1
|
Fathima A, Bagang N, Kumar N, Dastidar SG, Shenoy S. Role of SIRT1 in Potentially Toxic Trace Elements (Lead, Fluoride, Aluminum and Cadmium) Associated Neurodevelopmental Toxicity. Biol Trace Elem Res 2024; 202:5395-5412. [PMID: 38416341 PMCID: PMC11502598 DOI: 10.1007/s12011-024-04116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
The formation of the central nervous system is a meticulously planned and intricate process. Any modification to this process has the potential to disrupt the structure and operation of the brain, which could result in deficiencies in neurological growth. When neurotoxic substances are present during the early stages of development, they can be exceptionally dangerous. Prenatally, the immature brain is extremely vulnerable and is therefore at high risk in pregnant women associated with occupational exposures. Lead, fluoride, aluminum, and cadmium are examples of possibly toxic trace elements that have been identified as an environmental concern in the aetiology of a number of neurological and neurodegenerative illnesses. SIRT1, a member of the sirtuin family has received most attention for its potential neuroprotective properties. SIRT1 is an intriguing therapeutic target since it demonstrates important functions to increase neurogenesis and cellular lifespan by modulating multiple pathways. It promotes axonal extension, neurite growth, and dendritic branching during the development of neurons. Additionally, it contributes to neurogenesis, synaptic plasticity, memory development, and neuroprotection. This review summarizes the possible role of SIRT1 signalling pathway in potentially toxic trace elements -induced neurodevelopmental toxicity, highlighting some molecular pathways such as mitochondrial biogenesis, CREB/BDNF and PGC-1α/NRF1/TFAM.
Collapse
Affiliation(s)
- Aqsa Fathima
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Newly Bagang
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial area Hajipur, Vaishali, Bihar, 844102, India
| | - Somasish Ghosh Dastidar
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Patel D, Soni R, Shah J. Decoding the Role of Nuclear Sirtuins in Parkinson's Pathogenesis. ACS Chem Neurosci 2024. [PMID: 39331405 DOI: 10.1021/acschemneuro.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevailing degenerative disease that deals with dopaminergic neuronal loss and deficiency of dopamine in SNpc and striatum. Manifestations primarily include motor symptoms like tremor, rigidity, and akinesia/dyskinesia along with some nonmotor symptoms like GI and olfactory dysfunction. α-Synuclein pathogenesis is the major cause behind progression of PD; however there are many underlying molecular mechanisms behind the pathophysiology of PD. Sirtuins are small molecular deacetylases that have an imperative role in pathology of such neurodegenerative disorders like PD. Sirtuins are majorly classified according to their location; nuclear (SIRT1,7,6), mitochondrial sirtuins (SIRT3-5), and cytosolic (SIRT2). These actively take part in pathological development and possess independent actions. In this review, the role of nuclear sirtuins is individualistically explored for better understanding of PD pathology and development of advanced therapeutics targeting sirtuins.
Collapse
Affiliation(s)
- Dishank Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Ritu Soni
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Jigna Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| |
Collapse
|
3
|
Raza U, Tang X, Liu Z, Liu B. SIRT7: the seventh key to unlocking the mystery of aging. Physiol Rev 2024; 104:253-280. [PMID: 37676263 PMCID: PMC11281815 DOI: 10.1152/physrev.00044.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023] Open
Abstract
Aging is a chronic yet natural physiological decline of the body. Throughout life, humans are continuously exposed to a variety of exogenous and endogenous stresses, which engender various counteractive responses at the cellular, tissue, organ, as well as organismal levels. The compromised cellular and tissue functions that occur because of genetic factors or prolonged stress (or even the stress response) may accelerate aging. Over the last two decades, the sirtuin (SIRT) family of lysine deacylases has emerged as a key regulator of longevity in a variety of organisms. SIRT7, the most recently identified member of the SIRTs, maintains physiological homeostasis and provides protection against aging by functioning as a watchdog of genomic integrity, a dynamic sensor and modulator of stresses. SIRT7 decline disrupts metabolic homeostasis, accelerates aging, and increases the risk of age-related pathologies including cardiovascular and neurodegenerative diseases, pulmonary and renal disorders, inflammatory diseases, and cancer, etc. Here, we present SIRT7 as the seventh key to unlock the mystery of aging, and its specific manipulation holds great potential to ensure healthiness and longevity.
