1
|
Zhu M, Yang L, Kong S, Bai Y, Zhao B. Lacticaseibacillus rhamnosus LRa05 alleviates cyclophosphamide-induced immunosuppression and intestinal microbiota disorder in mice. J Food Sci 2024; 89:10003-10017. [PMID: 39592250 DOI: 10.1111/1750-3841.17538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/12/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024]
Abstract
Probiotics play a crucial role in regulating the gut microbiota and enhancing immune response. Oral administration of probiotics modulates intestinal microbiota composition and immune homeostasis. In this study, we investigated the immunoregulatory effect of Lacticaseibacillus rhamnosus LRa05 on cyclophosphamide (CTX)-induced immunosuppressive mice. The results showed that oral administration of LRa05 reduced weight loss, restored immune organ indices, and maintained the structural integrity of the intestinal tissue in CTX-treated mice. Moreover, oral administration of LRa05 exhibited immune-modulating properties by promoting the secretion of cytokines (tumor necrosis factor-α, interleukin-1β, interleukin-10, and secretory immunoglobulin A) in serum. Moreover, the analysis of 16S rRNA amplicon sequencing revealed that LRa05 increased gut microbiota diversity and regulated its composition. In detail, LRa05 intervention restored the Firmicutes/Bacteroidota ratio and significantly increased the relative abundance of Lachnospiraceae_NK4A136_group, Oscillibacter, Alloprevotella, Parasutterella, and Roseburia in immunocompromised mice. Conversely, the abundances of Helicobacter, Bacteroides, and unclassified_Desulfovibrionaceae were significantly decreased after administration of LRa05. Based on these findings, orally administered LRa05 could effectively maintain intestinal microbiota homeostasis and regulate immunity, suggesting the potential of L. rhamnosus LRa05 as a candidate probiotic strain in the application of dietary supplement. PRACTICAL APPLICATION: Supplement with L. rhamnosus LRa05 can improve immunity, regulate gut microbiota and promote body health.
Collapse
Affiliation(s)
- Mingming Zhu
- Wuhan Wecare Probiotic Research Institute, Wuhan, China
| | - Lvzhu Yang
- Wuhan Wecare Probiotic Research Institute, Wuhan, China
| | - Sufen Kong
- Wuhan Wecare Probiotic Research Institute, Wuhan, China
| | - Yuyuan Bai
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Zhao
- Wuhan Wecare Probiotic Research Institute, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Liu YC, Chen SY, Chen YY, Chang HY, Chiang IC, Yen GC. Polysaccharides extracted from common buckwheat (Fagopyrum esculentum) attenuate cognitive impairment via suppressing RAGE/p38/NF-κB signaling and dysbiosis in AlCl 3-treated rats. Int J Biol Macromol 2024; 276:133898. [PMID: 39019369 DOI: 10.1016/j.ijbiomac.2024.133898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Patients may find it challenging to accept several FDA-approved drugs for Alzheimer's disease (AD) treatment due to their unaffordable prices and side effects. Despite the known antioxidant, anti-inflammatory, and microbiota-regulating effects of common buckwheat (Fagopyrum esculentum) polysaccharides (FEP), their specific role in preventing AD has not been determined. Here, this study investigated the preventive effects of FEP on AD development in AlCl3-treated rats. The physical properties of FEP were evaluated using X-ray diffraction, FTIR, TGA, DSC, monosaccharide composition, molecular weight, and scanning electron microscopy. The results demonstrated that FEP administration improved memory and learning ability in AlCl3-treated rats. Additionally, AD pathological biomarkers (APP, BACE1, Aβ1-42, and p-TauSer404), inflammatory-associated proteins (IL-1β, IL-6, TNF-α, and Iba1), and MDA and the RAGE/p38/NF-κB pathway were elevated in AlCl3-treated rats. Moreover, these effects were reversed by the upregulation of LRP1, anti-inflammatory cytokines (IL-4 and IL-10), antioxidant enzymes (SOD and catalase), and autophagy proteins (Atg5, Beclin-1, and LC3B). Furthermore, FEP treatment increased the levels of short-chain fatty acids (SCFAs) and the abundance of SCFAs-producing microbes ([Eubacterium]_xylanophilum_group, Lachnospiraceae_NK4A136_group, Lactobacillus). Overall, FEP mitigated oxidative stress, RAGE/p38/NF-κB-mediated neuroinflammation, and AD-associated proteins by upregulating autophagy and SCFA levels, which led to the amelioration of cognitive impairment through microbiota-gut-brain communication in AlCl3-treated rats.
