1
|
Wu J, Yan H, Xiang C. Wilms' tumor gene 1 in hematological malignancies: friend or foe? Hematology 2023; 28:2254557. [PMID: 37668240 DOI: 10.1080/16078454.2023.2254557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023] Open
Abstract
Wilms' tumor gene 1 (WT1) is a transcription and post-translational factor that has a crucial role in the biological and pathological processes of several human malignancies. For hematological malignancies, WT1 overexpression or mutation has been found in leukemia and myelodysplastic syndrome. About 70-90% of acute myeloid leukemia patients showed WT1 overexpression, and 6-15% of patients carried WT1 mutations. WT1 has been widely regarded as a marker for monitoring minimal residual disease in acute myeloid leukemia. Many researchers were interested in developing WT1 targeting therapy. In this review, we summarized biological and pathological functions, correlation with other genes and clinical features, prognosis value and targeting therapy of WT1 in hematological features.
Collapse
Affiliation(s)
- Jie Wu
- Department of Emergency Medicine, The Fifth People's Hospital of Huai'an and Huai'an Hospital Affiliated to Yangzhou University, Huai'an, People's Republic of China
| | - Hui Yan
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Chunli Xiang
- Department of General Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an, People's Republic of China
| |
Collapse
|
2
|
Guiraldelli GG, Prado MCM, de F Lainetti P, Leis-Filho AF, Kobayashi PE, Cury SS, Fonseca-Alves CE, Laufer-Amorim R. Pathways Involved in the Development of Vasculogenic Mimicry in Canine Mammary Carcinoma Cell Cultures. J Comp Pathol 2022; 192:50-60. [DOI: 10.1016/j.jcpa.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/17/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
|
3
|
Galectin-1 promotes vasculogenic mimicry in gastric adenocarcinoma via the Hedgehog/GLI signaling pathway. Aging (Albany NY) 2020; 12:21837-21853. [PMID: 33170154 PMCID: PMC7695400 DOI: 10.18632/aging.104000] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
Abstract
Background: Galectin-1 (GAL-1), which is encoded by LGALS1, promotes vasculogenic mimicry (VM) in gastric cancer (GC) tissue. However, the underlying mechanism remains unclear. Methods: Immunohistochemical (IHC) and CD34-periodic acid-Schiff (PAS) double staining were used to investigate Glioma-associated oncogene-1(GLI1) expression and VM in paraffin-embedded sections from 127 patients with GC of all tumor stages. LGALS1 or GLI1 were stably transduced into MGC-803 cells and AGS cells, and western blotting, IHC, CD34-PAS double staining and three-dimensional culture in vitro, and tumorigenicity in vivo were used to explore the mechanisms of GAL-1/ GLI1 promotion of VM formation in GC tissues. Results: A significant association between GAL-1 and GLI1 expression was identified by IHC staining, as well as a significant association between GLI1 expression and VM formation. Furthermore, overexpression of LGALS1 enhanced expression of GLI1 in MGC-803 and AGS cells. GLI1 promoted VM formation both in vitro and in vivo. The effects of GLI1 on VM formation were independent of LGALS1. Importantly, the expression of VM-related molecules, such as MMP2, MMP14 and laminin5γ2, was also affected upon GLI1 overexpression or silencing in GC cell lines. Conclusion: GAL-1 promotes VM in GC through the Hh/GLI pathway, which has potential as a novel therapeutic target for treatment of VM in GC.