Collapse
Affiliation(s)
- Umar Raza
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, China
| | - Xiaolong Tang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
4
|
Wang CL, Ohkubo R, Mu WC, Chen W, Fan JL, Song Z, Maruichi A, Sudmant PH, Pisco AO, Dubal DB, Ji N, Chen D. The mitochondrial unfolded protein response regulates hippocampal neural stem cell aging. Cell Metab 2023; 35:996-1008.e7. [PMID: 37146607 PMCID: PMC10330239 DOI: 10.1016/j.cmet.2023.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/14/2022] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Aging results in a decline in neural stem cells (NSCs), neurogenesis, and cognitive function, and evidence is emerging to demonstrate disrupted adult neurogenesis in the hippocampus of patients with several neurodegenerative disorders. Here, single-cell RNA sequencing of the dentate gyrus of young and old mice shows that the mitochondrial protein folding stress is prominent in activated NSCs/neural progenitors (NPCs) among the neurogenic niche, and it increases with aging accompanying dysregulated cell cycle and mitochondrial activity in activated NSCs/NPCs in the dentate gyrus. Increasing mitochondrial protein folding stress results in compromised NSC maintenance and reduced neurogenesis in the dentate gyrus, neural hyperactivity, and impaired cognitive function. Reducing mitochondrial protein folding stress in the dentate gyrus of old mice improves neurogenesis and cognitive function. These results establish the mitochondrial protein folding stress as a driver of NSC aging and suggest approaches to improve aging-associated cognitive decline.
Collapse
Affiliation(s)
- Chih-Ling Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rika Ohkubo
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wei-Chieh Mu
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wei Chen
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jiang Lan Fan
- Joint Graduate Program in Bioengineering, University of California, San Francisco, and University of California, Berkeley, San Francisco, CA 94720, USA
| | - Zehan Song
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ayane Maruichi
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Dena B Dubal
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Danica Chen
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
5
|
Mizutani H, Sato Y, Yamazaki M, Yoshizawa T, Ando Y, Ueda M, Yamagata K. SIRT7 Deficiency Protects against Aβ 42-Induced Apoptosis through the Regulation of NOX4-Derived Reactive Oxygen Species Production in SH-SY5Y Cells. Int J Mol Sci 2022; 23:ijms23169027. [PMID: 36012298 PMCID: PMC9408927 DOI: 10.3390/ijms23169027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease that is characterized by irreversible memory loss and cognitive decline. The deposition of amyloid-β (Aβ), especially aggregation-prone Aβ42, is considered to be an early event preceding neurodegeneration in AD. Sirtuins (SIRT1-7 in mammals) are nicotinamide adenine dinucleotide-dependent lysine deacetylases/deacylases, and several sirtuins play important roles in AD. However, the involvement of SIRT7 in AD pathogenesis is not known. Here, we demonstrate that SIRT7 mRNA expression is increased in the cortex, entorhinal cortex, and prefrontal cortex of AD patients. We also found that Aβ42 treatment rapidly increased NADPH oxidase 4 (NOX4) expression at the post-transcriptional level, and induced reactive oxygen species (ROS) production and apoptosis in neuronal SH-SY5Y cells. In contrast, SIRT7 knockdown inhibited Aβ42-induced ROS production and apoptosis by suppressing the upregulation of NOX4. Collectively, these findings suggest that the inhibition of SIRT7 may play a beneficial role in AD pathogenesis through the regulation of ROS production.