Collapse
Affiliation(s)
- Yu-Chen Liu
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Sheng-Yi Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Ying-Ying Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Hsin-Yu Chang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - I-Chen Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan; Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
3
|
Lv T, Chen J, He Z, Chen W, Zong Y, Du R. Studies of the Immunomodulatory Activity of Polysaccharides from the Stem of Cynomorium songaricum Based on Intestinal Microbial Analysis. Molecules 2023; 29:143. [PMID: 38202727 PMCID: PMC10779936 DOI: 10.3390/molecules29010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Polysaccharides are the main effective components of Cynomorium songaricum's stem that perform biological activities and have positive impacts on immune enhancement. In this study, the polysaccharide CSP-III of Cynomorium songaricum's stem was isolated using a DEAE-52 cellulose column through Sephadex G-100 gel column chromatography. Upon analysis, the monosaccharide composition of CSP-III included Mannose (Man), Glucuronic acid (GlcA), Galacturonic acid (GalA), Rhamnose (Rha), Glucose (Glc), Galactose (Gal), and Arabinose (Ara), at a molar ratio of 0.01:0.11:0.03:0.57:0.02:0.32:1. The molecular weight of CSP-III was 4018234 Da. Meanwhile, the capacity of CSP-III, at various concentrations, to stimulate the proliferation of mouse spleen lymphocytes in vitro was compared, and the influence of CSP-III on cell proliferation was examined using RAW264.7 mouse mononuclear macrophages as a model. The influence of CSP-III on the expression of important phosphorylating proteins in the MAPK signaling pathway was initially analyzed by Western blotting. In RAW264.7 cells, CSP-III promoted the phosphorylation of JNK proteins, which thus activated the MAPK signaling cascade and exerted immunomodulatory effects. Moreover, according to in vivo studies using cyclophosphamide (CTX)-induced immunosuppression mouse models, CSP-III improved the CTX-induced histopathological damage, promoted T and B lymphocyte proliferation, upregulated CD4+ and CD8+ T-lymphocyte counts in the spleen, increased the serum levels of IgG and IgM, and activated three essential proteins of the MAPK signaling pathway. As revealed by analysis of intestinal flora, CSP-III improved the immune function by maintaining the homeostasis of the bacterial flora by boosting the relative abundances of some beneficial bacterial groups, such as Bacteroidetes, Desmodium, and Actinomyces, and reducing the relative abundance of Aspergillus phylum. Through in vitro and in vivo experiments, our present study demonstrates that polysaccharides from the stem of Cynomorium songaricum possess strong immunoregulatory effects. Findings in this work provide theoretical support for the potential application of Cynomorium songaricum in the field of health food.
Collapse
Affiliation(s)
- Tong Lv
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (T.L.); (J.C.); (Z.H.); (W.C.)
| | - Jiarong Chen
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (T.L.); (J.C.); (Z.H.); (W.C.)
| | - Zhongmei He
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (T.L.); (J.C.); (Z.H.); (W.C.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
| | - Weijia Chen
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (T.L.); (J.C.); (Z.H.); (W.C.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
| | - Ying Zong
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (T.L.); (J.C.); (Z.H.); (W.C.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
| | - Rui Du
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (T.L.); (J.C.); (Z.H.); (W.C.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
| |
Collapse
|
4
|
Wang Y, Qiao M, Yao X, Feng Z, Hu R, Chen J, Liu L, Liu J, Sun Y, Guo Y. Lidocaine ameliorates intestinal barrier dysfunction in irritable bowel syndrome by modulating corticotropin-releasing hormone receptor 2. Neurogastroenterol Motil 2023; 35:e14677. [PMID: 37736684 DOI: 10.1111/nmo.14677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 07/11/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Intestinal barrier dysfunction is a prevalent pathogenic factor underlying various disorders. Currently there is no effective resolution. Previous studies have reported the potential anti-inflammatory properties of lidocaine and its ability to alleviate visceral hypersensitivity in individuals with irritable bowel syndrome (IBS). Therefore, our study will further verify the effect of lidocaine on intestinal barrier dysfunction in IBS and investigate the underlying mechanisms. METHODS In this study, we investigated the role of lidocaine by assessing visceral hypersensitivity, body weight, inflammatory factors, fluorescein isothiocyanate-dextran 4000 (FD4) flux, tight junctions (TJs) and spleen and thymus index in rats subjected to water avoidance stress (WAS) to mimic intestinal barrier dysfunction in IBS with and without lidocaine. In vitro, we investigated the role of corticotropin-releasing hormone receptor 2 (CRHR2) in lidocaine-treated Caco2 cells using small interfering RNA (siRNA) targeting CRHR2. KEY RESULTS In WAS rats, lidocaine significantly restored weight loss, damaged TJs, spleen index and thymus index and inhibited abdominal hypersensitivity as well as blood levels of markers indicating intestinal permeability, such as diamine oxidase (DAO), D-lactic acid (D-Lac) and lipopolysaccharide (LPS). Consequently, the leakage of FD4 flux from intestine was significantly attenuated in lidocaine group, and levels of intestinal inflammatory factors (IL-1β, IFN-γ, TNF-α) were reduced. Interestingly, lidocaine significantly suppressed corticotropin-releasing hormone (CRH) levels in lamina propria cells, while the CRH receptor CRHR2 was upregulated in intestinal epithelial cells. In vitro, lidocaine enhanced the expression of CRHR2 on Caco-2 intestinal epithelial cells and restored disrupted TJs and the epithelial barrier caused by LPS. Conversely, these effects were diminished by a CRHR2 antagonist and siRNA-CRHR2, suggesting that the protective effect of lidocaine depends on CRHR2. CONCLUSIONS AND INFERENCES Lidocaine ameliorates intestinal barrier dysfunction in IBS by potentially modulating the expression of CRHR2 on intestinal epithelial cells.
