1
|
Yaseen U, Hwang S, Park S, Kim SB, Lee HJ, Cha JY. New Insights into the Role of KLF10 in Tissue Fibrosis. Int J Mol Sci 2024; 25:1276. [PMID: 38279278 PMCID: PMC10816924 DOI: 10.3390/ijms25021276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Fibrosis, characterized by excessive extracellular matrix accumulation, disrupts normal tissue architecture, causes organ dysfunction, and contributes to numerous chronic diseases. This review focuses on Krüppel-like factor 10 (KLF10), a transcription factor significantly induced by transforming growth factor-β (TGF-β), and its role in fibrosis pathogenesis and progression across various tissues. KLF10, initially identified as TGF-β-inducible early gene-1 (TIEG1), is involved in key biological processes including cell proliferation, differentiation, apoptosis, and immune responses. Our analysis investigated KLF10 gene and protein structures, interaction partners, and context-dependent functions in fibrotic diseases. This review highlights recent findings that underscore KLF10 interaction with pivotal signaling pathways, such as TGF-β, and the modulation of gene expression in fibrotic tissues. We examined the dual role of KLF10 in promoting and inhibiting fibrosis depending on tissue type and fibrotic context. This review also discusses the therapeutic potential of targeting KLF10 in fibrotic diseases, based on its regulatory role in key pathogenic mechanisms. By consolidating current research, this review aims to enhance the understanding of the multifaceted role of KLF10 in fibrosis and stimulate further research into its potential as a therapeutic target in combating fibrotic diseases.
Collapse
Affiliation(s)
- Uzma Yaseen
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; (U.Y.); (S.P.); (S.-B.K.)
| | - Soonjae Hwang
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Republic of Korea;
| | - Sangbin Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; (U.Y.); (S.P.); (S.-B.K.)
| | - Soo-Bin Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; (U.Y.); (S.P.); (S.-B.K.)
| | - Ho-Jae Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; (U.Y.); (S.P.); (S.-B.K.)
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Republic of Korea;
| | - Ji-Young Cha
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; (U.Y.); (S.P.); (S.-B.K.)
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Republic of Korea;
| |
Collapse
|
2
|
Zeke A, Alexa A, Reményi A. Discovery and Characterization of Linear Motif Mediated Protein-Protein Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:59-71. [PMID: 38507200 DOI: 10.1007/978-3-031-52193-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
There are myriads of protein-protein complexes that form within the cell. In addition to classical binding events between globular domains, many protein-protein interactions involve short disordered protein regions. The latter contain so-called linear motifs binding specifically to ordered protein domain surfaces. Linear binding motifs are classified based on their consensus sequence, where only a few amino acids are conserved. In this chapter we will review experimental and in silico techniques that can be used for the discovery and characterization of linear motif mediated protein-protein complexes involved in cellular signaling, protein level and gene expression regulation.
Collapse
Affiliation(s)
- András Zeke
- Institute of Organic Chemistry, HUN-REN Research Center for Natural Sciences, Budapest, Hungary
| | - Anita Alexa
- Institute of Organic Chemistry, HUN-REN Research Center for Natural Sciences, Budapest, Hungary
| | - Attila Reményi
- Institute of Organic Chemistry, HUN-REN Research Center for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
3
|
Luo HY, Zhu JY, Chen M, Mu WJ, Guo L. Krüppel-like factor 10 (KLF10) as a critical signaling mediator: Versatile functions in physiological and pathophysiological processes. Genes Dis 2023; 10:915-930. [PMID: 37396542 PMCID: PMC10308129 DOI: 10.1016/j.gendis.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Krüppel-like factor 10 (KLF10), also known as TGFβ-inducible early gene-1 (TIEG1), was first found in human osteoblasts. Early studies show that KLF10 plays an important role in osteogenic differentiation. Through decades of research, KLF10 has been found to have complex functions in many different cell types, and its expression and function is regulated in multiple ways. As a downstream factor of transforming growth factor β (TGFβ)/SMAD signaling, KLF10 is involved in various biological functions, including glucose and lipid metabolism in liver and adipose tissue, the maintenance of mitochondrial structure and function of the skeletal muscle, cell proliferation and apoptosis, and plays roles in multiple disease processes, such as nonalcoholic steatohepatitis (NASH) and tumor. Besides, KLF10 shows gender-dependent difference of regulation and function in many aspects. In this review, the biological functions of KLF10 and its roles in disease states is updated and discussed, which would provide new insights into the functional roles of KLF10 and a clearer view of potential therapeutic strategies by targeting KLF10.
