1
|
Zeng H, Lan B, Li B, Xie H, Zhao E, Liu X, Xue X, Sun J, Su L, Zhang Y. The role and mechanism of thrombospondin-4 in pulmonary arterial hypertension associated with congenital heart disease. Respir Res 2024; 25:313. [PMID: 39154161 PMCID: PMC11330619 DOI: 10.1186/s12931-024-02932-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Due to a special hemodynamic feature, pulmonary vascular disease in pulmonary arterial hypertension associated with congenital heart disease (PAH-CHD) has two stages: reversible and irreversible. So far, the mechanism involved in the transition from reversible to irreversible stage is elusive. Moreover, no recognized and reliable assessments to distinguish these two stages are available. Furthermore, we found that compared with control and reversible PAH, thrombospondin-4 (THBS4) was significantly upregulated in irreversible group by bioinformatic analysis. Hence, we further verify and investigate the expression and role of THBS4 in PAH-CHD. METHODS We established the monocrotaline plus aorto-cava shunt-induced (MCT-AV) rat model. We measured the expression of THBS4 in lung tissues from MCT-AV rats. Double immunofluorescence staining of lung tissue for THBS4 and α-SMA (biomarker of smooth muscle cells) or vWF (biomarker of endothelial cells) to identify the location of THBS4 in the pulmonary artery. Primary pulmonary artery smooth muscle cells (PASMCs) were cultivated, identified, and used in this study. THBS4 was inhibited and overexpressed by siRNA and plasmid, respectively, to explore the effect of THBS4 on phenotype transformation, proliferation, apoptosis, and migration of PASMCs. The effect of THBS4 on pulmonary vascular remodeling was evaluated in vivo by adeno-associated virus which suppressed THBS4 expression. Circulating level of THBS4 in patients with PAH-CHD was measured by ELISA. RESULTS THBS4 was upregulated in the lung tissues of MCT-AV rats, and was further upregulated in severe pulmonary vascular lesions. And THBS4 was expressed mainly in PASMCs. When THBS4 was inhibited, contractile markers α-SMA and MYH11 were upregulated, while the proliferative marker PCNA was decreased, the endothelial-mensenchymal transition marker N-cad was downregulated, proapototic marker BAX was increased. Additionally, proliferation and migration of PASMCs was inhibited and apoptosis was increased. Conversely, THBS4 overexpression resulted in opposite effects. And the impact of THBS4 on PASMCs was probably achieved through the regulation of the PI3K/AKT pathway. THBS4 suppression attenuated pulmonary vascular remodeling. Furthermore, compared with patients with simple congenital heart disease and mild PAH-CHD, the circulating level of THBS4 was higher in patients with severe PAH-CHD. CONCLUSIONS THBS4 is a promising biomarker to distinguish reversible from irreversible PAH-CHD before repairing the shunt. THBS4 is a potential treatment target in PAH-CHD, especially in irreversible stage.
Collapse
Affiliation(s)
- Haowei Zeng
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Beidi Lan
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bingyi Li
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hang Xie
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Enfa Zhao
- Department of Ultrasound, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Xiaoqin Liu
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyi Xue
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingyan Sun
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Linjie Su
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yushun Zhang
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
Kasula V, Padala V, Gupta N, Doyle D, Bagheri K, Anastasio A, Adams SB. The Use of Extracellular Vesicles in Achilles Tendon Repair: A Systematic Review. Biomedicines 2024; 12:942. [PMID: 38790904 PMCID: PMC11117955 DOI: 10.3390/biomedicines12050942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Achilles tendon (AT) pathologies are common musculoskeletal conditions that can significantly impair function. Despite various traditional treatments, recovery is often slow and may not restore full functionality. The use of extracellular vesicles (EVs) has emerged as a promising therapeutic option due to their role in cell signaling and tissue regeneration. This systematic review aims to consolidate current in vivo animal study findings on the therapeutic effects of EVs on AT injuries. An extensive literature search was conducted using the PubMed, Scopus, and Embase databases for in vivo animal studies examining the effects of EVs on AT pathologies. The extracted variables included but were not limited to the study design, type of EVs used, administration methods, efficacy of treatment, and proposed therapeutic mechanisms. After screening, 18 studies comprising 800 subjects were included. All but one study reported that EVs augmented wound healing processes in the AT. The most proposed mechanisms through which this occurred were gene regulation of the extracellular matrix (ECM), the enhancement of macrophage polarization, and the delivery of therapeutic microRNAs to the injury site. Further research is warranted to not only explore the therapeutic potential of EVs in the context of AT pathologies, but also to establish protocols for their clinical application.
