1
|
Aladdin N, Ghareib SA. Vitamin D3 Exerts a Neuroprotective Effect in Metabolic Syndrome Rats: Role of BDNF/TRKB/Akt/GS3Kβ Pathway. J Biochem Mol Toxicol 2024; 38:e70082. [PMID: 39651608 DOI: 10.1002/jbt.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/25/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024]
Abstract
Metabolic syndrome (MetS) is usually associated with cognitive impairment, neuropathic pain, and reduced brain-derived neurotrophic factor (BDNF) levels. BDNF via tropomyosin receptor kinase B (TrkB) exerts neuroprotection by activating protein kinase B (Akt) to inhibit glycogen synthase kinase-3β (GSK3β). Although Vitamin D3 (VitD3) has demonstrated favorable metabolic and neuronal outcomes in MetS, the precise molecular mechanisms underlying its neuroprotective effects remain poorly elucidated. We aimed to test the hypothesis that VitD3 mitigates MetS-induced cognition deficits and neuropathic pain via modulating the BDNF/TRKB/Akt/GS3Kβ signaling pathway. MetS was induced in male rats by 10% fructose-supplemented water and 3% salt-enriched diet. After 6 weeks, normal and MetS rats received either vehicle or VitD3 (10 µg/kg/day) for an additional 6 weeks. Glycemic status, lipid profile, and behavioral changes were assessed. The advanced glycation end products (AGEs), and markers of inflammation (TNF-α and NF-κB), oxidative stress (malondialdehyde), and apoptosis (caspase3), as well as BDNF, TrkB, PI3K, Akt, GSK3β, phosphorylated tau, and amyloid beta (Aβ) were assessed in the cerebral cortex. MetS rats had deteriorated glycemic and lipid profiles, higher AGEs, reduced levels of BDNF, TrkB, PI3K, and active Akt, along with increased GSK3β levels, inflammation, oxidative stress, and apoptosis. These changes were associated with higher levels of cognitive impairment markers phosphorylated tau and Aβ, as well as behavioral changes indicative of cognitive impairment and neuropathic pain. VitD3 improved the cognitive and behavioral alterations, while mitigating the associated molecular derangements. Our results indicate that VitD3 may exert neuroprotective effects by modulating the BDNF/TrkB/PI3K/Akt/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Noha Aladdin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Salah A Ghareib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Basavarajappa D, Galindo-Romero C, Gupta V, Agudo-Barriuso M, Gupta VB, Graham SL, Chitranshi N. Signalling pathways and cell death mechanisms in glaucoma: Insights into the molecular pathophysiology. Mol Aspects Med 2023; 94:101216. [PMID: 37856930 DOI: 10.1016/j.mam.2023.101216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Glaucoma is a complex multifactorial eye disease manifesting in retinal ganglion cell (RGC) death and optic nerve degeneration, ultimately causing irreversible vision loss. Research in recent years has significantly enhanced our understanding of RGC degenerative mechanisms in glaucoma. It is evident that high intraocular pressure (IOP) is not the only contributing factor to glaucoma pathogenesis. The equilibrium of pro-survival and pro-death signalling pathways in the retina strongly influences the function and survival of RGCs and optic nerve axons in glaucoma. Molecular evidence from human retinal tissue analysis and a range of experimental models of glaucoma have significantly contributed to unravelling these mechanisms. Accumulating evidence reveals a wide range of molecular signalling pathways that can operate -either alone or via intricate networks - to induce neurodegeneration. The roles of several molecules, including neurotrophins, interplay of intracellular kinases and phosphates, caveolae and adapter proteins, serine proteases and their inhibitors, nuclear receptors, amyloid beta and tau, and how their dysfunction affects retinal neurons are discussed in this review. We further underscore how anatomical alterations in various animal models exhibiting RGC degeneration and susceptibility to glaucoma-related neuronal damage have helped to characterise molecular mechanisms in glaucoma. In addition, we also present different regulated cell death pathways that play a critical role in RGC degeneration in glaucoma.
