1
|
Rahm M, Kwast H, Wessels HJCT, Noga MJ, Lefeber DJ. Mixed-phase weak anion-exchange/reversed-phase LC-MS/MS for analysis of nucleotide sugars in human fibroblasts. Anal Bioanal Chem 2024; 416:3595-3604. [PMID: 38676823 PMCID: PMC11156716 DOI: 10.1007/s00216-024-05313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024]
Abstract
Nucleotide sugars (NS) fulfil important roles in all living organisms and in humans, related defects result in severe clinical syndromes. NS can be seen as the "activated" sugars used for biosynthesis of a wide range of glycoconjugates and serve as substrates themselves for the synthesis of other nucleotide sugars. NS analysis is complicated by the presence of multiple stereoisomers without diagnostic transition ions, therefore requiring separation by liquid chromatography. In this paper, we explored weak anion-exchange/reversed-phase chromatography on a hybrid column for the separation of 17 nucleotide sugars that can occur in humans. A robust and reproducible method was established with intra- and inter-day coefficients of variation below 10% and a linear range spanning three orders of magnitude. Application to patient fibroblasts with genetic defects in mannose-1-phosphate guanylyltransferase beta, CDP-L-ribitol pyrophosphorylase A, and UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase showed abnormal levels of guanosine-5'-diphosphate-α-D-mannose (GDP-Man), cytidine-5'-diphosphate-L-ribitol (CDP-ribitol), and cytidine-5'-monophosphate-N-acetyl-β-D-neuraminic acid (CMP-Neu5Ac), respectively, in consonance with expectations based on the diagnosis. In conclusion, a novel, semi-quantitative method was established for the analysis of nucleotide sugars that can be applied to diagnose several genetic glycosylation disorders in fibroblasts and beyond.
Collapse
Affiliation(s)
- Moritz Rahm
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Hanneke Kwast
- Translational Metabolic Laboratory (TML), Department of Human Genetics, Radboud University Medical Center, Geert Groote Plein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Hans J C T Wessels
- Translational Metabolic Laboratory (TML), Department of Human Genetics, Radboud University Medical Center, Geert Groote Plein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Marek J Noga
- Laboratory of Clinical Genetics, Inborn Errors of Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.
- Translational Metabolic Laboratory (TML), Department of Human Genetics, Radboud University Medical Center, Geert Groote Plein Zuid 10, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Snelling T, Saalfrank A, Wood NT, Cohen P. ALPK1 mutants causing ROSAH syndrome or Spiradenoma are activated by human nucleotide sugars. Proc Natl Acad Sci U S A 2023; 120:e2313148120. [PMID: 38060563 PMCID: PMC10723048 DOI: 10.1073/pnas.2313148120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
The atypical protein kinase ALPK1 is activated by the bacterial nucleotide sugar ADP-heptose and phosphorylates TIFA to switch on a signaling pathway that combats microbial infection. In contrast, ALPK1 mutations cause two human diseases: the ALPK1[T237M] and ALPK1[Y254C] mutations underlie ROSAH syndrome (retinal dystrophy, optic nerve oedema, splenomegaly, anhidrosis, and migraine headache), while the ALPK1[V1092A] mutation accounts for 45% of spiradenoma and 30% of spiradenocarcinoma cases studied. In this study, we demonstrate that unlike wild-type (WT) ALPK1, the disease-causing ALPK1 mutants trigger the TIFA-dependent activation of an NF-κB/activator protein 1 reporter gene in the absence of ADP-heptose, which can be suppressed by either of two additional mutations in the ADP-heptose binding site that prevent the activation of WT ALPK1 by ADP-heptose. These observations are explained by our key finding that although ALPK1[T237M] and ALPK1[V1092A] are activated by bacterial ADP-heptose, they can also be activated by nucleotide sugars present in human cells (UDP-mannose, ADP-ribose, and cyclic ADP-ribose) which can be prevented by disruption of the ADP-heptose binding site. The ALPK1[V1092A] mutant was also activated by GDP-mannose, which did not activate ALPK1[T237M]. These are new examples of disease-causing mutations permitting the allosteric activation of an enzyme by endogenous molecules that the WT enzyme does not respond to. We propose that the loss of the specificity of ALPK1 for bacterial ADP-heptose underlies ROSAH syndrome and spiradenoma/spiradenocarcinoma caused by ALPK1 mutation.