Collapse
Affiliation(s)
- Varun Kasula
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Vikram Padala
- Department of Orthopedic Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Nithin Gupta
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - David Doyle
- Department of Orthopedic Surgery, Central Michigan University College of Medicine, Saginaw, MI 48602, USA
| | - Kian Bagheri
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Albert Anastasio
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Samuel Bruce Adams
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
3
|
Zhang Q, Su P, Zhao F, Ren H, He C, Wu Q, Wang Z, Ma J, Huang X, Wang Z. Enhancing Skin Injury Repair: Combined Application of PF-127 Hydrogel and hADSC-Exos Containing miR-148a-3p. ACS Biomater Sci Eng 2024; 10:2235-2250. [PMID: 38445959 DOI: 10.1021/acsbiomaterials.3c01567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The use of exosomes to relieve skin injuries has received considerable attention. The PluronicF-127 hydrogel (PF-127 hydrogel) is a novel biomaterial that can be used to carry biomolecules. This study sought to investigate the impact of exosomes originating from human mesenchymal stem cells (MSCs) developed from adipose tissue (hADSC-Exos) combined with a PF-127 hydrogel on tissue repair and explore the underlying mechanism using in vitro and in vivo experiments. miR-148a-3p is the most expressed microRNA (miRNA) in hADSC-Exos. We found that exosomes combined with the PF-127 hydrogel had a better efficacy than exosomes alone; moreover, miR-148a-3p knockdown lowered its efficacy. In vitro, we observed a significant increase in the tumor-like ability of HUVECs after exosome treatment, which was attenuated after miR-148a-3p knockdown. Furthermore, the effects of miR-148a-3p on hADSC-Exos were achieved through the prevention of PTEN and the triggering of phosphatidylinositol 3-kinase (PI3K)/Akt signaling. In conclusion, our results demonstrated that hADSC-Exos can promote angiogenesis and skin wound healing by delivering miR-148a-3p and have a better effect when combined with the PF-127 hydrogel, which may be an alternative strategy to promote wound healing.
Collapse
Affiliation(s)
- Qiqi Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
- Department of Pathology, Chengdu Third People's Hospital, Chengdu 610000, Sichuan, China
| | - Peng Su
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, China Medical University, Shenyang 110013, Liaoning, China
| | - Haiyue Ren
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Cai He
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Quan Wu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Zitong Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jiajie Ma
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Xing Huang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| |
Collapse
|
4
|
Genaro K, Luo ZD. Pathophysiological roles of thrombospondin-4 in disease development. Semin Cell Dev Biol 2024; 155:66-73. [PMID: 37391348 PMCID: PMC10753034 DOI: 10.1016/j.semcdb.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Thrombospondin-4 (TSP-4) belongs to the extracellular matrix glycoprotein family of thrombospondins (TSPs). The multidomain, pentameric structure of TSP-4 allows its interactions with numerous extracellular matrix components, proteins and signaling molecules that enable its modulation to various physiological and pathological processes. Characterization of TSP-4 expression under development and pathogenesis of disorders has yielded important insights into mechanisms underlying the unique role of TSP-4 in mediating various processes including cell-cell, cell-extracellular matrix interactions, cell migration, proliferation, tissue remodeling, angiogenesis, and synaptogenesis. Maladaptation of these processes in response to pathological insults and stress can accelerate the development of disorders including skeletal dysplasia, osteoporosis, degenerative joint disease, cardiovascular diseases, tumor progression/metastasis and neurological disorders. Overall, the diverse functions of TSP-4 suggest that it may be a potential marker or therapeutic target for prognosis, diagnosis, and treatment of various pathological conditions upon further investigations. This review article highlights recent findings on the role of TSP-4 in both physiological and pathological conditions with a focus on what sets it apart from other TSPs.
