chen Y, Liang T, Lin Y, Cao H, Song H, Xiong L, Wang F, Shen X, Xiao J. A review on processing methods and functions of wheat germ-derived bioactive peptides. Crit Rev Food Sci Nutr 2021; 63:5577-5593. [PMID: 34964419 DOI: 10.1080/10408398.2021.2021139] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Wheat germ protein is a potential resource to produce bioactive peptides. As a cheap, safe, and healthy nutritional factor, wheat germ-derived bioactive peptides (WGBPs) provide benefits and great potential for biomedical applications. The objective of this review is to reveal the current research status of WGBPs, including their preparation methods and biological functions, such as antibacterial, anti-tumor, immune regulation, antioxidant, and anti-inflammatory properties, etc. We also reviewed the information in terms of the preventive ability of WGBPs to treat serious infectious diseases, to offer their reference to further research and application. Opinions on future research directions are also discussed. Through the review of previous research, we find that there are still some scientific issues in the basic research and industrialization process of WGBPs that deserve further exploration. Firstly, based on current complex enzymolysis, the preparation and production of WGBPs need to be combined with other advanced technology to achieve efficient and large-scale production. Secondly, studies on the bioavailability, biosafety, and mechanism against different diseases of WGBPs need to be carried out in different in vitro and in vivo models. More human experimental evidence is also required to support its industrial application as a functional food and nutritional supplement.HighlightsThe purification and identification of wheat germ-derived bioactive peptides.The main biological activities and potential mechanisms of wheat germ hydrolysates/peptides.Possible absorption and transport pathways of wheat germ hydrolysate/peptide.Wheat germ peptide shows a variety of health benefits according to its amino acid sequence.Current food applications and future perspectives of wheat germ protein hydrolysates/peptide.
Collapse
Affiliation(s)
- Zebin Weng
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanrong Chen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Tingting Liang
- Changshu Hospital, Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Yajuan Lin
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Cao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Haizhao Song
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Ling Xiong
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Jianbo Xiao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
3
|
Wang F, Weng Z, Lyu Y, Bao Y, Liu J, Zhang Y, Sui X, Fang Y, Tang X, Shen X. Wheat germ-derived peptide ADWGGPLPH abolishes high glucose-induced oxidative stress via modulation of the PKCζ/AMPK/NOX4 pathway. Food Funct 2021; 11:6843-6854. [PMID: 32662486 DOI: 10.1039/d0fo01229g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study explores the antioxidative effect of a specific wheat germ-derived peptide on high glucose-induced oxidative stress in vascular smooth muscle cells (VSMCs) and the underlying mechanisms. The peptide ADWGGPLPH was identified by LC-MS/MS. The effects of this peptide on the production of ROS and the expression of oxidative stress signaling proteins in VSMCs were determined. STZ-induced mice were utilized to confirm the anti-oxidative and anti-diabetic cardiovascular disease effects of this peptide in vivo. The results showed that ADWGGPLPH significantly prevented high glucose-induced cell proliferation, decreased intracellular ROS generation, stimulated AMPK activity, inhibited the PKCζ, AKT and Erk1/2 phosphorylation, and suppressed NOX4 protein expression. In addition, ADWGGPLPH enhanced the antioxidant abilities and attenuated inflammatory cytokine generation in STZ-induced diabetic mice. Therefore, ADWGGPLPH prevents high glucose-induced oxidative stress in VSMCs by modulating the PKCζ/AMPK/NOX4 pathway.