Collapse
Affiliation(s)
- Hong-Yang Luo
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Jie-Ying Zhu
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Min Chen
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Wang-Jing Mu
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Liang Guo
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
4
|
Zhang J, Kong DH, Huang X, Yu R, Yang Y. Physiological Functions of FBW7 in Metabolism. Horm Metab Res 2022; 54:280-287. [PMID: 35533672 DOI: 10.1055/a-1816-8903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
FBW7 is the recognition subunit of the SCF (Skp1-Cullin1-F-box proteins) E3 ubiquitin ligase complex, and it determines the specificity of the SCF substrate. SCFFBW7 is a recognized tumor suppressor because of its ability to degrade many proto-oncogenic substrates. Recent studies have shown that FBW7 plays a key role in metabolism by targeting the degradation of critical regulators involved in cellular metabolism in a ubiquitin-dependent manner. Here, we review recent studies, which highlight the important role of FBW7 in metabolism.
Collapse
Affiliation(s)
- Jianmei Zhang
- Department of Endocrinology and Metabolism, Weihai Municipal Hospital Affiliated to Shandong University, Weihai, China
- Department of Geriatrics, Weihai Municipal Hospital Affiliated to Shandong University, Weihai, China
| | - De-Huan Kong
- Department of Endocrinology, Taian City Central Hospital, Taian, China
| | - Xiaocheng Huang
- Department of Health examination, Weihai Municipal Hospital affiliated to Shandong University, Weihai, China
| | - Rongbo Yu
- Department of Geriatrics, Weihai Municipal Hospital Affiliated to Shandong University, Shangdong, China
| | - Yachao Yang
- Department of Endocrinology and Metabolism, Weihai Municipal Hospital Affiliated to Shandong University, Weihai, China
| |
Collapse
|
5
|
Thirmanne HN, Wu F, Janssens DH, Swanger J, Diab A, Feldman H, Amezquita RA, Gottardo R, Paddison PJ, Henikoff S, Clurman BE. Global and context-specific transcriptional consequences of oncogenic Fbw7 mutations. eLife 2022; 11:74338. [PMID: 35225231 PMCID: PMC8926403 DOI: 10.7554/elife.74338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/16/2022] [Indexed: 11/30/2022] Open
Abstract
The Fbw7 ubiquitin ligase targets many proteins for proteasomal degradation, which include oncogenic transcription factors (TFs) (e.g., c-Myc, c-Jun, and Notch). Fbw7 is a tumor suppressor and tumors often contain mutations in FBXW7, the gene that encodes Fbw7. The complexity of its substrate network has obscured the mechanisms of Fbw7-associated tumorigenesis, yet this understanding is needed for developing therapies. We used an integrated approach employing RNA-Seq and high-resolution mapping (cleavage under target and release using nuclease) of histone modifications and TF occupancy (c-Jun and c-Myc) to examine the combinatorial effects of misregulated Fbw7 substrates in colorectal cancer (CRC) cells with engineered tumor-associated FBXW7 null or missense mutations. Both Fbw7 mutations caused widespread transcriptional changes associated with active chromatin and altered TF occupancy: some were common to both Fbw7 mutant cell lines, whereas others were mutation specific. We identified loci where both Jun and Myc were coregulated by Fbw7, suggesting that substrates may have synergistic effects. One coregulated gene was CIITA, the master regulator of MHC Class II gene expression. Fbw7 loss increased MHC Class II expression and Fbw7 mutations were correlated with increased CIITA expression in TCGA colorectal tumors and cell lines, which may have immunotherapeutic implications for Fbw7-associated cancers. Analogous studies in neural stem cells in which FBXW7 had been acutely deleted closely mirrored the results in CRC cells. Gene set enrichment analyses revealed Fbw7-associated pathways that were conserved across both cell types that may reflect fundamental Fbw7 functions. These analyses provide a framework for understanding normal and neoplastic context-specific Fbw7 functions.