Collapse
Affiliation(s)
- Karina Genaro
- Department of Anesthesiology & Perioperative Care, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Z David Luo
- Department of Anesthesiology & Perioperative Care, School of Medicine, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
5
|
Trotta MC, Itro A, Lepre CC, Russo M, Guida F, Moretti A, Braile A, Tarantino U, D’Amico M, Toro G. Effects of adipose-derived mesenchymal stem cell conditioned medium on human tenocytes exposed to high glucose. Ther Adv Musculoskelet Dis 2024; 16:1759720X231214903. [PMID: 38204801 PMCID: PMC10775729 DOI: 10.1177/1759720x231214903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/26/2023] [Indexed: 01/12/2024] Open
Abstract
Introduction Diabetic tendinopathy is a common invalidating and challenging disease that may be treated using stem cells. However, the effects of adipose-derived mesenchymal stem cell conditioned medium (ASC-CM) in diabetic tendinopathy have never been explored. Objectives The present study evaluated the effects of ASC-CM on morphology, cell viability, structure, and scratch wound closure of human tenocytes (HTNC) exposed to high glucose (HG). Design Experimental study. Methods HTNC were exposed to HG (25 mM) for 7, 14 and 21 days with or without ASC-CM for the last 24 h. CM was collected from 4 × 105 ASCs, centrifuged for 10 min at 200 g and sterilized with 0.22 μm syringe filter. Results At 7 days, HG-HTNC had decreased cell viability [72 ± 2%, p < 0.01 versus normal glucose (NG)] compared to NG-HTNC (90 ± 5%). A further decrement was detected after 14 and 21 days (60 ± 4% and 60 ± 5%, both, p < 0.01 versus NG and p < 0.01 versus HG7). While NG-HTNC evidenced a normal fibroblast cell-like elongated morphology, HG-HTNC showed increased cell roundness. In contrast, HG-HTNC exposed to ASC-CM showed a significant increase in cell viability, an improved cell morphology and higher scratch wound closure at all HG time points. Moreover, the exposure to ASC-CM significantly increased thrombospondin 1 and transforming growth factor beta 1 (TGF-β1) content in HG-HTNC. The TGF-β1 elevation was paralleled by higher Collagen I and Vascular Endothelial Growth Factor in HG-HTNC. Conclusion ASC-CM may restore the natural morphology, cell viability and structure of HTNC, promoting their scratch wound closure through TGF-β1 increase.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Annalisa Itro
- PhD Course in Translational Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Marina Russo
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Antimo Moretti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Adriano Braile
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
- Caterina ClaudiaLepre is also affiliated to PhD Course in Translational Medicine, University of Campania ‘Luigi Vanvitell’, Naples, Italy
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Giuseppe Toro
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania ‘Luigi Vanvitelli’, Via L. De Crecchio 6, Naples 80138, Italy
| |
Collapse
|
6
|
Zhang B, Gu J, Wang Y, Guo L, Xie J, Yang M. TNF-α stimulated exosome derived from fibroblast-like synoviocytes isolated from rheumatoid arthritis patients promotes HUVEC migration, invasion and angiogenesis by targeting the miR-200a-3p/KLF6/VEGFA axis. Autoimmunity 2023; 56:2282939. [PMID: 37975481 DOI: 10.1080/08916934.2023.2282939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
The pathogenesis of rheumatoid arthritis (RA) is heavily impacted by the inflammation and activation of fibroblast-like synoviocytes (FLS). The objective of this investigation is to clarify the involvement of exosomes derived from FLS stimulated by tumour necrosis factor α (TNF-α) in angiogenesis and the underlying mechanisms. FLS cells were obtained from synovial fluid of RA patients and exosomes were obtained from FLS cell supernatant with TNF-α stimulation by ultracentrifugation. Exosomes were subsequently analysed using transmission electron microscopy, nanoparticle tracking analysis, and western blotting. The functional effects of exosomes with TNF-α stimulation on human umbilical vein endothelial cells (HUVEC) migration, invasion, and angiogenesis was evaluated using wound scratch healing test, transwell invasion assay, and tube formation assay. DNA nanoball-seq (DNBSEQ) sequencing platform was utilised to analysis different expression miRNA from exosomes, miRNA and mRNA from HUVEC. The expression level of miR-200a-3p was determined through quantitative real-time polymerase chain reaction (qRT-PCR). The quantification of KLF6 and VEGFA expression levels were performed by qRT-PCR and western blot analysis. The validation of the association between miR-200a-3p and KLF6 was established through a fluorescence enzyme reporting assay. In comparison to exosome induced by PBS, exosome induced by TNF-α exhibited a substantial exacerbation of invasion, migration, and angiogenesis in HUVEC. 