Collapse
Affiliation(s)
- Devaraj Basavarajappa
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - Caridad Galindo-Romero
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) & Ophthalmology Department, Universidad de Murcia, Murcia, Spain
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Marta Agudo-Barriuso
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) & Ophthalmology Department, Universidad de Murcia, Murcia, Spain
| | - Veer B Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
3
|
Zhang L, Xue K, Fan P, Chen C, Hu J, Huang J, Lu W, Xu J, Xu S, Ran J, Zhu S, Gan S. Geranylgeranylacetone-induced heat shock protein70 expression reduces retinal ischemia-reperfusion injury through PI3K/AKT/mTOR signaling. Exp Eye Res 2023; 229:109416. [PMID: 36801237 DOI: 10.1016/j.exer.2023.109416] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/07/2022] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Retinal ischemia-reperfusion (I/R) injury is a common pathophysiological stress state connected to various diseases, including acute glaucoma, retinal vascular obstruction, and diabetic retinopathy. Recent studies have suggested that geranylgeranylacetone (GGA) could increase heat shock protein70 (HSP70) level and reduce retinal ganglion cells (RGCs) apoptosis in a rat retinal I/R model. However, the underlying mechanism remains unclear. Moreover, the injury caused by retinal I/R includes not only apoptosis but also autophagy and gliosis, and the effects of GGA on autophagy and gliosis have not been reported. Our study established a retinal I/R model by anterior chamber perfusion pressuring to 110 mmHg for 60 min, followed by 4 h of reperfusion. The levels of HSP70, apoptosis-related proteins, GFAP, LC3-II, and PI3K/AKT/mTOR signaling proteins were determined by western blotting and qPCR after treatment with GGA, HSP70 inhibitor quercetin (Q), PI3K inhibitor LY294002, and mTOR inhibitor rapamycin. Apoptosis was evaluated by TUNEL staining, meanwhile, HSP70 and LC3 were detected by immunofluorescence. Our results demonstrated that GGA-induced HSP70 expression significantly reduced gliosis, autophagosome accumulation, and apoptosis in retinal I/R injury, indicating that GGA exerted protective effects on retinal I/R injury. Moreover, the protective effects of GGA mechanistically relied on the activation of PI3K/AKT/mTOR signaling. In conclusion, GGA-induced HSP70 overexpression has protective effects on retinal I/R injury by activating PI3K/AKT/mTOR signaling.
Collapse
Affiliation(s)
- Lirong Zhang
- Institute of Neurosciences, Basic Medicine College of Chongqing Medical University, Chongqing, China
| | - Kaige Xue
- Institute of Neurosciences, Basic Medicine College of Chongqing Medical University, Chongqing, China
| | - Ping Fan
- Department of Gynecology and Obstetrics of the Fifth People's Hospital of Chongqing, Chongqing, China
| | - Chunyan Chen
- Institute of Neurosciences, Basic Medicine College of Chongqing Medical University, Chongqing, China
| | - Jiaheng Hu
- Institute of Neurosciences, Basic Medicine College of Chongqing Medical University, Chongqing, China
| | - Juan Huang
- Institute of Neurosciences, Basic Medicine College of Chongqing Medical University, Chongqing, China
| | - Weitian Lu
- Institute of Neurosciences, Basic Medicine College of Chongqing Medical University, Chongqing, China
| | - Jin Xu
- Institute of Neurosciences, Basic Medicine College of Chongqing Medical University, Chongqing, China
| | - Shiye Xu
- Institute of Neurosciences, Basic Medicine College of Chongqing Medical University, Chongqing, China
| | - Jianhua Ran
- Institute of Neurosciences, Basic Medicine College of Chongqing Medical University, Chongqing, China
| | - Shujuan Zhu
- Institute of Neurosciences, Basic Medicine College of Chongqing Medical University, Chongqing, China
| | - Shengwei Gan
- Institute of Neurosciences, Basic Medicine College of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Artamonov MY, Martusevich AK, Pyatakovich FA, Minenko IA, Dlin SV, LeBaron TW. Molecular Hydrogen: From Molecular Effects to Stem Cells Management and Tissue Regeneration. Antioxidants (Basel) 2023; 12:antiox12030636. [PMID: 36978884 PMCID: PMC10045005 DOI: 10.3390/antiox12030636] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
It is known that molecular hydrogen is a relatively stable, ubiquitous gas that is a minor component of the atmosphere. At the same time, in recent decades molecular hydrogen has been shown to have diverse biological effects. By the end of 2022, more than 2000 articles have been published in the field of hydrogen medicine, many of which are original studies. Despite the existence of several review articles on the biology of molecular hydrogen, many aspects of the research direction remain unsystematic. Therefore, the purpose of this review was to systematize ideas about the nature, characteristics, and mechanisms of the influence of molecular hydrogen on various types of cells, including stem cells. The historical aspects of the discovery of the biological activity of molecular hydrogen are presented. The ways of administering molecular hydrogen into the body are described. The molecular, cellular, tissue, and systemic effects of hydrogen are also reviewed. Specifically, the effect of hydrogen on various types of cells, including stem cells, is addressed. The existing literature indicates that the molecular and cellular effects of hydrogen qualify it to be a potentially effective agent in regenerative medicine.
