1
|
N-Acetylated-L-arginine (NALA) is an enhanced protein aggregation suppressor under interfacial stresses and elevated temperature for protein liquid formulations. Int J Biol Macromol 2020; 166:654-664. [PMID: 33137385 DOI: 10.1016/j.ijbiomac.2020.10.223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
Abstract
Even though arginine hydrochloride has been recognized as a protein aggregation suppressor in the biopharmaceutical industry, its use has been questioned due to decreasing transition unfolding temperatures (Tm). Four compounds were designed to enhance the role of arginine by changing the length of the carbon chain with removal or N-acetylation of α-amino group. Biophysical properties were observed by differential scanning calorimetry (DSC), dynamic light scattering (DLS), size-exclusion chromatography (SEC), and flow imaging (FI). N-Acetyl-L-arginine (NALA) performed the best at minimizing decrease in Tm with arginine at different pH. NALA also demonstrated relatively higher colloidal stability than arginine hydrochloride, especially in the acidic pH, thereby reducing agitation stress of IgG. Moreover, NALA exhibited a cooperative effect with commercially used glycine buffer for IVIG to maintain the monomer contents with almost no change and suppressed larger particle formation after agitation with heat. The study concludes that the decreasing Tm of proteins by arginine hydrochloride is due to amide group in the α-carbon chain. Moreover, chemical modification on the group compared to removing it will be a breakthrough of arginine's limitations and optimize storage stability of protein therapeutics.
Collapse
|
2
|
Headley CA, Hoffman CN, Freisen JM, Han Y, Macklin JM, Zweier JL, Rockenbauer A, Kuret J, Villamena FA. Membrane-specific spin trap, 5-dodecylcarbamoyl-5-N-dodecylacetamide-1-pyroline-N-oxide (diC 12PO): theoretical, bioorthogonal fluorescence imaging and EPR studies. Org Biomol Chem 2019; 17:7694-7705. [PMID: 31328213 PMCID: PMC6703941 DOI: 10.1039/c9ob01334b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Membranous organelles are major endogenous sources of reactive oxygen and nitrogen species. When present at high levels, these species can cause macromolecular damage and disease. To better detect and scavenge free radical forms of the reactive species at their sources, we investigated whether nitrone spin traps could be selectively targeted to intracellular membranes using a bioorthogonal imaging approach. Electron paramagnetic resonance imaging demonstrated that the novel cyclic nitrone 5-dodecylcarbamoyl-5-N-dodecylacetamide-1-pyroline-N-oxide (diC12PO) could be used to target the nitrone moiety to liposomes composed of phosphatidyl choline. To test localization with authentic membranes in living cells, fluorophores were introduced via strain-promoted alkyne-nitrone cycloaddition (SPANC). Two fluorophore-conjugated alkynes were investigated: hexynamide-fluoresceine (HYA-FL) and dibenzylcyclooctyne-PEG4-5/6-sulforhodamine B (DBCO-Rhod). Computational and mass spectrometry experiments confirmed the cycloadduct formation of DBCO-Rhod (but not HYA-FL) with diC12PO in cell-free solution. Confocal microscopy of bovine aortic endothelial cells treated sequentially with diC12PO and DBCO-Rhod demonstrated clear localization of fluorescence with intracellular membranes. These results indicate that targeting of nitrone spin traps to cellular membranes is feasible, and that a bioorthogonal approach can aid the interrogation of their intracellular compartmentalization properties.
Collapse
Affiliation(s)
- Colwyn A Headley
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Claire N Hoffman
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Juliana M Freisen
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Yongbin Han
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Joseph M Macklin
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Jay L Zweier
- Davis Heart and Lung Research Institute, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Hungarian Academy of Sciences, and Department of Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Jeff Kuret
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Frederick A Villamena
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
3
|
Gunasekera B, Abou Diwan C, Altawallbeh G, Kalil H, Maher S, Xu S, Bayachou M. Functional Layer-by-Layer Thin Films of Inducible Nitric Oxide (NO) Synthase Oxygenase and Polyethylenimine: Modulation of Enzyme Loading and NO-Release Activity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7745-7755. [PMID: 29359547 DOI: 10.1021/acsami.7b17575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nitric oxide (NO) release counteracts platelet aggregation and prevents the thrombosis cascade in the inner walls of blood vessels. NO-release coatings also prevent thrombus formation on the surface of blood-contacting medical devices. Our previous work has shown that inducible nitric oxide synthase (iNOS) films release NO fluxes upon enzymatic conversion of the substrate l-arginine. In this work, we report on the modulation of enzyme loading in layer-by-layer (LbL) thin films of inducible nitric oxide synthase oxygenase (iNOSoxy) on polyethylenimine (PEI). The layer of iNOSoxy is electrostatically adsorbed onto the PEI layer. The pH of the iNOSoxy solution affects the amount of enzyme adsorbed. The overall negative surface charge of iNOSoxy in solution depends on the pH and hence determines the density of adsorbed protein on the positively charged PEI layer. We used buffered iNOSoxy solutions adjusted to pHs 8.6 and 7.0, while saline PEI solution was used at pH 7.0. Atomic force microscopy imaging of the outermost layer shows higher protein adsorption with iNOSoxy at pH 8.6 than with a solution of iNOSoxy at pH 7.0. Graphite electrodes with PEI/iNOSoxy films show higher catalytic currents for nitric oxide reduction mediated by iNOSoxy. The higher enzyme loading translates into higher NO flux when the enzyme-modified surface is exposed to a solution containing the substrate and a source of electrons. Spectrophotometric assays showed higher NO fluxes with iNOSoxy/PEI films built at pH 8.6 than with films built at pH 7.0. Fourier transform infrared analysis of iNOSoxy adsorbed on PEI at pH 8.6 and 7.0 shows structural differences of iNOSoxy in films, which explains the observed changes in enzymatic activity. Our findings show that pH provides a strategy to optimize the NOS loading and enzyme activity in NOS-based LbL thin films, which enables improved NO release with minimum layers of PEI/NOS.
Collapse
Affiliation(s)
- Bhagya Gunasekera
- Department of Chemistry , Cleveland State University , 2399 Euclid Avenue SR 397 , Cleveland , Ohio 44120 , United States
| | - Charbel Abou Diwan
- Department of Chemistry , Cleveland State University , 2399 Euclid Avenue SR 397 , Cleveland , Ohio 44120 , United States
| | - Ghaith Altawallbeh
- Department of Chemistry , Cleveland State University , 2399 Euclid Avenue SR 397 , Cleveland , Ohio 44120 , United States
| | - Haitham Kalil
- Department of Chemistry , Cleveland State University , 2399 Euclid Avenue SR 397 , Cleveland , Ohio 44120 , United States
| | - Shaimaa Maher
- Department of Chemistry , Cleveland State University , 2399 Euclid Avenue SR 397 , Cleveland , Ohio 44120 , United States
| | - Song Xu
- Keysight Technologies , 1400 Foutaingrove Parkway , Santa Rosa 95403 , California , United States
| | - Mekki Bayachou
- Department of Chemistry , Cleveland State University , 2399 Euclid Avenue SR 397 , Cleveland , Ohio 44120 , United States
- Department of Pathobiology , Lerner Research Institute , The Cleveland Clinic , Cleveland , Ohio 44106 , United States
| |
Collapse
|