1
|
Marjanovic A, Ramírez-Palacios CJ, Masman MF, Drenth J, Otzen M, Marrink SJ, Janssen DB. Thermostable D-amino acid decarboxylases derived from Thermotoga maritima diaminopimelate decarboxylase. Protein Eng Des Sel 2021; 34:gzab016. [PMID: 34258615 PMCID: PMC8277567 DOI: 10.1093/protein/gzab016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/03/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Diaminopimelate decarboxylases (DAPDCs) are highly selective enzymes that catalyze the common final step in different lysine biosynthetic pathways, i.e. the conversion of meso-diaminopimelate (DAP) to L-lysine. We examined the modification of the substrate specificity of the thermostable decarboxylase from Thermotoga maritima with the aim to introduce activity with 2-aminopimelic acid (2-APA) since its decarboxylation leads to 6-aminocaproic acid (6-ACA), a building block for the synthesis of nylon-6. Structure-based mutagenesis of the distal carboxylate binding site resulted in a set of enzyme variants with new activities toward different D-amino acids. One of the mutants (E315T) had lost most of its activity toward DAP and primarily acted as a 2-APA decarboxylase. We next used computational modeling to explain the observed shift in catalytic activities of the mutants. The results suggest that predictive computational protocols can support the redesign of the catalytic properties of this class of decarboxylating PLP-dependent enzymes.
Collapse
Affiliation(s)
- Antonija Marjanovic
- Biotechnology and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Carlos J Ramírez-Palacios
- Biotechnology and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Marcelo F Masman
- Biotechnology and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Van’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jeroen Drenth
- Biotechnology and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marleen Otzen
- Biotechnology and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Siewert-Jan Marrink
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Dick B Janssen
- Biotechnology and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
2
|
Weatherhead AW, Crowther JM, Horne CR, Meng Y, Coombes D, Currie MJ, Watkin SAJ, Adams LE, Parthasarathy A, Dobson RCJ, Hudson AO. Structure-Function Studies of the Antibiotic Target l,l-Diaminopimelate Aminotransferase from Verrucomicrobium spinosum Reveal an Unusual Oligomeric Structure. Biochemistry 2020; 59:2274-2288. [PMID: 32478518 DOI: 10.1021/acs.biochem.0c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While humans lack the biosynthetic pathways for meso-diaminopimelate and l-lysine, they are essential for bacterial survival and are therefore attractive targets for antibiotics. It was recently discovered that members of the Chlamydia family utilize a rare aminotransferase route of the l-lysine biosynthetic pathway, thus offering a new enzymatic drug target. Here we characterize diaminopimelate aminotransferase from Verrucomicrobium spinosum (VsDapL), a nonpathogenic model bacterium for Chlamydia trachomatis. Complementation experiments verify that the V. spinosum dapL gene encodes a bona fide diaminopimelate aminotransferase, because the gene rescues an Escherichia coli strain that is auxotrophic for meso-diaminopimelate. Kinetic studies show that VsDapL follows a Michaelis-Menten mechanism, with a KMapp of 4.0 mM toward its substrate l,l-diaminopimelate. The kcat (0.46 s-1) and the kcat/KM (115 s-1 M-1) are somewhat lower than values for other diaminopimelate aminotransferases. Moreover, whereas other studied DapL orthologs are dimeric, sedimentation velocity experiments demonstrate that VsDapL exists in a monomer-dimer self-association, with a KD2-1 of 7.4 μM. The 2.25 Å resolution crystal structure presents the canonical dimer of chalice-shaped monomers, and small-angle X-ray scattering experiments confirm the dimer in solution. Sequence and structural alignments reveal that active site residues important for activity are conserved in VsDapL, despite the lower activity compared to those of other DapL homologues. Although the dimer interface buries 18% of the total surface area, several loops that contribute to the interface and active site, notably the L1, L2, and L5 loops, are highly mobile, perhaps explaining the unstable dimer and lower catalytic activity. Our kinetic, biophysical, and structural characterization can be used to inform the development of antibiotics.