Collapse
Affiliation(s)
- Mikhail Yu. Artamonov
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
- Correspondence: (M.Y.A.); (T.W.L.); Tel.: +1-570-972-6778 (M.Y.A.); +1-435-586-7818 (T.W.L.)
| | - Andrew K. Martusevich
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia
- Laboratory of Medical Biophysics, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| | | | - Inessa A. Minenko
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
| | - Sergei V. Dlin
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
| | - Tyler W. LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA
- Molecular Hydrogen Institute, Enoch, UT 84721, USA
- Correspondence: (M.Y.A.); (T.W.L.); Tel.: +1-570-972-6778 (M.Y.A.); +1-435-586-7818 (T.W.L.)
| |
Collapse
|
5
|
Wang S, Yu A, Han M, Chen X, Li Z, Ke M, Cai X, Ai M, Xing Y. Pathological Changes and Expression of JAK-STAT Signaling Pathway Hallmark Proteins in Rat Retinas at Different Time Points After Retinal Ischemia Reperfusion Injury. Pathol Oncol Res 2022; 28:1610385. [PMID: 35515015 PMCID: PMC9061953 DOI: 10.3389/pore.2022.1610385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022]
Abstract
Retinal ischemia reperfusion injury (RIRI) is a conventional pathological process in various retinal vascular diseases. Many studies select only one specific time point to apply drugs and then assess the therapeutic effect of drugs; however, the baselines are not the same at different time points, which may cause variation in the judgement. Therefore, further investigation is needed. Accordingly, this study aimed to investigate the pathological changes of retinal structure, expression of JAK-STAT signaling pathway hallmark proteins, and apoptosis at different time points after retinal ischemia reperfusion injury in rats. Sixty-six male SPF Sprague-Dawley rats were randomly divided into six groups: control group, RIRI 0, 6-, 24-, 72-, and 144-h groups. RIRI models were induced by perfusing equilibrium solution into the right eye anterior chamber to increase intraocular pressure to 110 mmHg for 60 min. Rats were sacrificed at different time points after reperfusion. Then hematoxylin-eosin staining, transmission electron microscope, immunohistochemistry, western blot, and TUNEL were used. Hematoxylin-eosin showed the pathological changes while transmission electron microscope revealed the ultra-structure changes of retina after RIRI. Immunohistochemistry showed that JAK2, STAT3, p-JAK2, p-STAT3, Bax, and Bcl-2 proteins mainly located in ganglion cell layer and inner nuclear layer, the relative expression of former five proteins had significant differences vs. control group (p < 0.05), while Bcl-2 had no significant difference. In western blot, the protein expressing of JAK2, STAT3, p-JAK2, p-STAT3, p-Akt, and Bax had significant differences vs. control group (p < 0.05), while Akt and Bcl-2 had no significant differences. TUNEL staining showed the number of apoptosis positive cells rose initially but declined later, with a peak value at RIRI 24 h group. The dynamic changes of hallmark proteins at different time points after RIRI indicate that JAK-STAT signaling pathway activates rapidly but weakens later and plays a vital role in RIRI, and apoptosis is involved in RIRI with a peak value at 24 h in the process, suggesting a potential therapeutic direction and time window for treating RIRI.
Collapse
Affiliation(s)
- Shun Wang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Aihua Yu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengyao Han
- Retinal and Vitreous Diseases Department, Wuhan Aier Eye Hospital of Wuhan University, Wuhan, China
| | - Xiaomin Chen
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaojun Cai
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Ai
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiqiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Yu A, Wang S, Xing Y, Han M, Shao K. 7,8-Dihydroxyflavone alleviates apoptosis and inflammation induced by retinal ischemia-reperfusion injury via activating TrkB/Akt/NF-kB signaling pathway. Int J Med Sci 2022; 19:13-24. [PMID: 34975295 PMCID: PMC8692126 DOI: 10.7150/ijms.65733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/26/2021] [Indexed: 12/31/2022] Open
Abstract
Retinal ischemia-reperfusion injury (RIRI) is of common occurrence in retinal and optic nerve diseases. The BDNF/TrkB signaling pathway has been examined to be neuroprotective in RIRI. In this study, we investigated the role of a potent selective TrkB agonist 7,8-dihydroxyfavone (DHF) in rat retinas with RIRI. Our results showed that RIRI inhibited the conversion of BDNF precursor (proBDNF) to mature BDNF (mBDNF) and increased the level of neuronal cell apoptosis. Compared with RIRI, DHF+RIRI reduced proBDNF level and at the same time increased mBDNF level. Moreover, DHF administration effectively activated TrkB signaling and and downstream Akt and Erk signaling pathways which increased nerve cell survival. The combined effects of mBDNF/proBDNF increase and TrkB signaling activation lead to reduction of apoptosis level and protection of retinas with RIRI. Moreover, it was also found that astrocytes labeled by GFAP were activated in RIRI and NF-kB mediated the increased expressions of inflammatory factors and these effects were partially reversed by DHF administration. Besides, we also used RNA sequencing to analyze the differently expressed genes (DEGs) and their enriched (Kyoto Encyclopedia of Genes and Genomes) KEGG pathways between Sham, RIRI, and DHF+RIRI. It was found that 1543 DEGs were differently expressed in RIRI and 619 DEGs were reversed in DHF+RIRI. The reversed DEGs were typically enriched in PI3K-Akt signaling pathway, Jak-STAT signaling pathway, NF-kB signaling pathway, and Apoptosis. To sum up, the DHF administration alleviated apoptosis and inflammation induced by RIRI via activating TrkB signaling pathway and may serve as a promising drug candidate for RIRI related ophthalmopathy.