Collapse
Affiliation(s)
- Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| | - Zebin Weng
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yi Lyu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| | - Yifan Bao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| | - Juncheng Liu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| | - Yu Zhang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yong Fang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| |
Collapse
|
4
|
Hou H, Wang J, Wang J, Tang W, Shaikh AS, Li Y, Fu J, Lu L, Wang F, Sun F, Tan H. A Review of Bioactive Peptides: Chemical Modification, Structural Characterization and Therapeutic Applications. J Biomed Nanotechnol 2021; 16:1687-1718. [PMID: 33485398 DOI: 10.1166/jbn.2020.3001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, the development and applications of protein drugs have attracted extensive attention from researchers. However, the shortcomings of protein drugs also limit their further development. Therefore, bioactive peptides isolated or simulated from protein polymers have broad application prospects in food, medicine, biotechnology, and other industries. Such peptides have a molecular weight distribution between 180 and 1000 Da. As a small molecule substance, bioactive peptide is usually degraded by various enzymes in the organism and have a short half-life. At the same time, such substances have poor stability and are difficult to produce and store. Therefore, these active peptides may be modified through phosphorylation, glycosylation, and acylation. Compared with other protein drugs, the modified active peptides are more easily absorbed by the body, have longer half-life, stronger targeting, and fewer side effects in addition to higher bioavailability. In the light of their functions, bioactive peptide can be divided into antimicrobial, anti-tumour, anti-angiogenic, antioxidant, anti-fatigue, and anti-hypertensive peptides. This article mainly focuses on the introduction of several promising biologically active peptides functioning as antimicrobial, anti-tumour, antiangiogenic, and antioxidant peptides from the three aspects modification, structural characteristics and mechanism of action.
Collapse
|
5
|
Zhu XS, Zhou HY, Yang F, Zhang HS, Ma KZ. miR-381-3p inhibits high glucose-induced vascular smooth muscle cell proliferation and migration by targeting HMGB1. J Gene Med 2020; 23:e3274. [PMID: 32902022 DOI: 10.1002/jgm.3274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hyperglycemia increases the risk of many cardiovascular diseases (CVD), and the dysregulation of proliferation and migration in vascular smooth muscle cells (VSMCs) also participates in the pathogenesis of CVD. miR-381-3p is known to suppress the proliferation and migration of multiple human cell types. Nevertheless, the function of miR-381-3p in VSMCs remains largely indistinct. METHODS A quantitative real-time polymerase chain reaction (qRT-PCR) was employed to investigate miR-381-3p expression in high-glucose-induced VSMCs. Inflammatory cytokines tumor necrosis factor-α, interleukin-1β and interleukin-6, as well as oxidative stress markers SOD and MDA, were determined by an enzyme-linked immunosorbent assay. Reactive oxygen species generation was examined using a 2,7'-dichlorofluorescein kit. The proliferation, migration and apoptosis of VSMCs were monitored by 3-(4,5-dimethylthiazl2-yl)-2,5-diphenyltetazolium bromide (MTT), transwell and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assays. The TargetScan database (http://www.targetscan.org) was employed to seek the potential target gene of miR-381-3p. Interaction between miR-381-3p and HMGB1 was determined by a qRT-PCR, western blotting and a luciferase reporter assay. RESULTS miR-381-3p expression was significantly reduced in a VSMCs dysfunction model induced by high-glucose in a dose- and time-dependent manner. Transfection of miR-381-3p mimics suppressed the inflammation, oxidative stress, proliferation and migration of VSMCs, whereas apoptosis of VSMCs was promoted, and the transfection of miR-381-3p inhibitors had the opposite effect. Mechanistically, HMGB1, an important factor in inflammation response, was confirmed as a target gene of miR-381-3p. CONCLUSIONS miR-381-3p targets HMGB1 to suppress the inflammation, oxidative stress, proliferation and migration of high-glucose-induced VSMCs by targeting HMGB1.
