1
|
Alruwad MI, Salah El Dine R, Gendy AM, Saleh AM, Khalaf MA, El Hefnawy HM, Sabry MM. Insights into Clematis cirrhosa L. Ethanol Extract: Cytotoxic Effects, LC-ESI-QTOF-MS/MS Chemical Profiling, Molecular Docking, and Acute Toxicity Study. Pharmaceuticals (Basel) 2024; 17:1347. [PMID: 39458988 PMCID: PMC11510288 DOI: 10.3390/ph17101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND In Jordanian traditional medicine, Clematis cirrhosa is commonly employed for the management of different diseases. Numerous investigations have documented the cytotoxic properties of different Clematis species against numerous types of cancer. Previously, we demonstrated the potential cytotoxicity of Clematis cirrhosa against HT-29 colorectal cancer cells. Extending our work, the current research aimed to explore the possible mechanisms underlying its antiproliferative activity with a plant safety evaluation. METHODS This study evaluates the extract's impact on the cell cycle, apoptosis, and cell migration through in vitro assays, LC-ESI-QTOF-MS/MS analysis, docking studies, and an acute toxicity evaluation. RESULTS The Clematis cirrhosa ethanol extract (CEE) induced G2/M phase cell cycle arrest (19.63%), triggered significant apoptosis (41.99%), and inhibited cell migration/wound healing by 28.15%. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis revealed increased expression of the proapoptotic markers BAX (6.03-fold) and caspase-3 (6.59-fold), along with the reduced expression of the antiapoptotic BCL-2, in CEE-treated cells. Moreover, CEE significantly restrained angiogenesis by reducing VEGF mRNA expression by 63.9%. High-resolution LC-ESI-QTOF-MS/MS studies identified 26 metabolites, including phenolic compounds, fatty acids, and triterpenoids. Docking studies suggested that manghaslin had the highest binding affinity for VEGFR-2, followed by calceolarioside B, quercetin 7-O-rhamnopyranoside, luteolin, and quercetin-3,7-O-diglucoside. On the other hand, salvadoraside exhibited the highest binding affinity for the inhibition of caspase-3, followed by quercetin-3,7-O-diglucoside, kaempferol-3,7-O-α-L-dirhamnoside, manghaslin, and tectoridin, supporting the observed apoptotic effects. Interestingly, the outcomes further indicate that a single oral administration of up to 5000 mg/kg CEE is safe for consumption. CONCLUSIONS These outcomes point to the potential of Clematis cirrhosa as a promising candidate for further exploration in cancer therapy.
Collapse
Affiliation(s)
- Manal I. Alruwad
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; (M.I.A.); (R.S.E.D.); (H.M.E.H.); (M.M.S.)
| | - Riham Salah El Dine
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; (M.I.A.); (R.S.E.D.); (H.M.E.H.); (M.M.S.)
| | - Abdallah M. Gendy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Abdulrahman M. Saleh
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
| | - Mohamed A. Khalaf
- Department of Chemistry, College of Science, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Hala M. El Hefnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; (M.I.A.); (R.S.E.D.); (H.M.E.H.); (M.M.S.)
| | - Manal M. Sabry
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; (M.I.A.); (R.S.E.D.); (H.M.E.H.); (M.M.S.)