Collapse
Affiliation(s)
- Aihua Yu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, Hubei Province, China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan University,Wuhan 430071, Hubei Province, China
| | - Shun Wang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, Hubei Province, China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan University,Wuhan 430071, Hubei Province, China
| | - Yiqiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, Hubei Province, China
| | - Mengyao Han
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan University,Wuhan 430071, Hubei Province, China
| | - Kun Shao
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan University,Wuhan 430071, Hubei Province, China
| |
Collapse
|
7
|
Du HY, Wang R, Li JL, Luo H, Xie XY, Yan R, Jian YL, Cai JY. Ligustrazine induces viability, suppresses apoptosis and autophagy of retinal ganglion cells with ischemia/reperfusion injury through the PI3K/Akt/mTOR signaling pathway. Bioengineered 2021; 12:507-515. [PMID: 33522374 PMCID: PMC8806313 DOI: 10.1080/21655979.2021.1880060] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ligustrazine, an alkaloid monomer extracted from Chuanxiong Rhizoma, has the function of protecting nerve cells. However, the effect and mechanism of ligustrazine on retinal ischemia/reperfusion (I/R) injury still need to be clarified. In our study, retinal ganglion cells (RGC-5) were used to establish a retinal I/R injury model by anaerobic cultivation. Cell viability, autophagy, and apoptosis were evaluated by cell counting kit 8 assay, transmission electron microscopy, and TUNEL staining after treatment with ligustrazine, PI3K inhibitor Ly294002, and/or mTOR inhibitor rapamycin, respectively. Besides, the levels of PI3K/Akt/mTOR pathway and autophagy-related proteins were determined by western blot. Moreover, one-way ANOVA was adopted for inter-group comparisons of measurement data. Our results demonstrated that low-concentration ligustrazine significantly enhanced cell viability and suppressed cell autophagy and apoptosis of RGC-5 cells after I/R injury, suggesting the protective effect of low-concentration ligustrazine on retinal I/R injury. Moreover, the alleviating effect of ligustrazine on RGC-5 with retinal I/R injury was mechanistically associated with the activation of the PI3K/Akt/mTOR pathway. In conclusion, low-concentration ligustrazine has a significant protective effect on RGC-5 cells with retinal I/R injury by activating the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Hong-Yan Du
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University , Guangzhou, China
| | - Rong Wang
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University , Guangzhou, China
| | - Jian-Liang Li
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University , Guangzhou, China
| | - Huang Luo
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University , Guangzhou, China
| | - Xiao-Yan Xie
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University , Guangzhou, China
| | - Ran Yan
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University , Guangzhou, China
| | - Yue-Ling Jian
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University , Guangzhou, China
| | - Jin-Ying Cai
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University , Guangzhou, China
| |
Collapse
|
8
|
Lin HY, Lai PC, Chen WL. A narrative review of hydrogen-oxygen mixture for medical purpose and the inhaler thereof. Med Gas Res 2021; 10:193-200. [PMID: 33380588 PMCID: PMC8092144 DOI: 10.4103/2045-9912.295226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recent development regarding mixture of H2 (concentration of ~66%) with O2 (concentration of ~34%) for medical purpose, such as treatment of coronavirus disease-19 (COVID-19) patients, is introduced. Furthermore, the design principles of a hydrogen inhaler which generates mixture of hydrogen (~66%) with oxygen (~34%) for medical purpose are proposed. With the installation of the liquid blocking module and flame arresters, the air pathway of the hydrogen inhaler is divided by multiple isolation zones to prevent any unexpected explosion propagating from one zone to the other. An integrated filtering/cycling module is utilized to purify the impurity, and cool down the temperature of the electrolytic module to reduce the risk of the explosion. Moreover, a nebulizer is provided to selectively atomize the water into vapor which is then mixed with the filtered hydrogen-oxygen mix gas, such that the static electricity of a substance hardly occurs to reduce the risk of the explosion. Furthermore, hydrogen concentration detector is installed to reduce the risk of hydrogen leakage. Result shows that the hydrogen inhaler implementing the aforesaid design rules could effectively inhibit the explosion, even ignition at the outset of the hydrogen inhaler which outputs hydrogen-oxygen gas (approximately 66% hydrogen: 34% oxygen).