Collapse
Affiliation(s)
- Hironori Mizutani
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-0811, Japan
| | - Yoshifumi Sato
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Correspondence: (Y.S.); (K.Y.); Tel.: +81-96-373-5068 (Y.S. & K.Y.); Fax: +81-96-364-6940 (Y.S. & K.Y.)
| | - Masaya Yamazaki
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tatsuya Yoshizawa
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yukio Ando
- Department of Amyloidosis Research, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch Sasebo, Nagasaki 859-3298, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-0811, Japan
| | - Kazuya Yamagata
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Correspondence: (Y.S.); (K.Y.); Tel.: +81-96-373-5068 (Y.S. & K.Y.); Fax: +81-96-364-6940 (Y.S. & K.Y.)
| |
Collapse
|
6
|
Abstract
Sirtuins (SIRT) are unique posttranslational modification enzymes that utilize NAD + as co-substrate to remove acyl groups from lysine residues. SIRT act on variety of substrates and impact major metabolic process. All seven members of SIRT family are unique and targets wide range of cellular proteins in nucleus, cytoplasm, and mitochondria for post-translational modification by acetylation (SIRT1, 2, 3, and 5) or ADP-ribosylation (SIRT4 and 6). Each member of SIRT family is distinct. SIRT2 was first to be discovered that incited research on mammalian SIRT. Enzymatic activities of SIRT 4 are yet to be elucidated while only SIRT7 is localized in nucleoli that govern the transcription of RNA polymerase I. SIRT 5 and 6 exhibit weakest deacetylase activity. Out of all SIRT analogs, SIRT1 is identified as nutrient sensor. Increased expression of only SIRT3 is linked with longevity in humans. Since SIRT is regulated by the bioenergetic state of the cell, nutrition impacts it but very few studies about diet-mediated effect on SIRT are reported. The present review elaborates distribution, specific biological role and prominent effect of all SIRT on vital human tissue along with highlighting need to trace molecular mechanisms and identifying foods that may augment it beneficially.
Collapse
Affiliation(s)
- Shubhra Pande
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
7
|
Alnoud MAH, Chen W, Liu N, Zhu W, Qiao J, Chang S, Wu Y, Wang S, Yang Y, Sun Q, Kang J. Sirt7-p21 Signaling Pathway Mediates Glucocorticoid-Induced Inhibition of Mouse Neural Stem Cell Proliferation. Neurotox Res 2021; 39:444-455. [PMID: 33025360 DOI: 10.1007/s12640-020-00294-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 11/24/2022]
Abstract
Prenatal glucocorticoid (GC) overexposure impacts fetal hippocampal neural stem cells (NSCs) and increases the risk for relative cognitive and mood disorders in offspring. However, the precise underlying mechanisms remain elusive. Here, we treated mouse hippocampal NSCs with dexamethasone (DEX) in vitro and found that DEX inhibited cell proliferation and Sirt7 expression. In addition, prenatal mouse overexposure to DEX induced the suppression of Sirt7 in the hippocampus of offspring. Sirt7 knockdown significantly decreased the percentage of proliferating cells but did not further reduce the NSC proliferation rate in the presence of DEX, whereas Sirt7 overexpression rescued DEX-induced inhibition of hippocampal NSC proliferation. Moreover, DEX inhibited Sirt7 expression through the glucocorticoid receptor (GR), and p21 was found to mediate the functional effect of DEX-induced Sirt7 suppression. In conclusion, our data demonstrate for the first time the effect of DEX on the Sirt7-p21 pathway in hippocampal NSCs, identifying a new potential therapeutic target for prenatal GC overexposure-related neurodevelopmental disorders in offspring.