Collapse
Affiliation(s)
- Yanrong Wang
- Department of Laboratory Medicine, Sichuan Tianfu New Area People's Hospital, Chengdu, China
| | - Mingbiao Qiao
- Department of Pathology, De Yang People's Hospital, Deyang, China
| | - Xue Yao
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Zhonghui Feng
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Ruiqi Hu
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianguo Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lei Liu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Jinbo Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yueshan Sun
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yuanbiao Guo
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| |
Collapse
|
5
|
Ablimit A, Yu Y, Jin X, Li JS. Effect of Momordica charantia polysaccharide on immunomodulatory activity in mice. Exp Ther Med 2023; 26:307. [PMID: 37273762 PMCID: PMC10236142 DOI: 10.3892/etm.2023.12006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/26/2022] [Indexed: 06/06/2023] Open
Abstract
Momordica charantia polysaccharides (MCPs) have been reported to exert beneficial roles, such as disease healing, in medicine and pharmacy. However, little is known about their effects on immunomodulation. The present study aimed to explore the possible effects of Momordica charantia polysaccharide (MCP) on the immunomodulatory activity of mice lymphocytes. To this aim, male BALB/c mice aged 6-8 weeks were assigned to the following six experimental groups: i) Normal (NG); ii) model (MG); iii) positive (PG); iv) MCP low-dose (MLG); v) MCP medium-dose (MMG); and vi) MCP high-dose (MHG). An immunosuppressive model was established by the intraperitoneal injection of cyclophosphamide in all groups apart from NG. The NG and MG mice were fed with distilled water, whereas the PG mice were administered with levamisole and the MLG, MMG and MHG mice were fed on low, medium and high (100, 200 and 300 mg/kg, respectively) doses of MCP for 21 consecutive days. Subsequently, the mice underwent surgical procedure and were analysed using a range of procedures, including measurement of the thymus index (TI) and spleen index (SI), assessment of the lymphocyte proliferation rate and cell phagocytosis of peritoneal macrophages, lymphocyte proliferation, secretion and mRNA expression of cytokines IFN-γ, IL-6 and IL-12. The mice divided into six groups as mentioned above and treated for 7 days, in the first 6 days, except NG group, mice in each group were desiccated in the abdominal cavity and sensitized by 1% dinitrofluorobenzene (DNFB). On day 6, mice were sensitized with 20 µl DNFB/acetone/olive oil solution behind the right ear and in front of the right ear. Compared with those in the NG mice (not injected with 80 mg/kg cyclophosphamide), the TIs and SIs of the PG, MLG, MMG and MHG mice were increased. In addition, the inhibitory rate of ear swelling and the phagocytic activity of peritoneal macrophages in the PG, MLG, MMG and MHG mice were increased compared with those of MG. Furthermore, the lymphocyte proliferation rate, the secretion and relative mRNA expression levels of cytokines IFN-γ, IL-6 and IL-12 were significantly increased in the PG, MMG and MHG mice compared with those in the NG mice. The results from the present study suggest that treatment with MCP led to an upregulation of the organ indices of immunosuppressed mice, reduced their delayed allergic reaction indicated by the differential cytokine levels, improved the phagocytic activity of peritoneal macrophages, enhanced the proliferation rate of lymphocytes, increased the secretion and expression of IFN-γ, IL-6 and IL-12. Therefore, MCP may improve the immune function of the immunosuppressed mice.