Collapse
|
9
|
Li X, Li L, Liu X, Wu J, Sun X, Li Z, Geng YJ, Liu F, Zhou Y. Attenuation of Cardiac Ischaemia-reperfusion Injury by Treatment with Hydrogen-rich Water. Curr Mol Med 2020; 19:294-302. [PMID: 30907314 PMCID: PMC7061975 DOI: 10.2174/1566524019666190321113544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/18/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
Background: Hydrogen has been shown to exert a bioactive effect on the myocardium. This study examined the signalling pathways for hydrogen attenuating ischaemia-reperfusion injury. Methods: In total, 20 male Wistar rats were evaluated for the effects of hydrogen-rich water on ischaemia-reperfusion in hearts. Left ventricular tissue was taken for screening and analysis of active protein factors by protein chip technology. The enrichment of the KEGG pathway was obtained by using the Gene Ontology (GO) enrichment principle. The expression of JAK2, STAT1, STAT3, p-STAT1, p-JAK2, p-STAT3 in rat myocardium was detected by Western blot analysis and immunohistochemistry. The apoptosis rates of the control and hydrogen-rich water groups were detected by TUNEL staining. Results: The expression levels of 25 proteins, including five transduction pathways, were downregulated in the hydrogen-rich water group. The expression levels of p-JAK2/JAK2, p-STAT3/STAT3 were upregulated in the hydrogen-rich water group compared with the control group, and p-STAT1/STAT1 was downregulated in the hydrogen-rich water group compared with the control group. Furthermore, the apoptosis rate was significantly decreased in the hydrogen-rich water group, as well. Conclusion: Hydrogen-rich water may inhibit the apoptosis of cardiomyocytes after ischaemia-reperfusion by upregulating the expression of the JAK2-STAT3 signalling pathway, which reduces ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Xiangzi Li
- School of Medicine, Hebei University, Baoding 071000, China
| | - Liangtong Li
- School of Medicine, Hebei University, Baoding 071000, China
| | - Xuanchen Liu
- School of Medicine, Hebei University, Baoding 071000, China
| | - Jiawen Wu
- School of Medicine, Hebei University, Baoding 071000, China
| | - Xiaoyu Sun
- School of Medicine, Hebei University, Baoding 071000, China
| | - Zhilin Li
- School of Chemistry, Hebei University, Baoding 071000, China
| | - Yong-Jian Geng
- Centre for Cardiovascular Biology and Atherosclerosis Research, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX 77030, United States
| | - Fulin Liu
- School of Medicine, Hebei University, Baoding 071000, China.,Department of Cardiac Surgery, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Yujuan Zhou
- School of Medicine, Hebei University, Baoding 071000, China
| |
Collapse
|
10
|
Angeloni C, Gatti M, Prata C, Hrelia S, Maraldi T. Role of Mesenchymal Stem Cells in Counteracting Oxidative Stress-Related Neurodegeneration. Int J Mol Sci 2020; 21:ijms21093299. [PMID: 32392722 PMCID: PMC7246730 DOI: 10.3390/ijms21093299] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases include a variety of pathologies such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and so forth, which share many common characteristics such as oxidative stress, glycation, abnormal protein deposition, inflammation, and progressive neuronal loss. The last century has witnessed significant research to identify mechanisms and risk factors contributing to the complex etiopathogenesis of neurodegenerative diseases, such as genetic, vascular/metabolic, and lifestyle-related factors, which often co-occur and interact with each other. Apart from several environmental or genetic factors, in recent years, much evidence hints that impairment in redox homeostasis is a common mechanism in different neurological diseases. However, from a pharmacological perspective, oxidative stress is a difficult target, and antioxidants, the only strategy used so far, have been ineffective or even provoked side effects. In this review, we report an analysis of the recent literature on the role of oxidative stress in Alzheimer’s and Parkinson’s diseases as well as in amyotrophic lateral sclerosis, retinal ganglion cells, and ataxia. Moreover, the contribution of stem cells has been widely explored, looking at their potential in neuronal differentiation and reporting findings on their application in fighting oxidative stress in different neurodegenerative diseases. In particular, the exposure to mesenchymal stem cells or their secretome can be considered as a promising therapeutic strategy to enhance antioxidant capacity and neurotrophin expression while inhibiting pro-inflammatory cytokine secretion, which are common aspects of neurodegenerative pathologies. Further studies are needed to identify a tailored approach for each neurodegenerative disease in order to design more effective stem cell therapeutic strategies to prevent a broad range of neurodegenerative disorders.