Collapse
Affiliation(s)
| | - Feinan Wu
- Genomics and Bioinformatics Resource, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Derek H Janssens
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Jherek Swanger
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Ahmed Diab
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Heather Feldman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Robert A Amezquita
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, University of Washington, Seattle, United States
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Bruce E Clurman
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
6
|
Kliche J, Ivarsson Y. Orchestrating serine/threonine phosphorylation and elucidating downstream effects by short linear motifs. Biochem J 2022; 479:1-22. [PMID: 34989786 PMCID: PMC8786283 DOI: 10.1042/bcj20200714] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Cellular function is based on protein-protein interactions. A large proportion of these interactions involves the binding of short linear motifs (SLiMs) by folded globular domains. These interactions are regulated by post-translational modifications, such as phosphorylation, that create and break motif binding sites or tune the affinity of the interactions. In addition, motif-based interactions are involved in targeting serine/threonine kinases and phosphatases to their substrate and contribute to the specificity of the enzymatic actions regulating which sites are phosphorylated. Here, we review how SLiM-based interactions assist in determining the specificity of serine/threonine kinases and phosphatases, and how phosphorylation, in turn, affects motif-based interactions. We provide examples of SLiM-based interactions that are turned on/off, or are tuned by serine/threonine phosphorylation and exemplify how this affects SLiM-based protein complex formation.
Collapse
Affiliation(s)
- Johanna Kliche
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, Box 576 751 23 Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, Box 576 751 23 Uppsala, Sweden
| |
Collapse
|
7
|
Chen YC, Chen RJ, Peng SY, Yu WCY, Chang VHS. Therapeutic Targeting of Nonalcoholic Fatty Liver Disease by Downregulating SREBP-1C Expression via AMPK-KLF10 Axis. Front Mol Biosci 2021; 8:751938. [PMID: 34869587 PMCID: PMC8633436 DOI: 10.3389/fmolb.2021.751938] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/20/2021] [Indexed: 12/30/2022] Open
Abstract
Krüppel-like factor 10 (KLF10) is a phospho-regulated transcriptional factor involved in many biological processes including lipogenesis; however, the transcriptional regulation on lipogenesis by KLF10 remains largely unclear. Lipogenesis is important in the development of nonalcoholic fatty liver disease (NAFLD) which was known regulated mainly by AMP-activated protein kinase (AMPK) and sterol regulatory element-binding protein (SREBP-1C). Interesting, our previous study using phosphorylated site prediction suggested a regulation of AMPK on KLF10. Therefore, we aimed to study the protein–protein interactions of AMPK on the regulation of KLF10, and to delineate the mechanisms of phosphorylated KLF10 in the regulation of NAFLD through SREBP-1C. We performed in vitro and in vivo assays that identified AMPK phosphorylates KLF10 at Thr189 and subsequently modulates the steady state level of KLF10. Meanwhile, a chromatin immunoprecipitation–chip assay revealed the novel target genes and signaling cascades of corresponding to phosphorylated KLF10. SREBP-1C was identified as a target gene suppressed by phosphorylated KLF10 through promoter binding. We further performed high-fat-diet-induced NAFLD models using hepatic-specific KLF10 knockout mice and wild-type mice and revealed that KLF10 knockout markedly led to more severe NAFLD than that in wild-type mice. Taken together, our findings revealed for the first time that AMPK activates and stabilizes the KLF10 protein via phosphorylation at Thr189, thereby repressing the expression of SREBP-1C and subsequent lipogenesis pathways along with metabolic disorders. We suggested that the targeted manipulation of liver metabolism, particularly through increased KLF10 expression, is a potential alternative solution for treating NAFLD.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Szu-Yuan Peng
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Winston C Y Yu
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | | |
Collapse
|
8
|
Yumimoto K, Nakayama KI. Recent insight into the role of FBXW7 as a tumor suppressor. Semin Cancer Biol 2020; 67:1-15. [PMID: 32113998 DOI: 10.1016/j.semcancer.2020.02.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/15/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
FBXW7 (also known as Fbw7, Sel10, hCDC4, or hAgo) is a tumor suppressor and the most frequently mutated member of the F-box protein family in human cancers. FBXW7 functions as the substrate recognition component of an SCF-type E3 ubiquitin ligase. It specifically controls the proteasome-mediated degradation of many oncoproteins such as c-MYC, NOTCH, KLF5, cyclin E, c-JUN, and MCL1. In this review, we summarize the molecular and biological features of FBXW7 and its substrates as well as the impact of mutations of FBXW7 on cancer development. We also address the clinical potential of anticancer therapy targeting FBXW7.
Collapse
Affiliation(s)
- Kanae Yumimoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan.
| |
Collapse
|