Collapse
Affiliation(s)
- Arzugul Ablimit
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yang Yu
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Xin Jin
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Jing-Shuang Li
- Department of Animal Husbandry Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
6
|
Su Y, Cheng S, Ding Y, Wang L, Sun M, Man C, Zhang Y, Jiang Y. A comparison of study on intestinal barrier protection of polysaccharides from Hericium erinaceus before and after fermentation. Int J Biol Macromol 2023; 233:123558. [PMID: 36746300 DOI: 10.1016/j.ijbiomac.2023.123558] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/03/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
The intestinal barrier protects the host from harmful substances. This paper investigated two polysaccharides extracted from the Hericium erinaceus before and after fermentation (HEP and FHEP). The effects of two polysaccharides on the intestinal barrier were investigated in cell and mice models. The results showed that polysaccharides had a protective effect against acrylamide-induced injury in IEC-6 cell. Compared with HEP, FHEP significantly increased TEER and paracellular permeability (P < 0.05). Both polysaccharides the expression of alter tight junction (TJ) and mucin (MUC) as observed in cell Western Bolt (WB). Polysaccharides also enhance the intestinal barrier function in mice by improving cyclophosphamide induced cytokines level, TJ and MUC expression, and gut microbiota. The results showed that FHEP significantly increased IgA, IgG, and IgM levels while decreasing TNF-, IL-1, and IL-6 levels (P < 0.05). The immunohistochemical results showed that both polysaccharides significantly increased the expression of occludin, ZO-1, ZO-2, claudin-3, claudin-4, MUC2 and decreased claudin-2. In parallel, polysaccharides could alter the composition of the gut microbiota, indicating that increased in Bacteriodetes, Firmicutes and decreased in Klebsiella and Shigella. This work provides important views on the protective effect of fermented polysaccharides on the intestinal barrier, and provides a potential mechanism for the beneficial health properties of these biomacromolecules.
Collapse
Affiliation(s)
- Yue Su
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shasha Cheng
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yixin Ding
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Linge Wang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingshuang Sun
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
7
|
Wang J, Wang L, Yu S, Jin Y, Wang Y, Chai R, Zhao Z, Bian Y, Zhao S. Condensed Fuzheng extract increases immune function in mice with cyclophosphamide-induced immunosuppression. Food Sci Nutr 2022; 10:3865-3875. [PMID: 36348791 PMCID: PMC9632192 DOI: 10.1002/fsn3.2982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022] Open
Abstract
Our general purpose was to examine the effect of condensed Fuzheng extract (CFE) on the alleviation of immunosuppression. A mouse model of immunosuppression was established by intraperitoneal injection of CTX. A healthy control group received no CTX and no CFE; different intragastric doses of CFE were administered to three groups of mice for 28 days (4500, 2250, or 1125 mg/kg/day); a negative control received CTX alone, and a positive control received CTX and levamisole hydrochloride. We evaluated the effects of CFE on the immune system organs, cells, and molecules by comparing the different groups. CFE significantly improved immune system organs (spleen and thymus indices and histology), stimulated immune cell activities (number of white blood cells and lymphocytes, phagocytosis of mononuclear phagocytes, proliferation of splenic lymphocytes, antibody formation, and NK cell activity), and increased the levels of immunoglobulins (IgA, IgG, and IgM) and cytokines (IL-2 and IFN-γ). Thus CFE effectively alleviated CTX-mediated immunosuppression and oxidative stress and enhanced the immunological functions of mice.
Collapse
Affiliation(s)
- Ji‐Da Wang
- School of Intergrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Li Wang
- Pharmaceutical DepartmentTianjin Second People's HospitalTianjinChina
- School of Intergrative MedicineTianjin UniversityTianjinChina
| | - Shuang Yu
- School of Intergrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yu‐Tong Jin
- School of Intergrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yi‐Yang Wang
- School of Intergrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Run‐Dong Chai
- School of Intergrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Ze‐Yu Zhao
- School of Intergrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yu‐Hong Bian
- School of Intergrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Shu‐Wu Zhao
- School of Intergrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
8
|
Wang X, Tang J, Zhang S, Zhang N. Effects of Lactiplantibacillus plantarum 19-2 on immunomodulatory function and gut microbiota in mice. Front Microbiol 2022; 13:926756. [PMID: 35992718 PMCID: PMC9386500 DOI: 10.3389/fmicb.2022.926756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
This study aims to evaluate the effects of Lactiplantibacillus plantarum 19-2 (L. plantarum 19-2) on mice treated with the alkylating agent cyclophosphamide (CTX). Our findings show that L. plantarum 19-2 restored the spleen and thymus index and the number of white blood cells and lymphocytes% in CTX treated mice. Serum immunoglobulin levels in CTX-treated mice were increased by L. plantarum 19-2. In addition, as compared to the model group, L. plantarum 19-2 upregulated the content of SIgA, while L. plantarum 19-2 regulates the mRNA and protein expression levels of GATA-3, T-bet, IFN-γ, and IL-4 in small intestinal tissues, which adjusted mucosal barriers, structural status, and the balance of Helper T-cell 1 and Helper T-cell 2. Lactiplantibacillus plantarum 19-2 regulated the distribution of intestinal flora in mice, promoting the growth of Bacteroides and Proteobacteria. In addition, L. plantarum 19-2 inhibited the growth of several harmful bacteria, including Actinobacteria and Firmicutes.