| |
Collapse
|
2
|
Otmani K, Rouas R, Lewalle P. OncomiRs as noncoding RNAs having functions in cancer: Their role in immune suppression and clinical implications. Front Immunol 2022; 13:913951. [PMID: 36189271 PMCID: PMC9523483 DOI: 10.3389/fimmu.2022.913951] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Currently, microRNAs have been established as central players in tumorigenesis, but above all, they have opened an important door for our understanding of immune and tumor cell communication. This dialog is largely due to onco-miR transfer from tumor cells to cells of the tumor microenvironment by exosome. This review outlines recent advances regarding the role of oncomiRs in enhancing cancer and how they modulate the cancer-related immune response in the tumor immune microenvironment.MicroRNAs (miRNAs) are a type of noncoding RNA that are important posttranscriptional regulators of messenger RNA (mRNA) translation into proteins. By regulating gene expression, miRNAs enhance or inhibit cancer development and participate in several cancer biological processes, including proliferation, invasion metastasis, angiogenesis, chemoresistance and immune escape. Consistent with their widespread effects, miRNAs have been categorized as oncogenes (oncomiRs) or tumor suppressor (TS) miRNAs. MiRNAs that promote tumor growth, called oncomiRs, inhibit messenger RNAs of TS genes and are therefore overexpressed in cancer. In contrast, TS miRNAs inhibit oncogene messenger RNAs and are therefore underexpressed in cancer. Endogenous miRNAs regulate different cellular pathways in all cell types. Therefore, they are not only key modulators in cancer cells but also in the cells constituting their microenvironments. Recently, it was shown that miRNAs are also involved in intercellular communication. Indeed, miRNAs can be transferred from one cell type to another where they regulate targeted gene expression. The primary carriers for the transfer of miRNAs from one cell to another are exosomes. Exosomes are currently considered the primary carriers for communication between the tumor and its surrounding stromal cells to support cancer progression and drive immune suppression. Exosome and miRNAs are seen by many as a hope for developing a new class of targeted therapy. This review outlines recent advances in understanding the role of oncomiRs in enhancing cancer and how they promote its aggressive characteristics and deeply discusses the role of oncomiRs in suppressing the anticancer immune response in its microenvironment. Additionally, further understanding the mechanism of oncomiR-related immune suppression will facilitate the use of miRNAs as biomarkers for impaired antitumor immune function, making them ideal immunotherapy targets.
Collapse
Affiliation(s)
- Khalid Otmani
- Experimental Hematology Laboratory, Hematology Department, Jules Bordet Institute, Brussels, Belgium
- Hematology Department, Université libre de Bruxelles, Brussels, Belgium
- *Correspondence: Khalid Otmani,
| | - Redouane Rouas
- Hematology Department, Université libre de Bruxelles, Brussels, Belgium
- Hematological Cell Therapy Unit, Hematology Department, Jules Bordet Institute, Brussels, Belgium
| | - Philippe Lewalle
- Experimental Hematology Laboratory, Hematology Department, Jules Bordet Institute, Brussels, Belgium
- Hematology Department, Université libre de Bruxelles, Brussels, Belgium
- Hematological Cell Therapy Unit, Hematology Department, Jules Bordet Institute, Brussels, Belgium
| |
Collapse
|
3
|
Wang Z, Chang Y, Cao F, Yang C, Wang Z, Kuang H. Simultaneous determination of six triterpenoid saponins in beagle dog plasma by UPLC-MS/MS and its application to a pharmacokinetic study after oral administration of the extract of the Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. leaves. ACTA CHROMATOGR 2022. [DOI: 10.1556/1326.2022.01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
A rapid and simple ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) method was developed and validated for simultaneous determination of six analytes from the Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. leaves (ESL) in beagle dog plasma for the first time, including 3-O-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside-29-hydroxy oleanolic acid, 3-O-β-d-glucopyranosyl-(1→2)-α-l-arabinopyranoside-29-hydroxy oleanolic acid, 3-O-β-d-glucopyranosyl-(1→2)-α-l-arabinopyranosyl-30-norlean-12,20 (29) –dien-28-olic acid, ciwujianoside E, guaianin N, and eleutheroside K. The chromatographic separation was performed using an ACQUITY UPLC BEH C18 column (2.1 × 100 mm, 1.7 μm) using a gradient elution way with a mobile phase of acetonitrile-water containing 0.1% formic acid. Analytes were detected on a triple-quadrupole mass spectrometer equipped with an electrospray ionization (ESI) source with multiple reaction monitoring (MRM) mode. Calibration curves were all linear (r ≥ 0.9933) over the concentration range. The mean extraction recoveries and matrix effect of analytes and I.S. were ranged from 80.26% to 98.32% and from 91.27% to 111.67%, respectively. The intra-day and inter-day precision were ranged from 2.20% to 14.81%, and the accuracy range was 1.60–14.60%. The analytical method was successfully applied for the pharmacokinetic characteristics of the six analytes in beagle plasma after oral administration of ESL extracts. The T
1/2 of six analytes was more than 3.09 ± 0.78 h.