Collapse
|
4
|
Zhang Z, Nong L, Chen M, Gu X, Zhao W, Liu M, Cheng W. Baicalein suppresses vasculogenic mimicry through inhibiting RhoA/ROCK expression in lung cancer A549 cell line. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1007-1015. [PMID: 32672788 DOI: 10.1093/abbs/gmaa075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
Vasculogenic mimicry (VM) refers to a new tubular network of the blood supply system with abundant extracellular matrix. VM is similar to capillaries but does not involve endothelial cells. As a traditional herbal medicine commonly used in China, baicalein possesses anti-inflammatory and lipoxygenase activities. However, the effects of baicalein on the process of VM formation in non-small cell lung cancer (NSCLC) and the underlying mechanisms have remained poorly understood. In this study, baicalein was found to inhibit the viability and motility of A549 cells and induced the breakage of the cytoskeletal actin filament network. In addition, baicalein significantly decreased the formation of VM and downregulated the expressions of VM-associated factors, such as VE-cadherin, EphA2, MMP14, MMP2, MMP9, PI3K and LAMC2, similar to the effects of ROCK inhibitors. Indeed, baicalein inhibited RhoA/ROCK expression in vitro and in vivo, suggesting the underlying mechanisms of reduced VM formation. Collectively, baicalein suppressed the formation of VM in NSCLC by targeting the RhoA/ROCK signaling pathway, indicating that baicalein might serve as an emerging drug for NSCLC.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China, and
| | - Li Nong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Menglei Chen
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China, and
| | - Xiaoli Gu
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China, and
| | - Weiwei Zhao
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China, and
| | - Minghui Liu
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China, and
| | - Wenwu Cheng
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China, and
| |
Collapse
|
5
|
Andonegui-Elguera MA, Alfaro-Mora Y, Cáceres-Gutiérrez R, Caro-Sánchez CHS, Herrera LA, Díaz-Chávez J. An Overview of Vasculogenic Mimicry in Breast Cancer. Front Oncol 2020; 10:220. [PMID: 32175277 PMCID: PMC7056883 DOI: 10.3389/fonc.2020.00220] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/07/2020] [Indexed: 12/24/2022] Open
Abstract
Vasculogenic mimicry (VM) is the formation of vascular channels lacking endothelial cells. These channels are lined by tumor cells with cancer stem cell features, positive for periodic acid-Schiff, and negative for CD31 staining. The term VM was introduced by Maniotis et al. (1), who reported this phenomenon in highly aggressive uveal melanomas; since then, VM has been associated with poor prognosis, tumor aggressiveness, metastasis, and drug resistance in several tumors, including breast cancer. It is proposed that VM and angiogenesis (the de novo formation of blood vessels from the established vasculature by endothelial cells, which is observed in several tumors) rely on some common mechanisms. Furthermore, it is also suggested that VM could constitute a means to circumvent anti-angiogenic treatment in cancer. Therefore, it is important to determinant the factors that dictate the onset of VM. In this review, we describe the current understanding of VM formation in breast cancer, including specific signaling pathways, and cancer stem cells. In addition, we discuss the clinical significance of VM in prognosis and new opportunities of VM as a target for breast cancer therapy.
Collapse
Affiliation(s)
- Marco A Andonegui-Elguera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Yair Alfaro-Mora
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Rodrigo Cáceres-Gutiérrez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | | | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico.,Dirección General, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| |
Collapse
|
6
|
Zhang Y, Yan WT, Yang ZY, Li YL, Tan XN, Jiang J, Zhang Y, Qi XW. The role of WT1 in breast cancer: clinical implications, biological effects and molecular mechanism. Int J Biol Sci 2020; 16:1474-1480. [PMID: 32210734 PMCID: PMC7085227 DOI: 10.7150/ijbs.39958] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
Although Wilms' tumor gene 1 (WT1) was first cloned and identified as a tumor suppressor gene in nephroblastoma, subsequent studies have demonstrated that it can also play an oncogenic role in leukemia and various solid tumors. WT1 exerts biological functions with high tissue- and cell-specificity. This article reviews the relationship between WT1 and breast cancer from two aspects: (1) clinical application of WT1, including the relationship between expression of WT1 and prognosis of breast cancer patients, and its effectiveness as a target for comprehensive therapy of breast cancer; (2) the biological effects and molecular mechanisms of WT1 in the development and progression of breast cancer, including proliferation, apoptosis, invasion, and metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Ye Zhang