Collapse
Affiliation(s)
- Xiaoran Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jilang Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shixia Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- *Correspondence: Shixia Zhang,
| | - Nuannuan Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| |
Collapse
|
9
|
Balčiūnaitienė A, Štreimikytė P, Puzerytė V, Viškelis J, Štreimikytė-Mockeliūnė Ž, Maželienė Ž, Sakalauskienė V, Viškelis P. Antimicrobial Activities against Opportunistic Pathogenic Bacteria Using Green Synthesized Silver Nanoparticles in Plant and Lichen Enzyme-Assisted Extracts. PLANTS 2022; 11:plants11141833. [PMID: 35890467 PMCID: PMC9322591 DOI: 10.3390/plants11141833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022]
Abstract
Enzyme-assisted extraction is a valuable tool for mild and environmentally-friendly extraction conditions to release bioactive compounds and sugars, essential for silver nanoparticle (AgNP) green synthesis as capping and reducing agents. In this research, plant and fungal kingdoms were selected to obtain the enzyme-assisted extracts, using green synthesized AgNPs. For the synthesis, pseudo-cereal Fagopyrum esculentum (F. esculentum) and lichen Certaria islandica (C. islandica) extracts were used as environmentally-friendly agents under heating in an aqueous solution. Raw and enzyme-assisted extracts of AgNPs were characterized by physicochemical, phytochemical, and morphological characteristics through scanning and transmission electron microscopy (SEM and TEM), as well as Fourier transform infrared spectroscopy (FTIR). The synthesized nanoparticles were spherical in shape and well dispersed, with average sizes ranging from 10 to 50 nm. This study determined the total phenolic content (TPC) and in vitro antioxidant activity in both materials by applying standard methods. The results showed that TPC, ABTS•+, FRAP, and DPPH• radical scavenging activities varied greatly in samples. The AgNPs derived from enzymatic hydrolyzed aqueous extracts C. islandica and F. esculentum exhibited higher antibacterial activity against the tested bacterial pathogens than their respective crude extracts. Results indicate that the extracts’ biomolecules covering the AgNPs may enhance the biological activity of silver nanoparticles and enzyme assistance as a sustainable additive to technological processes to achieve higher yields and necessary media components.
Collapse
Affiliation(s)
- Aistė Balčiūnaitienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.Š.); (V.P.); (J.V.); (P.V.)
- Correspondence: ; Tel.: +370-60289485
| | - Paulina Štreimikytė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.Š.); (V.P.); (J.V.); (P.V.)
| | - Viktorija Puzerytė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.Š.); (V.P.); (J.V.); (P.V.)
| | - Jonas Viškelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.Š.); (V.P.); (J.V.); (P.V.)
| | - Žaneta Štreimikytė-Mockeliūnė
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Eivenių g. 2, 50161 Kaunas, Lithuania; (Ž.Š.-M.); (Ž.M.)
| | - Žaneta Maželienė
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Eivenių g. 2, 50161 Kaunas, Lithuania; (Ž.Š.-M.); (Ž.M.)
| | | | - Pranas Viškelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.Š.); (V.P.); (J.V.); (P.V.)
| |
Collapse
|
10
|
Zhang WN, Gong LL, Zhou ZB, Sun M, Li YY, Sun JW, Chen Y. Structural characterization and immunomodulatory activity of a mannan from Helvella leucopus. Int J Biol Macromol 2022; 212:495-507. [PMID: 35618090 DOI: 10.1016/j.ijbiomac.2022.05.132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 12/17/2022]
Abstract
A new polysaccharide fraction HLP-1 (2.55 × 105 Da) was obtained from the fruiting bodies of Helvella leucopus. Structural characterization of HLP-1 was elucidated by infrared spectroscopy, monosaccharide composition analysis, methylation analysis, nuclear magnetic resonance spectroscopy, scanning electron microscopy and Congo red assay. HLP-1 was a mannan with a backbone of →6)-α-D-Manp(1 → 4)- α-D-Manp(1 → 6)-α-D-Manp(1 → 3)-α-D-Manp(1 → 4)-α-D-Manp(1 → 3)-α-D-Manp(1→, which branched at the O-6 position and terminated with T-β-D-Manp. Moreover, HLP-1 could significantly improve the proliferation and neutral red phagocytosis of RAW264.7. Besides, HLP-1 could stimulate the production of nitric oxide (NO), ROS, tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6). HLP-1 induced macrophage activation via NF-κB signal pathway. These findings indicated that HLP-1 was a potential immune enhancement agent applied in functional foods.