Collapse
Affiliation(s)
- Cristina Angeloni
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Martina Gatti
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (M.G.); (T.M.)
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
- Correspondence:
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy;
| | - Tullia Maraldi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (M.G.); (T.M.)
| |
Collapse
|
11
|
Qian P, Linbo L, Xiaomei Z, Hui P. Circ_0002770, acting as a competitive endogenous RNA, promotes proliferation and invasion by targeting miR-331-3p in melanoma. Cell Death Dis 2020; 11:264. [PMID: 32327630 PMCID: PMC7181653 DOI: 10.1038/s41419-020-2444-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 12/02/2022]
Abstract
Melanoma is a kind of tumor that originates from melanocytes and is characterized by chemoresistance and distant metastasis. Although the complete pathogenesis of melanoma remains unclear, increasing evidence suggests that circular RNAs (circRNAs) may be involved. In the present study, we identified a circular RNA, circ_0002770, which is produced from the well-known oncogene MDM2, and was sharply increased in melanoma and correlated with a poor prognosis. Knockdown of circ_0002770 suppressed melanoma cell invasion, migration and proliferation. Mechanistically, circ_0002770 acted as a sponge of miR-331-3p and could indirectly regulate DUSP5 and TGFBR1. Inhibition of miR-331-3p reversed the inhibitory effect of si-circ_0002770 on melanoma cell proliferation and invasion. In vivo evidence further confirmed that silencing circ_0002770 inhibited melanoma tumor formation. In conclusion, circ_0002770 facilitated melanoma cell proliferation, invasion and migration by sponging miR-331-3p and modulating DUSP5 and TGFBR1.
Collapse
Affiliation(s)
- Peng Qian
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Zhengzhou, Henan Province, 450052, China
| | - Liu Linbo
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Zhengzhou, Henan Province, 450052, China
| | - Zhai Xiaomei
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Zhengzhou, Henan Province, 450052, China
| | - Pei Hui
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Zhengzhou, Henan Province, 450052, China.
| |
Collapse
|
12
|
Tao G, Song G, Qin S. Molecular hydrogen: current knowledge on mechanism in alleviating free radical damage and diseases. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1189-1197. [PMID: 31738389 DOI: 10.1093/abbs/gmz121] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/20/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022] Open
Abstract
Ever since molecular hydrogen was first reported as a hydroxyl radical scavenger in 2007, the beneficial effect of hydrogen was documented in more than 170 disease models and human diseases including ischemia/reperfusion injury, metabolic syndrome, inflammation, and cancer. All these pathological damages are concomitant with overproduction of reactive oxygen species (ROS) where molecular hydrogen has been widely demonstrated as a selective antioxidant. Although it is difficult to construe the molecular mechanism of hydrogen's biomedical effect, an increasing number of studies have been helping us draw the picture clearer with days passing by. In this review, we summarized the current knowledge on systemic and cellular modulation by hydrogen treatment. We discussed the antioxidative, anti-inflammatory, and anti-apoptosis effects of hydrogen, as well as its protection on mitochondria and the endoplasmic reticulum, regulation of intracellular signaling pathways, and balancing of the immune cell subtypes. We hope that this review will provide organized information that prompts further investigation for in-depth studies of hydrogen effect.