Collapse
Affiliation(s)
- Xiao-Shan Zhu
- Department of Cardiology, Xiangyang Central Hospital, Affliated Hospital of Hubei College of Arts and Science, Xiangyang City, Hubei Province, 441021, China
| | - Han-Yun Zhou
- Department of Cardiology, Xiangyang Central Hospital, Affliated Hospital of Hubei College of Arts and Science, Xiangyang City, Hubei Province, 441021, China
| | - Feng Yang
- Department of Cardiology, Xiangyang Central Hospital, Affliated Hospital of Hubei College of Arts and Science, Xiangyang City, Hubei Province, 441021, China
| | - Hong-Shen Zhang
- Department of Cardiology, Xiangyang Central Hospital, Affliated Hospital of Hubei College of Arts and Science, Xiangyang City, Hubei Province, 441021, China
| | - Ke-Zhong Ma
- Department of Cardiology, Xiangyang Central Hospital, Affliated Hospital of Hubei College of Arts and Science, Xiangyang City, Hubei Province, 441021, China
| |
Collapse
|
6
|
Jakubczyk A, Karaś M, Rybczyńska-Tkaczyk K, Zielińska E, Zieliński D. Current Trends of Bioactive Peptides-New Sources and Therapeutic Effect. Foods 2020; 9:E846. [PMID: 32610520 PMCID: PMC7404774 DOI: 10.3390/foods9070846] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Generally, bioactive peptides are natural compounds of food or part of protein that are inactive in the precursor molecule. However, they may be active after hydrolysis and can be transported to the active site. Biologically active peptides can also be synthesized chemically and characterized. Peptides have many properties, including antihypertensive, antioxidant, antimicrobial, anticoagulant, and chelating effects. They are also responsible for the taste of food or for the inhibition of enzymes involved in the development of diseases. The scientific literature has described many peptides with bioactive properties obtained from different sources. Information about the structure, origin, and properties of peptides can also be found in many databases. This review will describe peptides inhibiting the development of current diseases, peptides with antimicrobial properties, and new alternative sources of peptides based on the current knowledge and documentation of their bioactivity. All these issues are part of modern research on peptides and their use in current health or technological problems in food production.
Collapse
Affiliation(s)
- Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Monika Karaś
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, University of Life Sciences in Lublin, 20-069 Lublin, Poland;
| | - Ewelina Zielińska
- Department of Analysis and Evaluation of Food Quality, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Damian Zieliński
- Department of Animal Ethology and Wildlife Management, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
7
|
Wang F, Bao Y, Shen X, Zengin G, Lyu Y, Xiao J, Weng Z. Niazirin from Moringa oleifera Lam. attenuates high glucose-induced oxidative stress through PKCζ/Nox4 pathway. PHYTOMEDICINE 2019; 86:153066. [PMID: 31447278 DOI: 10.1016/j.phymed.2019.153066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/04/2019] [Accepted: 08/04/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Diabetic complications-coronary atherosclerosis is closely related to the increased reactive oxygen species (ROS) induced by hyperglycemia. ROS are reported to induce the abnormal proliferation of vascular smooth muscle cells (VSMCs) under high glucose conditions. Leaf and seed extracts from Moringa oleifera are found to exhibit antioxidant activity. However, few studies are evaluating the antioxidant activities of chemical compounds isolated from the M. oleifera especially in cardiovascular field. PURPOSE The aim of this study is to explore the antioxidative effect during hyperglycemia of niazirin from M. oleifera. STUDY DESIGN A cell model was applied. METHODS After the taking the in vitro antioxidant experiment including ferric reducing antioxidant power (FRAP), 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) assay and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. Cell viability was carried out using high glucose-induced VSMCs model. ROS production was tested by 2',7'-dichlorofluorescein diacetate (DCF-DA) assay. The protein kinase C zeta (PKCζ) and NADPH oxidase 4 (Nox 4) expression in vitro and in vivo were measured by western blot analysis. RESULTS Niazirin showed good free radical scavenging activity. Niazirin significantly attenuated the proliferation of high glucose-induced VSMCs. Furthermore, it could decrease the ROS and malondialdehyde (MDA) productions, while increased total antioxidant capacity (T-AOC), superoxide dismutase (SOD) as well as glutathione peroxidase (GPx) levels in high glucose-induced VSMCs and streptozotocin-induced mice. In addition, niazirin could eliminate the high glucose-induced PKCζ activation, indicated by Thr410 phosphorylation and inhibition of the Nox4 protein expression in vitro and in vivo. CONCLUSION Niazirin from M. oleifera exhibited notably antioxidant activities and could be utilized as a potential natural antioxidant in preventing diabetic atherosclerosis.
Collapse
Affiliation(s)
- Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yifan Bao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Yi Lyu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Zebin Weng
- Basic Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|