Collapse
Affiliation(s)
- Tom Snelling
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, Scotland, United Kingdom
| | - Anton Saalfrank
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, Scotland, United Kingdom
| | - Nicola T. Wood
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, Scotland, United Kingdom
| | - Philip Cohen
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, Scotland, United Kingdom
| |
Collapse
|
3
|
Guay KP, Ibba R, Kiappes J, Vasiljević S, Bonì F, De Benedictis M, Zeni I, Le Cornu JD, Hensen M, Chandran AV, Kantsadi AL, Caputo AT, Blanco Capurro JI, Bayo Y, Hill JC, Hudson K, Lia A, Brun J, Withers SG, Martí M, Biasini E, Santino A, De Rosa M, Milani M, Modenutti CP, Hebert DN, Zitzmann N, Roversi P. A quinolin-8-ol sub-millimolar inhibitor of UGGT, the ER glycoprotein folding quality control checkpoint. iScience 2023; 26:107919. [PMID: 37822503 PMCID: PMC10562782 DOI: 10.1016/j.isci.2023.107919] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/05/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Misfolded glycoprotein recognition and endoplasmic reticulum (ER) retention are mediated by the ER glycoprotein folding quality control (ERQC) checkpoint enzyme, UDP-glucose glycoprotein glucosyltransferase (UGGT). UGGT modulation is a promising strategy for broad-spectrum antivirals, rescue-of-secretion therapy in rare disease caused by responsive mutations in glycoprotein genes, and many cancers, but to date no selective UGGT inhibitors are known. The small molecule 5-[(morpholin-4-yl)methyl]quinolin-8-ol (5M-8OH-Q) binds a CtUGGTGT24 "WY" conserved surface motif conserved across UGGTs but not present in other GT24 family glycosyltransferases. 5M-8OH-Q has a 47 μM binding affinity for CtUGGTGT24in vitro as measured by ligand-enhanced fluorescence. In cellula, 5M-8OH-Q inhibits both human UGGT isoforms at concentrations higher than 750 μM. 5M-8OH-Q binding to CtUGGTGT24 appears to be mutually exclusive to M5-9 glycan binding in an in vitro competition experiment. A medicinal program based on 5M-8OH-Q will yield the next generation of UGGT inhibitors.
Collapse
Affiliation(s)
- Kevin P. Guay
- Department of Biochemistry and Molecular Biology, and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Roberta Ibba
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23A, 07100 Sassari, Italy
| | - J.L. Kiappes
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Snežana Vasiljević
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Francesco Bonì
- Institute of Biophysics, IBF-CNR Unit of Milano, via Celoria 26, 20133 Milano, Italy
| | - Maria De Benedictis
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy
| | - Ilaria Zeni
- Department of Cellular, Computational and Integrative Biology, University of Trento, Povo, 38123 Trento, Italy
| | - James D. Le Cornu
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Mario Hensen
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Anu V. Chandran
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Anastassia L. Kantsadi
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Alessandro T. Caputo
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Juan I. Blanco Capurro
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
| | - Yusupha Bayo
- Department of Biosciences, University of Milano, via Celoria 26, 20133 Milano, Italy
| | - Johan C. Hill
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Kieran Hudson
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Andrea Lia
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
- Institute of Biophysics, IBF-CNR Unit of Milano, via Celoria 26, 20133 Milano, Italy
| | - Juliane Brun
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Marcelo Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
| | - Emiliano Biasini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Povo, 38123 Trento, Italy