Collapse
Affiliation(s)
- Zhibin Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Yaodan Chang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Feng Cao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Chunjuan Yang
- Harbin Medical University, College of Pharmacy, 157 Baojian Road, Nangang District, Harbin 150040, China
| | - Zhenyue Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin 150040, China
| |
Collapse
|
4
|
Lu WL, Yang T, Song QJ, Fang ZQ, Pan ZQ, Liang C, Jia DW, Peng PK. Akebia trifoliata (Thunb.) Koidz Seed Extract inhibits human hepatocellular carcinoma cell migration and invasion in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2019; 234:204-215. [PMID: 30528882 DOI: 10.1016/j.jep.2018.11.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The high recurrence rate postoperative and extensive metastases have become the obstacle of Hepatocellular Carcinoma (HCC) efficacy improvements, which contribute to most of the patient mortality. Akebia trifoliata (Thunb.) Koidz has been shown pharmacological activities in clinical and anti-HCC biological activity in previous research, but its potential function of anti-metastasis remains unknown. AIM OF THIS STUDY To make sure whether ATKSE inhibits migration and invasion in HCC cell lines in vitro and the potential mechanism. MATERIALS AND METHODS A UHPLC-HRMS analysis was adopted to identify and control the quality of the ethanol extract of Akebia trifoliata (Thunb.) Koidz Seed (abbreviated ATKSE). Cell viability of three kinds of HCC cell lines (HEPG2, HUH7, and SMMC7721) was detected using MTT assay and Flow cytometry. Adhesion capacity was measured by cell-matrigel adhesion assay. Wounded healing and Matrigel-transwell invasion assays were performed to assess cell migration and invasion, respectively. Western blot assay was used to detect several metastasis-related protein molecules, including FAK adhesion signaling, cadherin molecules, and MMPs. ELISA assay was used to evaluate the secreted MMP9 level. RESULTS ATKSE significantly suppressed HCC cells viability and proliferation (from 0.9 up to 3.0 mg/ml); then under sub-lethal concentration (from 0.25 up to 1.0 mg/ml), ATKSE inhibited cell adhesion, migration, and invasion in a way of dose-dependent. Several metastatic-related molecules or pathway, including FAK adhesion signaling, cadherin molecules, and MMPs, took part in this process. There are both differences and commonalities in various cell lines: typically such as p-FAK was down-regulated by ATKSE in both HEPG2 and SMMC7721, while was raised in HUH7; Further attempts on the combination of ATKSE and FAK inhibitors, provide us with the enhanced inhibitory effects of invasion and migration in HEPG2 and HUH7 cells, as well as antagonistic effects in SMMC7721. As a target or potential mechanism, it may be more valuable to concern FAK inhibition by ATKSE in HEPG2 cells than in the other two cells. CONCLUSIONS These results suggest that ATKSE has anti-metastasis potency in HCC cells.
Collapse
Affiliation(s)
- Wen-Li Lu
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China.
| | - Tao Yang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China
| | - Qiu-Jia Song
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Zhao-Qin Fang
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China.
| | - Zhi-Qiang Pan
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Cao Liang
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Dong-Wei Jia
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Pei-Ke Peng
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China.
| |
Collapse
|
5
|
Zdarta A, Smułek W, Pacholak A, Kaczorek E. Environmental Aspects of the Use of Hedera helix Extract in Bioremediation Process. Microorganisms 2019; 7:E43. [PMID: 30764566 PMCID: PMC6406833 DOI: 10.3390/microorganisms7020043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/25/2019] [Accepted: 02/02/2019] [Indexed: 11/25/2022] Open
Abstract
This paper analyzes the impact of saponins from English ivy leaves on the properties of environmental bacterial strains and hydrocarbon degradation ability. For this purpose, two bacterial strains, Raoultella ornitinolytica M03 and Acinetobacter calcoaceticus M1B, have been used in toluene, 4-chlorotoluene, and α,α,α-trifluorotoluene biodegradation supported by Hedera helix extract. Moreover, theeffects of ivy exposition on cell properties and extract toxicity were investigated. The extract was found to cause minor differences in cell surface hydrophobicity, membrane permeability, and Zeta potential, although it adhered to the cell surface. Acinetobacter calcoaceticus M1B was more affected by the ivy extract; thus, the cells were more metabolically active and degraded saponins at greater amounts. Although the extract influenced positively the cells' viability in the presence of hydrocarbons, it could have been used by the bacteria as a carbon source, thus slowing down hydrocarbon degradation. These results show that the use of ivy saponins for hydrocarbon remediation is environmentally acceptable but should be carefully analyzed to assess the efficiency of the selected saponins-rich extract in combination with selected bacterial strains.