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Wen-Ting Yan
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Ze-Yu Yang
- Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400013, China
| | - Yan-Ling Li
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xuan-Ni Tan
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Jun Jiang
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Yi Zhang
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xiao-Wei Qi
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| |
Collapse
|
7
|
Hernández de la Cruz ON, López-González JS, García-Vázquez R, Salinas-Vera YM, Muñiz-Lino MA, Aguilar-Cazares D, López-Camarillo C, Carlos-Reyes Á. Regulation Networks Driving Vasculogenic Mimicry in Solid Tumors. Front Oncol 2020; 9:1419. [PMID: 31993365 PMCID: PMC6970938 DOI: 10.3389/fonc.2019.01419] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/28/2019] [Indexed: 12/21/2022] Open
Abstract
Vasculogenic mimicry (VM) is a mechanism whereby cancer cells form microvascular structures similar to three-dimensional channels to provide nutrients and oxygen to tumors. Unlike angiogenesis, VM is characterized by the development of new patterned three-dimensional vascular-like structures independent of endothelial cells. This phenomenon has been observed in many types of highly aggressive solid tumors. The presence of VM has also been associated with increased resistance to chemotherapy, low survival, and poor prognosis. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are non-coding RNAs that regulate gene expression at the post-transcriptional level through different pathways. In recent years, these tiny RNAs have been shown to be expressed aberrantly in different human malignancies, thus contributing to the hallmarks of cancer. In this context, miRNAs and lncRNAs can be excellent biomarkers for diagnosis, prognosis, and the prediction of response to therapy. In this review, we discuss the role that the tumor microenvironment and the epithelial-mesenchymal transition have in VM. We include an overview of the mechanisms of VM with examples of diverse types of tumors. Finally, we describe the regulation networks of lncRNAs-miRNAs and their clinical impact with the VM. Knowing the key genes that regulate and promote the development of VM in tumors with invasive, aggressive, and therapy-resistant phenotypes will facilitate the discovery of novel biomarker therapeutics against cancer as well as tools in the diagnosis and prognosis of patients.
Collapse
Affiliation(s)
| | - José Sullivan López-González
- Laboratorio de Cáncer de Pulmón, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico, Mexico
| | - Raúl García-Vázquez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico, Mexico
| | - Yarely M Salinas-Vera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico, Mexico
| | - Marcos A Muñiz-Lino
- Laboratorio de Patología y Medicina Bucal, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico, Mexico
| | - Dolores Aguilar-Cazares
- Laboratorio de Cáncer de Pulmón, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico, Mexico
| | - Ángeles Carlos-Reyes
- Laboratorio de Cáncer de Pulmón, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico, Mexico
| |
Collapse
|
8
|
You X, Liu Q, Wu J, Wang Y, Dai J, Chen D, Zhou Y, Lian Y. Galectin-1 Promotes Vasculogenic Mimicry in Gastric Cancer by Upregulating EMT Signaling. J Cancer 2019; 10:6286-6297. [PMID: 31772662 PMCID: PMC6856752 DOI: 10.7150/jca.33765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Galectin-1 (Gal-1) expression was positively associated with vasculogenic mimicry (VM) in primary gastric cancer (GC) tissue, and that both Gal-1 expression and VM in GC tissue are indicators of poor prognosis. However, whether Gal-1 promotes VM, and by what mechanismsremains unknown. Methods: To investigate the underlying mechanisms,wound healing assay, proliferation assay, invasion assay, and three-dimensional culture were used to evaluate the invasion, metastasis and promoted VM formation effects of the Gal-1. We monitored the expression level of sociated proteins in GC tissues, cell lines in vitro and nude mice tumorigenicity in vivo by immunohistochemistry and western blot. Results: Gal-1 overexpression significantly promoted the proliferation, invasion, migration, and VM formation of MGC-803 cells. Gal-1 was associated with E-cadherin and vimentin in vitro and in clinical samples. The epithelial-to-mesenchymal transition (EMT) induced in MGC-803 cells by TGF-β1 was accompanied by Gal-1 activation and promotion of VM formation, while knockdown of Gal-1 reduced the response to TGF-β1, suggesting that Gal-1 promotes VM formation by activating EMT signaling. Overexpression of Gal-1 accelerated subcutaneous xenograft growth and facilitated pulmonary metastasis in athymic mice, enhanced the expression of EMT markers, and promoted VM formation in vivo. Conclusion: Our results indicated that Gal-1 promotes VM in GC by upregulating EMT signaling; thus, Gal-1 and this pathway are potential novel targets to treat VM in GC.