Collapse
Affiliation(s)
- Wen-Na Zhang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Modern Biomanufacturing of Anhui Province, Hefei 230601, Anhui, China
| | - Li-Li Gong
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Zhong-Bo Zhou
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Min Sun
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yuan-Yuan Li
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Jing-Wen Sun
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yan Chen
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Modern Biomanufacturing of Anhui Province, Hefei 230601, Anhui, China.
| |
Collapse
|
11
|
Liu Z, Zhang J, Zhao Q, Wen A, Li L, Zhang Y. The regulating effect of Tibet Opuntia ficus-indica (Linn.) Mill. polysaccharides on the intestinal flora of cyclophosphamide-induced immunocompromised mice. Int J Biol Macromol 2022; 207:570-579. [PMID: 35292280 DOI: 10.1016/j.ijbiomac.2022.03.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/18/2022]
Abstract
The stem of Opuntia species, a traditional medicinal plant, is widely used as food and functional raw material because of its rich polysaccharide content. There have been many studies on the immune function of polysaccharides from Opuntia stem, but only few have examined this function with respect to intestinal microbes. In this study, the effects of different concentrations of Opuntia stem polysaccharides on the immunity and intestinal microflora of cyclophosphamide (CTX)-induced immunocompromised mice were explored. The results showed that Tibet Opuntia ficus-indica (Linn.) Mill. polysaccharides (ODPs) could effectively increase the white blood cells (WBC) count index of mice and improve their thymus and spleen indices, while effectively promoting the secretion of IL-4, IL-1β, TNF-α and IFN-γ, with these effects being dependent on the concentration of crude polysaccharides. The intake of ODPs significantly regulated the relative abundance of Lactobacillus, Bacteroides and Akkermansia, and the new dominant intestinal bacterial species were Deferribacteres, Actinomycetes, Firmicutes, Tenericutes, Actinomycetes and Pasteurella. In addition, the ODPs could effectively enhance the metabolic level of lysine synthesis and decomposition, regulate the gene expression level after immune disorders, and enhance the overall health of the immunodeficient mice.
Collapse
Affiliation(s)
- Zhendong Liu
- Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| | - Jinchao Zhang
- Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| | - Qian Zhao
- Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China
| | - Aomei Wen
- Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China
| | - Liang Li
- Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China.
| | - Yu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
12
|
Li Q, Zhang C, Xilin T, Ji M, Meng X, Zhao Y, Siqin B, Zhang N, Li M. Effects of Koumiss on Intestinal Immune Modulation in Immunosuppressed Rats. Front Nutr 2022; 9:765499. [PMID: 35242793 PMCID: PMC8886295 DOI: 10.3389/fnut.2022.765499] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022] Open
Abstract
Koumiss is a traditional fermented dairy product with health and medicinal benefits. It is very popular in the Inner Mongolia Autonomous Region of China. The results of relevant studies have shown that koumiss can regulate the gastrointestinal environment, improve the absorption of nutrients, improve the body's intolerance to lactose, enhance the body's immunity, prevent scurvy and atherosclerosis, and aid in the treatment of tuberculosis. However, there are no systematic reports on the effects of koumiss on immunity. In this study, we aimed to decipher the effects of koumiss on intestinal immune modulation. We used liquid chromatography-tandem mass spectrometry (LC-MS) analysis to determine the composition of Koumiss. Using Compound Discoverer software, we compared the mass spectrometry data with the compound information in the online databases ChemSpider and mzCloud to intelligently identify the main chemical components of koumiss. Additionally, we used Mass Frontier small molecule fragmentation libraryTM to determine the structure of fragment ions. A total of 21 components were identified, which clarified the chemical basis of koumiss. These 21 compounds were then used to perform molecular docking with immune-related targets, such as TNF, IL2, IL10, etc. The results indicated good docking activity between most of the compounds and the targets. Then, an immunosuppressive rat model was used to determine the therapeutic effect of koumiss. The results of this study showed that koumiss could, to a certain extent, correct the atrophy of the thymus and spleen in immunosuppressed model rats. The number of leukocytes, lymphocytes, and the CD4+/CD8+ ratio of peripheral blood lymphocytes was also increased. In addition, it could effectively improve the structure of the small intestinal mucosa, which shows that koumiss has a positive effect on the intestinal immune function of immunosuppressed rats. These findings provide an experimental basis for the development and utilization of koumiss as a therapeutic product.