- Dulbecco Telethon Institute, University of Trento, Povo, 38123 Trento, Italy
| | - Angelo Santino
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy
| | - Matteo De Rosa
- Institute of Biophysics, IBF-CNR Unit of Milano, via Celoria 26, 20133 Milano, Italy
| | - Mario Milani
- Institute of Biophysics, IBF-CNR Unit of Milano, via Celoria 26, 20133 Milano, Italy
| | - Carlos P. Modenutti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
| | - Daniel N. Hebert
- Department of Biochemistry and Molecular Biology, and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Pietro Roversi
- Institute of Agricultural Biology and Biotechnology, IBBA-CNR Unit of Milano, via Bassini 15, 20133 Milano, Italy
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, LE1 7HR Leicester, UK
| |
Collapse
|
4
|
Liu S, Lai Z, Zhang M, Tian H, Zhou J, Li Z. Facile synthesis of amino-functionalized magnetic materials for efficient enrichment of anionic metabolites from biological samples. Anal Chim Acta 2023; 1250:340977. [PMID: 36898822 DOI: 10.1016/j.aca.2023.340977] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
The analysis of biological samples is often affected by the background matrix. Proper sample preparation is a critical step in the analytical procedure for complex samples. In this study, a simple and efficient enrichment strategy based on Amino-functionalized Polymer-Magnetic MicroParticles (NH2-PMMPs) with coral-like porous structures was developed to enable the detection of 320 anionic metabolites, providing detailed coverage of phosphorylation metabolism. Among them, 102 polar phosphate metabolites including nucleotides, cyclic nucleotides, sugar nucleotides, phosphate sugars, and phosphates, were enriched and identified from serum, tissues, and cells. Furthermore, the detection of 34 previously unknown polar phosphate metabolites in serum samples demonstrates the advantages of this efficient enrichment method for mass spectrometric analysis. The limit of detections (LODs) were between 0.02 and 4 nmol/L for most anionic metabolites and its high sensitivity enabled the detection of 36 polar anion metabolites from 10 cell equivalent samples. This study has provided a promising tool for the efficient enrichment and analysis of anionic metabolites in biological samples with high sensitivity and broad coverage, facilitating the knowledge of the phosphorylation processes of life.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Mo Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Hongtao Tian
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Jiang Zhou
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Beijing, 100871, China.
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
5
|
Dolan JP, Cosgrove SC, Miller GJ. Biocatalytic Approaches to Building Blocks for Enzymatic and Chemical Glycan Synthesis. JACS AU 2023; 3:47-61. [PMID: 36711082 PMCID: PMC9875253 DOI: 10.1021/jacsau.2c00529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
While the field of biocatalysis has bloomed over the past 20-30 years, advances in the understanding and improvement of carbohydrate-active enzymes, in particular, the sugar nucleotides involved in glycan building block biosynthesis, have progressed relatively more slowly. This perspective highlights the need for further insight into substrate promiscuity and the use of biocatalysis fundamentals (rational design, directed evolution, immobilization) to expand substrate scopes toward such carbohydrate building block syntheses and/or to improve enzyme stability, kinetics, or turnover. Further, it explores the growing premise of using biocatalysis to provide simple, cost-effective access to stereochemically defined carbohydrate materials, which can undergo late-stage chemical functionalization or automated glycan synthesis/polymerization.