Collapse
Affiliation(s)
- Xiaolan You
- Department of Gastrointestinal Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu province, China
| | - Qinghong Liu
- Department of Gastrointestinal Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu province, China
| | - Jian Wu
- Department of Gastrointestinal Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu province, China
| | - Yuanjie Wang
- Department of Gastrointestinal Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu province, China
| | - Jiawen Dai
- Department of Gastrointestinal Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu province, China
| | - Dehu Chen
- Department of Gastrointestinal Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu province, China
| | - Yan Zhou
- Department of Gastrointestinal Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu province, China
| | - Yanjun Lian
- Department of Gastrointestinal Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu province, China
| |
Collapse
|
9
|
Yu L, Xu Q, Yu W, Duan J, Dai G. LncRNA cancer susceptibility candidate 15 accelerates the breast cancer cells progression via miR-153-3p/KLF5 positive feedback loop. Biochem Biophys Res Commun 2018; 506:819-825. [PMID: 30389133 DOI: 10.1016/j.bbrc.2018.10.131] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022]
Abstract
Emerging literature have illustrated the vital regulatory roles of long noncoding RNAs (lncRNAs) on the breast cancer tumorigenesis. Although series of researches have been proceeded on the pathogenesis, there are still much of unsolved mysteries worth investigating. This study uncovered that CASC15 expression level was aberrantly high-expressed in breast cancer tissue specimens and cells. Functionally, the loss-of-functional experiments showed that knockdown of CASC15 suppressed the malignant behaviors of breast cancer cells, such as proliferation, invasion and tumor growth in vitro and vivo. Mechanically, we confirmed that CASC15 functioned as a competing endogenous RNA (ceRNA) of miR-153-3p, besides, miR-153-3p targeted the 3'-UTR of KLF5 mRNA utilizing the bioinformatics online tools, luciferase reporter assay and RNA immunoprecipitation. Interestingly, we confirmed that the transcription factor KLF5 binds with the promoter region of CASC15 and activates the transcription. In conclusion, we validated the positive feedback loop of KLF5/CASC15/miR-153-3p/KLF5 in the acceleration of breast cancer malignant behaviors and tumorigenesis, suggesting the important biologic roles of CASC15 on the breast cancer tumorigenesis.
Collapse
Affiliation(s)
- Leinan Yu
- Department of General Surgery, Changzhou Jintan District People's Hospital, Changzhou, Jiangsu, 213200, China.
| | - Qun Xu
- Department of General Surgery, Changzhou Jintan District People's Hospital, Changzhou, Jiangsu, 213200, China
| | - Weixin Yu
- Department of General Surgery, Changzhou Jintan District People's Hospital, Changzhou, Jiangsu, 213200, China
| | - Jianchun Duan
- Department of General Surgery, Changzhou Jintan District People's Hospital, Changzhou, Jiangsu, 213200, China
| | - Guofang Dai
- Department of General Surgery, Changzhou Jintan District People's Hospital, Changzhou, Jiangsu, 213200, China
| |
Collapse
|
10
|
Di C, Syafrizayanti, Zhang Q, Chen Y, Wang Y, Zhang X, Liu Y, Sun C, Zhang H, Hoheisel JD. Function, clinical application, and strategies of Pre-mRNA splicing in cancer. Cell Death Differ 2018; 26:1181-1194. [PMID: 30464224 PMCID: PMC6748147 DOI: 10.1038/s41418-018-0231-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/09/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
Pre-mRNA splicing is a fundamental process that plays a considerable role in generating protein diversity. Pre-mRNA splicing is also the key to the pathology of numerous diseases, especially cancers. In this review, we discuss how aberrant splicing isoforms precisely regulate three basic functional aspects in cancer: proliferation, metastasis and apoptosis. Importantly, clinical function of aberrant splicing isoforms is also discussed, in particular concerning drug resistance and radiosensitivity. Furthermore, this review discusses emerging strategies how to modulate pathologic aberrant splicing isoforms, which are attractive, novel therapeutic agents in cancer. Last we outline current and future directions of isoforms diagnostic methodologies reported so far in cancer. Thus, it is highlighting significance of aberrant splicing isoforms as markers for cancer and as targets for cancer therapy.