Collapse
Affiliation(s)
- Qinyu Li
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Chunjie Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, China.,Center for Translational Medicine, Baotou Medical College, Baotou, China
| | - Tuya Xilin
- Laboratory of Mongolian Medicine, Xilinguole Meng Mongolian General Hospital, Xilinhaote, China
| | - Mingyue Ji
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Xiangxi Meng
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Yulian Zhao
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Bateer Siqin
- Laboratory of Mongolian Medicine, Xilinguole Meng Mongolian General Hospital, Xilinhaote, China
| | - Na Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Minhui Li
- Department of Pharmacy, Baotou Medical College, Baotou, China.,Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, China.,Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources and Utilization, Baotou Medical College, Baotou, China.,Office of Academic Research, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
13
|
Macrophage immunity promotion effect of polysaccharide LGP-1 from Guapian tea via PI3K/AKT and NF-κB signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
14
|
Yang Y, Ye H, Zhao C, Ren L, Wang C, Georgiev MI, Xiao J, Zhang T. Value added immunoregulatory polysaccharides of Hericium erinaceus and their effect on the gut microbiota. Carbohydr Polym 2021; 262:117668. [PMID: 33838836 DOI: 10.1016/j.carbpol.2021.117668] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Hericium erinaceus polysaccharides (HEPs) were isolated from the fruiting bodies of H. erinaceus with 53.36 % total carbohydrates and 32.56 % uronic acid. To examine whether HEPs can alter the diversity and the abundance of gut microbiota, adult mice and middle-aged and old mice were fed with HEPs for 28 days. Based on the result of 16S sequencing of gut microbiota it was found that the relative abundances of Lachnospiraceae and Akkermansiaceae significantly increased, while the relative abundance of Rikenellaceae and Bacteroidaceae appeared to decrease. Bacterial solutions from different murine intestinal segments and feces were collected to ferment HEPs in vitro. It was found that HEPs remarkably promoted the production of NO, IL-6, IL-10, INF-γ and TNF-α. Moreover, HEPs significantly increased phosphorylation of signaling molecules, indicating that the immunomodulatory activity was completed via NF-кB, MAPK and PI3K/Akt pathways. Collectively, HEPs have potential to be developed as functional ingredients or foods to promote health.
Collapse
Affiliation(s)
- Yang Yang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Cuina Wang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Milen I Georgiev
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 011464, Bucharest, Romania; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Boulevard, 4000, Plovdiv, Bulgaria
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, E-32004, Ourense, Spain.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
15
|
Dietary fiber polysaccharides of amaranth, buckwheat and quinoa grains: A review of chemical structure, biological functions and food uses. Carbohydr Polym 2020; 248:116819. [DOI: 10.1016/j.carbpol.2020.116819] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/06/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022]
|
16
|
Barbosa JDS, Sabry DA, Silva CHF, Gomes DL, Santana-Filho AP, Sassaki GL, Rocha HAO. Immunostimulatory Effect of Sulfated Galactans from the Green Seaweed Caulerpa cupressoides var. flabellata. Mar Drugs 2020; 18:md18050234. [PMID: 32365741 PMCID: PMC7281474 DOI: 10.3390/md18050234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
Sulfated polysaccharides (SPs) obtained from green seaweeds are structurally heterogeneous molecules with multifunctional bioactivities. In this work, two sulfated and pyruvated galactans were purified from Caulerpa cupressoides var. flabellata (named SP1 and SP2), and their immunostimulatory effect was evaluated using cultured murine macrophage cells. Both SPs equally increased the production of nitric oxide, reactive oxygen species, and the proinflammatory cytokines TNF-α and IL-6. NMR spectroscopy revealed that both galactans were composed primarily of 3)-β-d-Galp-(1→3) units. Pyruvate groups were also found, forming five-membered cyclic ketals as 4,6-O-(1'carboxy)-ethylidene-β-d-Galp residues. Some galactoses are sulfated at C-2. In addition, only SP2 showed some galactose units sulfated at C-4, indicating that sulfation at this position is not essential for the immunomodulatory activity of these galactans. Overall, the data showed that the galactans of C. cupressoides exhibited immunostimulating activity with potential therapeutic applications, which can be used in the development of new biomedical products.