Collapse
Affiliation(s)
- Jonathan P. Dolan
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Sebastian C. Cosgrove
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gavin J. Miller
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| |
Collapse
|
6
|
Scherpenzeel M, Conte F, Büll C, Ashikov A, Hermans E, Willems A, Tol W, Kragt E, Noga M, Moret EE, Heise T, Langereis JD, Rossing E, Zimmermann M, Rubio-Gozalbo ME, de Jonge MI, Adema GJ, Zamboni N, Boltje T, Lefeber DJ. Dynamic tracing of sugar metabolism reveals the mechanisms of action of synthetic sugar analogs. Glycobiology 2021; 32:239-250. [PMID: 34939087 PMCID: PMC8966471 DOI: 10.1093/glycob/cwab106] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 11/14/2022] Open
Abstract
Synthetic sugar analogs are widely applied in metabolic oligosaccharide engineering (MOE) and as novel drugs to interfere with glycoconjugate biosynthesis. However, mechanistic insights on their exact cellular metabolism over time are mostly lacking. We combined ion-pair ultrahigh performance liquid chromatography–triple quadrupole mass spectrometry mass spectrometry using tributyl- and triethylamine buffers for sensitive analysis of sugar metabolites in cells and organisms and identified low abundant nucleotide sugars, such as UDP-arabinose in human cell lines and CMP-sialic acid (CMP-NeuNAc) in Drosophila. Furthermore, MOE revealed that propargyloxycarbonyl (Poc)-labeled ManNPoc was metabolized to both CMP-NeuNPoc and UDP-GlcNPoc. Finally, time-course analysis of the effect of antitumor compound 3Fax-NeuNAc by incubation of B16-F10 melanoma cells with N-acetyl-D-[UL-13C6]glucosamine revealed full depletion of endogenous ManNAc 6-phosphate and CMP-NeuNAc within 24 h. Thus, dynamic tracing of sugar metabolic pathways provides a general approach to reveal time-dependent insights into the metabolism of synthetic sugars, which is important for the rational design of analogs with optimized effects.
Collapse
Affiliation(s)
- Monique Scherpenzeel
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.,GlycoMScan B.V., Kloosterstraat 9, RE0329, 5349 AB Oss, The Netherlands
| | - Federica Conte
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Christian Büll
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| | - Angel Ashikov
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Esther Hermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Anke Willems
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Walinka Tol
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Else Kragt
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Marek Noga
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Ed E Moret
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Torben Heise
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Jeroen D Langereis
- Radboud Center for Infectious Diseases, Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Emiel Rossing
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | | | - M Estela Rubio-Gozalbo
- Department of Clinical Genetics, department of Pediatrics, Maastricht University Medical Centre, Universiteitssingel 50, P.O. Box 616, box 16, 6200 MD, Maastricht, The Netherlands
| | - Marien I de Jonge
- Radboud Center for Infectious Diseases, Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Gosse J Adema
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Thomas Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Ren J, Sherry AD. 31 P-MRS of healthy human brain: Measurement of guanosine diphosphate mannose at 7 T. NMR IN BIOMEDICINE 2021; 34:e4576. [PMID: 34155714 DOI: 10.1002/nbm.4576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
Guanosine diphosphate mannose (GDP-Man) is the donor substrate required for mannosylation in the synthesis of glycoproteins, glycolipids and the newly discovered glycoRNA. Normal GDP-Man biosynthesis plays a crucial role in support of a variety of cellular functions, including cell recognition, cell communication and immune responses against viruses. Here, we report the detection of GDP-Man in human brain for the first time, using 31 P MRS at 7 T. The presence of GDP-Man is evidenced by the detection of a weak 31 P doublet at -10.7 ppm that can be assigned to the phosphomannosyl group (Pβ) of the GDP-Man molecule. This weak but well-resolved signal lies 0.9 ppm upfield of UDP(G) Pβ-multiplet from a mixture of UDP-Glc, UDP-Gal, UDP-GlcNAc and UDP-GalNAc. In reference to ATP (2.8 mM), the concentration of GDP-Man in human brain was estimated to be 0.02 ± 0.01 mM, about 15-fold lower than the total concentration of UDP(G) (0.30 ± 0.04, N = 17) and consistent with previous reports of UDP-Man in cells and brain tissue extracts measured by high-performance liquid chromatography. The reproducibility of the measured GDP-Man between test and 2-week retest was 21% ± 15% compared with 5% ± 4% for UDP(G) (N = 7). The measured concentrations of GDP-Man and UDP(G) are linearly correlated ([UDP(G)] = 4.3 [GDP-Man] + 0.02, with R = 0.66 and p = 0.0043), likely reflecting the effect of shared sugar precursors, which may vary among individuals in response to variation in nutritional intake and consumption. Given that GDP-Man has another set of doublet (Pα) at -8.3 ppm that overlaps with NAD(H) and UDP(G)-Pα signals, the amount of GDP-Man could potentially interfere with the deconvolution of these mixed signals in composition analysis. Importantly, this new finding may be useful in advancing our understanding of glycosylation and its role in the development of cancer, as well as infectious and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jimin Ren