Collapse
Affiliation(s)
- Mohammed A H Alnoud
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Nana Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wei Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jing Qiao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shujuan Chang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shanshan Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yiwei Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Qiaoyi Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
8
|
Yang Q, Zhou Y, Sun Y, Luo Y, Shen Y, Shao A. Will Sirtuins Be Promising Therapeutic Targets for TBI and Associated Neurodegenerative Diseases? Front Neurosci 2020; 14:791. [PMID: 32848564 PMCID: PMC7411228 DOI: 10.3389/fnins.2020.00791] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury (TBI), a leading cause of morbidity worldwide, induces mechanical, persistent structural, and metabolic abnormalities in neurons and other brain-resident cells. The key pathological features of TBI include neuroinflammation, oxidative stress, excitotoxicity, and mitochondrial dysfunction. These pathological processes persist for a period of time after TBIs. Sirtuins are evolutionarily conserved nicotinamide-adenine dinucleotide (NAD+)-dependent deacetylases and mono-ADP-ribosyl transferases. The mammalian sirtuin family has seven members, referred to as Sirtuin (SIRT) 1-7. Accumulating evidence suggests that SIRT1 and SIRT3 play a neuroprotective role in TBI. Although the evidence is scant, considering the involvement of SIRT2, 4-7 in other brain injury models, they may also intervene in similar pathophysiology in TBI. Neurodegenerative diseases are generally accepted sequelae of TBI. It was found that TBI and neurodegenerative diseases have many similarities and overlaps in pathological features. Besides, sirtuins play some unique roles in some neurodegenerative diseases. Therefore, we propose that sirtuins might be a promising therapeutic target for both TBI and associated neurodegenerative diseases. In this paper, we review the neuroprotective effects of sirtuins on TBI as well as related neurodegeneration and discuss the therapeutic potential of sirtuin modulators.
Collapse
Affiliation(s)
- Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuting Sun
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Luo
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Fang P, Xue Y, Zhang Y, Fan N, Ou L, Leng L, Pan J, Wang X. SIRT7 regulates the TGF-β1-induced proliferation and migration of mouse airway smooth muscle cells by modulating the expression of TGF-β receptor I. Biomed Pharmacother 2018; 104:781-787. [PMID: 29843083 DOI: 10.1016/j.biopha.2018.05.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 01/01/2023] Open
Abstract
Accumulating evidence shows that sirtuin 7 (SIRT7), a key mediator of many cellular activities, plays an important role in the pathogenesis of various diseases; however, little is known about the role of SIRT7 in asthma, which is characterized by airway remodeling. This study investigated the potential role of SIRT7 in regulating the proliferation and migration of airway smooth muscle (ASM) cells, which are critical events during airway remodeling in asthmatic conditions. The results demonstrated that SIRT7 expression was significantly upregulated in ASM cells treated with transforming growth factor-beta 1 (TGF-β1). Knockdown of SIRT7 inhibited the proliferation, promoted the apoptosis, and suppressed the migration of TGF-β1-treated ASM cells, while overexpression of SIRT7 had the opposite effect. Moreover, knockdown of SIRT7 inhibited protein expression of the TGF-β receptor I (TβRI), whilst overexpression of SIRT7 promoted the expression of TβRI. Importantly, knockdown of TβRI partially reversed the stimulatory effect of SIRT7 overexpression on the TGF-β1-induced proliferation and migration of ASM cells. Taken together, these results demonstrate that SIRT7 is involved in regulating TGF-β1-induced ASM cell proliferation and migration by regulating the expression of TβRI, thus indicating an important role of SIRT7 during airway remodeling in asthma.
Collapse
Affiliation(s)
- Ping Fang
- Division of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, 710004, Shaanxi, PR China.
| | - Yu Xue
- Division of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, 710004, Shaanxi, PR China; Internal Medicine Department, Section Four, Xi'an Chest Hospital, Xi'an, 710100, Shaanxi, PR China
| | - Yonghong Zhang
- Division of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, 710004, Shaanxi, PR China
| | - Na Fan
- Division of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, 710004, Shaanxi, PR China
| | - Ling Ou
- Division of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, 710004, Shaanxi, PR China; Respiratory Department, Xi'an Children's Hospital, Xi'an, 7l0003, Shaanxi, PR China
| | - Lingjuan Leng
- Division of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, 710004, Shaanxi, PR China; Internal Medicine, Hospital of Xidian University, Xi'an, 710126, Shaanxi, PR China
| | - Jianli Pan
- Division of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, 710004, Shaanxi, PR China; Respiratory Department, Xi'an Children's Hospital, Xi'an, 7l0003, Shaanxi, PR China
| | - Xugeng Wang
- Division of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, 710004, Shaanxi, PR China
| |
Collapse
|