Collapse
Affiliation(s)
- Jefferson da Silva Barbosa
- Laboratório de Biotecnologia de Polímeros Naturais—BIOPOL, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59.078-970, Rio Grande do Norte, Brazil; (J.d.S.B.); (D.A.S.); (C.H.F.S.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59012-570, Rio Grande do Norte, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN)—Campus, São Gonçalo do Amarante 59291-727, Rio Grande do Norte, Brazil
| | - Diego Araújo Sabry
- Laboratório de Biotecnologia de Polímeros Naturais—BIOPOL, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59.078-970, Rio Grande do Norte, Brazil; (J.d.S.B.); (D.A.S.); (C.H.F.S.)
| | - Cynthia Haynara Ferreira Silva
- Laboratório de Biotecnologia de Polímeros Naturais—BIOPOL, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59.078-970, Rio Grande do Norte, Brazil; (J.d.S.B.); (D.A.S.); (C.H.F.S.)
| | - Dayanne Lopes Gomes
- Instituto Federal de Educação, Ciência e Tecnologia do Piauí (IFPI)—Campus, BR 020, s/n, São Raimundo Nonato 64770-000, Bairro Primavera, Brazil;
| | - Arquimedes Paixão Santana-Filho
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba 81.531-980, Paraná, Brazil; (A.P.S.-F.); (G.L.S.)
| | - Guilherme Lanzi Sassaki
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba 81.531-980, Paraná, Brazil; (A.P.S.-F.); (G.L.S.)
| | - Hugo Alexandre Oliveira Rocha
- Laboratório de Biotecnologia de Polímeros Naturais—BIOPOL, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59.078-970, Rio Grande do Norte, Brazil; (J.d.S.B.); (D.A.S.); (C.H.F.S.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59012-570, Rio Grande do Norte, Brazil
- Correspondence: ; Tel.: +55-84-99999-9561
| |
Collapse
|
17
|
Zheng T, Gu D, Wang X, Shen X, Yan L, Zhang W, Pu Y, Ge C, Fan J. Purification, characterization and immunomodulatory activity of polysaccharides from Leccinum crocipodium (Letellier.) Watliag. Int J Biol Macromol 2020; 148:647-656. [DOI: 10.1016/j.ijbiomac.2020.01.155] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/23/2019] [Accepted: 01/16/2020] [Indexed: 01/09/2023]
|
18
|
Chen Z, Yu L, Cai X, Ye F, Jin P. Toll-like receptor 4/nuclear factor-kappa B pathway is involved in activating microphages by polysaccharides isolated from Fagopyrum esculentum. Bioengineered 2020; 10:538-547. [PMID: 31661653 PMCID: PMC6844372 DOI: 10.1080/21655979.2019.1682214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Buckwheat polysaccharide fractions (BPFs) isolated from seeds of Fagopyrum esculentum have shown extensive immunomodulatory activities including activation of immune system. In this study, the immuno-modulation effects of BPFs on microphages were investigated. The obtained results show that BPFs can activate microphages as indicated by significant increases in the activity of inducible nitric oxide synthase (12.6 ± 1.30 U/mg prot), nuclear factor-kappa B (NF-κB) protein levels, and secretion of nitric oxide (NO) (21.5 ± 1.20 μmol/ml) and tumor necrosis factor-alpha (TNF-α) (71.2 ± 18.20 pg/ml). Moreover, blocking toll-like receptor 4 (TLR4)/NF-κB pathway using a specific antibody to TLR4 or inhibitor of NF-κB led to the significant inhibitory immuno-modulation effect on microphages as indicated by the decrease in the secretion level of NO and TNF-α. It is demonstrated that BPFs can activate microphages and TLR4/NF-κB pathway is involved in the induction of NO and TNF-α in macrophages by BPFs.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Gastroenterology, Third Affiliated Hospital of Wenzhou Medical University, Rui'an People's Hospital, Rui'an, China
| | - Leilei Yu
- Department of Gastroenterology, Third Affiliated Hospital of Wenzhou Medical University, Rui'an People's Hospital, Rui'an, China
| | - Xiaoniao Cai
- Department of Gastroenterology, Third Affiliated Hospital of Wenzhou Medical University, Rui'an People's Hospital, Rui'an, China
| | - Fangpeng Ye
- Department of Gastroenterology, Third Affiliated Hospital of Wenzhou Medical University, Rui'an People's Hospital, Rui'an, China
| | - Peisheng Jin
- Department of Gastroenterology, Third Affiliated Hospital of Wenzhou Medical University, Rui'an People's Hospital, Rui'an, China
| |
Collapse
|
19
|
Cheng XD, Wu QX, Zhao J, Su T, Lu YM, Zhang WN, Wang Y, Chen Y. Immunomodulatory effect of a polysaccharide fraction on RAW 264.7 macrophages extracted from the wild Lactarius deliciosus. Int J Biol Macromol 2019; 128:732-739. [DOI: 10.1016/j.ijbiomac.2019.01.201] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
|