Collapse
Affiliation(s)
- Cuixia Di
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Syafrizayanti
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.,Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Kampus Limau Manis, Padang, Indonesia
| | - Qianjing Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhong Chen
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yupei Wang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuetian Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Chao Sun
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Hong Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China. .,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.
| |
Collapse
|
11
|
Tadeo I, Gamero-Sandemetrio E, Berbegall AP, Gironella M, Ritort F, Cañete A, Bueno G, Navarro S, Noguera R. Lymph microvascularization as a prognostic indicator in neuroblastoma. Oncotarget 2018; 9:26157-26170. [PMID: 29899849 PMCID: PMC5995242 DOI: 10.18632/oncotarget.25457] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/05/2018] [Indexed: 12/29/2022] Open
Abstract
Neuroblastoma is the most common extra-cranial solid pediatric cancer and causes approximately 15% of all childhood deaths from cancer. Although lymphatic vasculature is a prerequisite for the maintenance of tissue fluid balance and immunity in the body, little is known about the relationship between lymphatic vascularization and prognosis in neuroblastoma. We used our previously-published custom-designed tool to close open-outline vessels and measure the density, size and shape of all lymphatic vessels and microvascular segments in 332 primary neuroblastoma contained in tissue microarrays. The results were correlated with clinical and biological features of known prognostic value and with risk of progression to establish histological lymphatic vascular patterns associated with unfavorable histology. A high proportion of irregular intermediate lymphatic capillaries and irregular small collector vessels were present in tumors from patients with metastatic stage, undifferentiating neuroblasts and/or classified in the high risk. In addition, a higher lymphatic microvascularization density was found to be predictive of overall survival. Our findings show the crucial role of lymphatic vascularization in metastatic development and maintenance of tumor tissue homeostasis. These patterns may therefore help to indicate more accurate pre-treatment risk stratification and could provide candidate targets for novel therapies.
Collapse
Affiliation(s)
- Irene Tadeo
- Pathology Department, Medical School, University of Valencia-INCLIVA, Valencia, Spain.,CIBERONC, Madrid, Spain
| | - Esther Gamero-Sandemetrio
- Pathology Department, Medical School, University of Valencia-INCLIVA, Valencia, Spain.,CIBERONC, Madrid, Spain
| | - Ana P Berbegall
- Pathology Department, Medical School, University of Valencia-INCLIVA, Valencia, Spain.,CIBERONC, Madrid, Spain
| | - Marta Gironella
- Condensed Matter Physics Department, University of Barcelona, Barcelona, Spain.,CIBER-BBN, Madrid, Spain
| | - Félix Ritort
- Condensed Matter Physics Department, University of Barcelona, Barcelona, Spain.,CIBER-BBN, Madrid, Spain
| | | | - Gloria Bueno
- VISILAB, E.T.S.I. Industriales, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Samuel Navarro
- Pathology Department, Medical School, University of Valencia-INCLIVA, Valencia, Spain.,CIBERONC, Madrid, Spain
| | - Rosa Noguera
- Pathology Department, Medical School, University of Valencia-INCLIVA, Valencia, Spain.,CIBERONC, Madrid, Spain
| |
Collapse
|