Collapse
Affiliation(s)
- Agata Zdarta
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Amanda Pacholak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
6
|
Peng W, Zhang S, Zhang Z, Xu P, Mao D, Huang S, Chen B, Zhang C, Zhang S. Jianpi Jiedu decoction, a traditional Chinese medicine formula, inhibits tumorigenesis, metastasis, and angiogenesis through the mTOR/HIF-1α/VEGF pathway. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:140-148. [PMID: 29852266 DOI: 10.1016/j.jep.2018.05.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/20/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine has been utilized for the treatment of cancer. Jianpi Jiedu decoction (JPJD), a traditional Chinese medicine formula, has been used for the treatment of colorectal cancer for decades. However, the underlying molecular mechanistic basis for the effect of JPJD on colorectal cancer is poorly understood. AIM OF THE STUDY The aim of this study was to identify the effects of JPJD on human colon cancer cells in vitro as well as in vivo and to investigate the mechanistic basis for the anticancer effect of JPJD. MATERIALS AND METHODS The in vitro antitumor activity of JPJD was assessed by MTT assay, flow cytometric analysis, wound-healing assay, transwell assays, and tube formation assays in order to assess cell activity, apoptosis, migration, invasion, and angiogenesis, respectively. The anticancer properties of JPJD in vivo were assessed by immunohistochemistry in a nude mouse xenograft model of HCT116 cells. In addition, the level of mTOR/HIF-1α/VEGF signaling pathway proteins in HCT116 cells and tumor tissue was evaluated by immunoblotting. RESULTS In vitro, JPJD significantly inhibited colorectal cancer cell lines viability and proliferation. Flow cytometry analysis demonstrated JPJD to induce HCT116 cell apoptosis. Additionally, JPJD effectively suppressed tumor cell migration, invasion, and angiogenesis by inhibiting the mTOR/HIF-1α/VEGF signaling pathway. In vivo, JPJD significantly inhibited HCT116 tumor growth in athymic nude mice, decreased the levels of CD34 as well as VEGF, and downregulated the mTOR/HIF-1α/VEGF pathway. CONCLUSIONS JPJD treatment produced anti-colorectal tumor effects by inhibiting tumorigenesis, metastasis, as well as angiogenesis through the mTOR/HIF-1α/VEGF pathway. Thus, these results provide a strong rationale for the therapeutic use of JPJD in cancer treatment. Further studies are required to investigate the mechanisms underlying anti-CRC effect of JPJD.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/physiology
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Male
- Medicine, Chinese Traditional
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Neoplasms/pathology
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Physiologic/drug effects
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/metabolism
- Vascular Endothelial Growth Factor A/metabolism
- Wound Healing/drug effects
Collapse
Affiliation(s)
- Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shaofang Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Digestive System Department, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi 541001, China
| | - Panpan Xu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Dan Mao
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Siqi Huang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Biyue Chen
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chunhu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Sifang Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
7
|
d Rhamnose β-hederin reverses chemoresistance of breast cancer cells by regulating exosome-mediated resistance transmission. Biosci Rep 2018; 38:BSR20180110. [PMID: 30061173 PMCID: PMC6165836 DOI: 10.1042/bsr20180110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/02/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022] Open
Abstract
d Rhamnose β-hederin (DRβ-H), an active component extracted from the traditional Chinese medicinal plant Clematis ganpiniana, has been reported to be effective against breast cancer. Recent studies have also indicated that the isolated exosomes (D/exo) from docetaxel-resistant breast cancer cells MCF-7 (MCF-7/Doc) were associated with resistance transmission by delivering genetic cargo. However, the relevance of D/exo during DRβ-H exposure remains largely unclear. In the present work, exosomes were characterized by morphology and size distribution. We reinforced the significant role of D/exo in spreading chemoresistance from MCF-7/Doc to recipient sensitive cells after absorption and internalization. DRβ-H could reduce the formation and release of D/exo. Next, we demonstrated that DRβ-H was able to reverse docetaxel resistance and that D/exo was responsible for DRβ-H-mediated resistance reversal. We also found that DRβ-H could decrease the expressions of several most abundant miRNAs (miR-16, miR-23a, miR-24, miR-26a, and miR-27a) transported by D/exo. Target gene prediction and pathway analysis showed the involvement of these selected miRNAs in pathways related to treatment failure. Our results suggested that DRβ-H could reduce D/exo secretion from MCF-7/Doc cells and induce the reduction in resistance transmission via D/exo.
Collapse
|