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
8
|
Minakata S, Manabe S, Inai Y, Ikezaki M, Nishitsuji K, Ito Y, Ihara Y. Protein C-Mannosylation and C-Mannosyl Tryptophan in Chemical Biology and Medicine. Molecules 2021; 26:molecules26175258. [PMID: 34500691 PMCID: PMC8433626 DOI: 10.3390/molecules26175258] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022] Open
Abstract
C-Mannosylation is a post-translational modification of proteins in the endoplasmic reticulum. Monomeric α-mannose is attached to specific Trp residues at the first Trp in the Trp-x-x-Trp/Cys (W-x-x-W/C) motif of substrate proteins, by the action of C-mannosyltransferases, DPY19-related gene products. The acceptor substrate proteins are included in the thrombospondin type I repeat (TSR) superfamily, cytokine receptor type I family, and others. Previous studies demonstrated that C-mannosylation plays critical roles in the folding, sorting, and/or secretion of substrate proteins. A C-mannosylation-defective gene mutation was identified in humans as the disease-associated variant affecting a C-mannosylation motif of W-x-x-W of ADAMTSL1, which suggests the involvement of defects in protein C-mannosylation in human diseases such as developmental glaucoma, myopia, and/or retinal defects. On the other hand, monomeric C-mannosyl Trp (C-Man-Trp), a deduced degradation product of C-mannosylated proteins, occurs in cells and extracellular fluids. Several studies showed that the level of C-Man-Trp is upregulated in blood of patients with renal dysfunction, suggesting that the metabolism of C-Man-Trp may be involved in human kidney diseases. Together, protein C-mannosylation is considered to play important roles in the biosynthesis and functions of substrate proteins, and the altered regulation of protein C-manosylation may be involved in the pathophysiology of human diseases. In this review, we consider the biochemical and biomedical knowledge of protein C-mannosylation and C-Man-Trp, and introduce recent studies concerning their significance in biology and medicine.
Collapse
Affiliation(s)
- Shiho Minakata
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Shino Manabe
- Pharmaceutical Department, The Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan;
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Science & Faculty of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Sendai, Miyagi 980-8578, Japan
| | - Yoko Inai
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Midori Ikezaki
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Yukishige Ito
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan;
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
- Correspondence: ; Tel.: +81-73-441-0628
| |
Collapse
|
9
|
Miyagawa A, Toyama S, Ohmura I, Miyazaki S, Kamiya T, Yamamura H. One-Step Synthesis of Sugar Nucleotides. J Org Chem 2020; 85:15645-15651. [PMID: 33196211 DOI: 10.1021/acs.joc.0c01943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chemical synthesis of sugar nucleotides requires a multistep procedure to ensure a selective reaction. Herein, sugar nucleotides were synthesized in one step using 2-chloro-1,3-dimethylimidazolinium chloride as the condensation reagent. The products were obtained in yields of 12-30%, and the yields were increased to 35-47% by the addition of a tuning reagent. NMR identification of the sugar nucleotides showed that mainly 1,2-trans-glycosides were present. The reported method represents a one-step route to sugar nucleotides from commercially available materials.
Collapse
Affiliation(s)
- Atsushi Miyagawa
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.,Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Sanami Toyama
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Ippei Ohmura
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Shun Miyazaki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Takeru Kamiya
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hatsuo Yamamura
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.,Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
10
|
Niwa Y, Simizu S. C-Mannosylation: Previous Studies and Future Research Perspectives. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1755.1e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yuki Niwa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University
| |
Collapse
|