Collapse
Affiliation(s)
- Geru Tao
- Key Laboratory of Atherosclerosis in University of Shandong, Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271000, China
| | - Guohua Song
- Key Laboratory of Atherosclerosis in University of Shandong, Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271000, China
| | - Shucun Qin
- Key Laboratory of Atherosclerosis in University of Shandong, Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271000, China
| |
Collapse
|
13
|
Long P, Yan W, He M, Zhang Q, Wang Z, Li M, Xue J, Chen T, An J, Zhang Z. Protective effects of hydrogen gas in a rat model of branch retinal vein occlusion via decreasing VEGF-α expression. BMC Ophthalmol 2019; 19:112. [PMID: 31096936 PMCID: PMC6524281 DOI: 10.1186/s12886-019-1105-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/10/2019] [Indexed: 01/05/2023] Open
Abstract
Background Oxidative stress (OS) is an essential factor in the pathogenesis of branch retinal vein occlusion (BRVO). Studies have demonstrated the role of hydrogen gas in the regulation of OS. This study was designed to evaluate the efficacy of hydrogen gas on the BRVO rat model. Methods Twenty-four BRVO rats were randomly divided into two groups: the hydrogen gas (H) group (42% H2, 21% O2, 37% N2) and the model (M) group (21% O2, 79% N2). Rats in the H group inhaled hydrogen gas for 8 h every day up to 30 d post-occlusion. Twelve age-matched healthy rats served as the control (C) group. Retinal function and morphology were detected at 1, 7, 14 and 30 d post-occlusion. Furthermore, the expression of vascular endothelial growth factor (VEGF-α) was detected by immunofluorescent staining. Results Full-field electroretinography (ffERG) revealed that the amplitude of the b-wave (dark-adaptation 3.0 response), the amplitude of the OPs2 wave and the light-adapted flicker response in the H group were all higher than those in the M group at 7 d post-occlusion (all p < 0.05). The reopen time of occlusive retinal vessels in the H group was 2.235 ± 1.128 d, which was shorter than that in the M group (4.234 ± 2.236 d, p < 0.05). The rats in the H group had a thinner IPL + GCL + NFL and an increased total retina compared with those in the M group at 3 d post-occlusion (p < 0.05), while the rats in the H group had a thicker INL, IPL + GCL + NFL and total retina compared with those at 7, 14 and 30 d post-occlusion (p < 0.05). Moreover, the flow velocity of ear vein blood was increased in the H group compared with that in the M group (p < 0.05). The expression of VEGF-α in the H group was dramatically decreased compared with that in the M group at 1, 7 and 14 d post-occlusion (p < 0.05), while the expression kept in similar level at 30 d post-occlusion (p > 0.05). Conclusions Our findings demonstrate that inhalation of hydrogen gas could alleviate retinal oedema, shorten reopen time and improve retinal function, and the potential mechanism might be related to a decrease in VEGF-α expression.
Collapse
Affiliation(s)
- Pan Long
- Center of Clinical Aerospace Medicine, Fourth Military Medical University, No.169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Weiming Yan
- Department of Ophthalmology, The 900th Hospital of the Joint Logistics Team of Chinese PLA, Fuzhou, 350025, Fujian, China
| | - Mengshan He
- Department of Chinese Material Medical and Natural Medicines, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Qianli Zhang
- Company 11 Brigade 4, College of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhe Wang
- Company 11 Brigade 4, College of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Manhong Li
- Department of Ophthalmology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Junhui Xue
- Center of Clinical Aerospace Medicine, Fourth Military Medical University, No.169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Tao Chen
- Center of Clinical Aerospace Medicine, Fourth Military Medical University, No.169 Changle West Road, Xi'an, 710032, Shaanxi, China.
| | - Jing An
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University, No.76 Yanta Weast Road, Xi'an, 710061, Shaanxi, China.