Collapse
Affiliation(s)
- Anthony W Weatherhead
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand
| | - Jennifer M Crowther
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand
| | - Christopher R Horne
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand
| | - Yanxiang Meng
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand
| | - David Coombes
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand
| | - Michael J Currie
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand
| | - Serena A J Watkin
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand
| | - Lily E Adams
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York 14623-5603, United States
| | - Anutthaman Parthasarathy
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York 14623-5603, United States
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand.,Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York 14623-5603, United States
| |
Collapse
|
3
|
RNA-Seq comparative analysis reveals the response of Enterococcus faecalis TV4 under fluoride exposure. Gene 2020; 726:144197. [DOI: 10.1016/j.gene.2019.144197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/08/2019] [Accepted: 10/20/2019] [Indexed: 12/14/2022]
|
4
|
Crowther JM, Cross PJ, Oliver MR, Leeman MM, Bartl AJ, Weatherhead AW, North RA, Donovan KA, Griffin MDW, Suzuki H, Hudson AO, Kasanmascheff M, Dobson RCJ. Structure-function analyses of two plant meso-diaminopimelate decarboxylase isoforms reveal that active-site gating provides stereochemical control. J Biol Chem 2019; 294:8505-8515. [PMID: 30962284 DOI: 10.1074/jbc.ra118.006825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/26/2019] [Indexed: 11/06/2022] Open
Abstract
meso-Diaminopimelate decarboxylase catalyzes the decarboxylation of meso-diaminopimelate, the final reaction in the diaminopimelate l-lysine biosynthetic pathway. It is the only known pyridoxal-5-phosphate-dependent decarboxylase that catalyzes the removal of a carboxyl group from a d-stereocenter. Currently, only prokaryotic orthologs have been kinetically and structurally characterized. Here, using complementation and kinetic analyses of enzymes recombinantly expressed in Escherichia coli, we have functionally tested two putative eukaryotic meso-diaminopimelate decarboxylase isoforms from the plant species Arabidopsis thaliana We confirm they are both functional meso-diaminopimelate decarboxylases, although with lower activities than those previously reported for bacterial orthologs. We also report in-depth X-ray crystallographic structural analyses of each isoform at 1.9 and 2.4 Å resolution. We have captured the enzyme structure of one isoform in an asymmetric configuration, with one ligand-bound monomer and the other in an apo-form. Analytical ultracentrifugation and small-angle X-ray scattering solution studies reveal that A. thaliana meso-diaminopimelate decarboxylase adopts a homodimeric assembly. On the basis of our structural analyses, we suggest a mechanism whereby molecular interactions within the active site transduce conformational changes to the active-site loop. These conformational differences are likely to influence catalytic activity in a way that could allow for d-stereocenter selectivity of the substrate meso-diaminopimelate to facilitate the synthesis of l-lysine. In summary, the A. thaliana gene loci At3g14390 and At5g11880 encode functional. meso-diaminopimelate decarboxylase enzymes whose structures provide clues to the stereochemical control of the decarboxylation reaction catalyzed by these eukaryotic proteins.
Collapse
Affiliation(s)
- Jennifer M Crowther
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JG, Scotland, United Kingdom
| | - Penelope J Cross
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Michael R Oliver
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JG, Scotland, United Kingdom
| | - Mary M Leeman
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology (RIT), Rochester, New York 14623
| | - Austin J Bartl
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology (RIT), Rochester, New York 14623
| | - Anthony W Weatherhead
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Rachel A North
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hironori Suzuki
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology (RIT), Rochester, New York 14623.
| | - Müge Kasanmascheff
- Department of Chemistry and Chemical Biology, Technical University of Dortmund, D-44227 Dortmund, Germany.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
5
|
Xu JZ, Ruan HZ, Liu LM, Wang LP, Zhang WG. Overexpression of thermostable meso-diaminopimelate dehydrogenase to redirect diaminopimelate pathway for increasing L-lysine production in Escherichia coli. Sci Rep 2019; 9:2423. [PMID: 30787467 PMCID: PMC6382763 DOI: 10.1038/s41598-018-37974-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/11/2018] [Indexed: 11/29/2022] Open
Abstract
Dehydrogenase pathway, one of diaminopimelate pathway, is important to the biosynthesis of L-lysine and peptidoglycan via one single reaction catalyzed by meso-diaminopimelate dehydrogenase (DapDH). In this study, the thermostable DapDH was introduced into diaminopimelate pathway that increased the final titer (from 71.8 to 119.5 g/L), carbon yield (from 35.3% to 49.1%) and productivity (from 1.80 to 2.99 g/(L∙h)) of L-lysine by LATR12-2∆rpiB::ddhSt in fed-batch fermentation. To do this, the kinetic properties and the effects of different DapDHs on L-lysine production were investigated, and the results indicated that overexpression of StDapDH in LATR12-2 was beneficial to construct an L-lysine producer with good productive performance because it exhibited the best of kinetic characteristics and optimal temperature as well as thermostability in reductive amination. Furthermore, ammonium availability was optimized, and found that 20 g/L of (NH4)2SO4 was the optimal ammonium concentration for improving the efficiency of L-lysine production by LATR12-2∆rpiB::ddhSt. Metabolomics analysis showed that introducing the StDapDH significantly enhanced carbon flux into pentose phosphate pathway and L-lysine biosynthetic pathway, thus increasing the levels of NADPH and precursors for L-lysine biosynthesis. This is the first report of a rational modification of diaminopimelate pathway that improves the efficiency of L-lysine production through overexpression of thermostable DapDH in E. coli.
Collapse
Affiliation(s)
- Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China.
| | - Hao-Zhe Ruan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| | - Li-Ming Liu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| | - Lu-Ping Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| |
Collapse
|