| | - Zuoming Zhang
- Center of Clinical Aerospace Medicine, Fourth Military Medical University, No.169 Changle West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
14
|
Wang J, Wang A, He H, She X, He Y, Li S, Liu L, Luo T, Huang N, Luo H, Zou K. Trametenolic acid B protects against cerebral ischemia and reperfusion injury through modulation of microRNA-10a and PI3K/Akt/mTOR signaling pathways. Biomed Pharmacother 2019; 112:108692. [PMID: 30798122 DOI: 10.1016/j.biopha.2019.108692] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/09/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
Trametenolic acid B (TAB) was a lanostane-type triterpenoid isolated from the trametes lactinea (Berk.) Pat. We have previously reported that extract from trametes lactinea (Berk.) Pat and TAB could efficiently improve learning and memory ability of the cerebral ischemia injury rats and suppress mitochondrial-mediated apoptosis in hydrogen peroxide damaged SH-SY5Y cells. However, the potential mechanisms have not been fully understood yet. The current study was to further investigate the protective effect of TAB on oxygen glucose deprivation/reoxygenation (OGD/R)-damaged SH-SY5Y cells and cerebral ischemia/reperfusion (I/R) injury rats, as well as its mechanisms involved. Cell experiments demonstrated that TAB (10, 20 and 40 μg/mL) protected OGD/R-induced SH-SY5Y cell injury by promoting cell proliferation and suppressing LDH leakage; Meanwhile, the results in vivo showed that TAB (20, 40 and 80 mg/kg) might significantly ameliorate the neurological deficit score, cerebral edema, neuronal cell loss and apoptosis, suppress cerebral infarction volume of the cerebral I/R injury rats. Further studies in vitro and in vivo indicated TAB could efficiently reduce OGD/R-damaged SH-SY5Y cell and cerebral I/R rat serum ROS, LDH and MDA levels, elevate SOD, GSH-Px and CAT activities, downregulate miR-10a mRNA and Bax, cytochrome C, cleaved-caspase-3 and cleaved-caspase-9 protein expressions, upregulate p-PIK3CA, p-Akt, p-mTOR, Bcl-2, pro-caspase-9 and pro-caspase-3 protein expressions and p-PIK3CA/PIK3CA, p-Akt/Akt, p-mTOR/mTOR ratios (P < 0.05 or P < 0.01, respectively). Our present study indicated that TAB possessed neuroprotective property against ODG/R and I/R injury by suppressing miR-10a expression, activating PI3K/Akt/mTOR signaling pathway, thereby reducing mitochondrial-mediated apoptosis, which provided a new insight for interpreting the underlying mechanisms of TAB' neuroprotective effect and a candidate agent to treat cerebral I/R injury.
Collapse
Affiliation(s)
- Junzhi Wang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, China
| | - Ailing Wang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, China
| | - Haibo He
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, China.
| | - Xinxin She
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, China
| | - Yumin He
- Third-Level Laboratory of Pharmacology of Traditional Chinese Medicine of State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China
| | - Shi Li
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, China
| | - Lanqing Liu
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, China
| | - Tao Luo
- Institute of Spleen and Stomach Diseases, Traditional Chinese Medicine Hospital of China Three Gorges University & Yichang Hospital of Traditional Chinese Medicine, Yichang, China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, China
| | - Huajun Luo
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, China
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, China
| |
Collapse
|
15
|
El-Marasy SA, Abdel-Rahman RF, Abd-Elsalam RM. Neuroprotective effect of vildagliptin against cerebral ischemia in rats. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1133-1145. [PMID: 30022232 DOI: 10.1007/s00210-018-1537-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/11/2018] [Indexed: 12/30/2022]
Abstract
Stroke is the leading cause of death worldwide. Dipeptidyl peptidase-4 (DPP-4) inhibitors are a class of anti-diabetic drugs for treatment of type-2 diabetes mellitus. The aim of this study is to evaluate the possible neuroprotective effect of a dipeptidyl peptidase-4 inhibitor, vildagliptin, independent of its anti-diabetic properties in non-diabetic rats subjected to cerebral ischemia. Anesthetized Wistar rats were subjected to either left middle cerebral artery occlusion (MCAO) or sham operation followed by reperfusion after 30 min of MCAO. The other three groups were orally administered vildagliptin at 3 dose levels (2.5, 5, 10 mg/kg) for 3 successive weeks before subjected to left focal cerebral ischemia/reperfusion and till the end of the study. Neurological deficit scores and motor activity were assessed 24 h following reperfusion. Forty-eight hours following reperfusion, rats were euthanized and their left brain hemispheres were harvested and used in biochemical, histopathological, and immunohistochemical investigations. Vildagliptin pretreatment improved neurological deficit score, locomotor activity, and motor coordination in MCAO rats. Moreover, vildagliptin reduced malondialdehyde (MDA), elevated reduced glutathione (GSH), phosphotylinosital 3 kinase (PI3K), phosphoryated of protein kinase B (p-AKT), and mechanistic target of rapamycin (mTOR) brain contents in addition to reducing protein expression of caspase-3. Also, vildagliptin showed a dose-dependent attenuation in neuronal cell loss and histopathological alterations in MCAO rats. This study proves that vildagliptin exerted a neuroprotective effect in a dose-dependent manner as shown in the attenuation of the infarct area, neuronal cell loss, and histopathological damage in MCAO rats, which may be mediated by attenuating neuronal and motor deficits, its antioxidant property, activation of the PI3K/AKT/mTOR pathway, and its anti-apoptotic effect.
Collapse
Affiliation(s)
- Salma A El-Marasy
- Department of Pharmacology, National Research Centre, Giza, 12622, Egypt.
| | | | - Reham M Abd-Elsalam
- Department of Pathology, Faculty of Veterinary medicine, Cairo University, Giza, Egypt
| |
Collapse
|