4 miRNAs in exosomes and HUVEC cells, namely miR-1246, miR-200a-3p, miR-30a-3p, and miR-99b-3p was obtained. MiR-200a-3p maintained high consistency with the sequencing results. We obtained 5 gene symbols, and KLF6 was chose for further investigation. The expression of miR-200a-3p in exosomes induced by TNF-α and in HUVEC treated with these exosomes demonstrated a significantly increase. Additionally, HUVEC cells displayed a notable decrease in KLF6 expression and a significant elevation in VEGFA expression. This was further confirmed by the fluorescence enzyme report assay, which provided evidence of the direct targeting of KLF6 by miR-200a-3p. Exosomes induced by TNF-α have the ability to enhance the migration, invasion, and angiogenesis of HUVEC cells via the miR-200a-3p/KLF6/VEGFA axis.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
- Jiaxing Key Laboratory of Osteoporosis and Bone Metabolism, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Juanfang Gu
- Department of Rheumatology and Immunology, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
- Jiaxing Key Laboratory of Osteoporosis and Bone Metabolism, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Yiwen Wang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
- Jiaxing Key Laboratory of Osteoporosis and Bone Metabolism, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Linfeng Guo
- Zhejiang Chinese Medicine University and Jiaxing university Master degree cultivation base, Jiaxing, Zhejiang, China
| | | | - Mingfeng Yang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
- Jiaxing Key Laboratory of Osteoporosis and Bone Metabolism, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| |
Collapse
|
7
|
Schmid T, Wegener F, Hotfiel T, Hoppe MW. Moderate evidence exists for four microRNAs as potential biomarkers for tendinopathies and degenerative tendon ruptures at the upper extremity in elderly patients: conclusion of a systematic review with best-evidence synthesis. J Exp Orthop 2023; 10:81. [PMID: 37563331 PMCID: PMC10415244 DOI: 10.1186/s40634-023-00645-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023] Open
Abstract
PURPOSE The aim of this systematic review was to investigate tendon-specific microRNAs (miRNAs) as biomarkers for the detection of tendinopathies or degenerative tendon ruptures. Also, their regulatory mechanisms within the tendon pathophysiology were summarized. METHODS A systematic literature research was performed using the PRISMA guidelines. The search was conducted in the Pubmed database. The SIGN checklist was used to assess the study quality of the included original studies. To determine the evidence and direction of the miRNA expression rates, a best-evidence synthesis was carried out, whereby only studies with at least a borderline methodological quality were considered for validity purposes. RESULTS Three thousand three hundred seventy studies were reviewed from which 22 fulfilled the inclusion criteria. Moderate evidence was found for miR-140-3p and miR-425-5p as potential biomarkers for tendinopathies as well as for miR-25-3p, miR-29a-3p, miR-140-3p, and miR-425-5p for the detection of degenerative tendon ruptures. This evidence applies to tendons at the upper extremity in elderly patients. All miRNAs were associated with inflammatory cytokines as interleukin-6 or interleukin-1ß and tumor necrosis factor alpha. CONCLUSIONS Moderate evidence exists for four miRNAs as potential biomarkers for tendinopathies and degenerative tendon ruptures at the upper extremity in elderly patients. The identified miRNAs are associated with inflammatory processes.
Collapse
Affiliation(s)
- Tristan Schmid
- Movement and Training Science, Leipzig University, Jahnallee 59, 04109, Leipzig, Germany.
| | - Florian Wegener
- Movement and Training Science, Leipzig University, Jahnallee 59, 04109, Leipzig, Germany
| | - Thilo Hotfiel
- Center for Musculoskeletal Surgery Osnabrück (OZMC), Klinikum Osnabrück, Am Finkenhügel 1, 49076, Osnabrueck, Germany
| | - Matthias W Hoppe
- Movement and Training Science, Leipzig University, Jahnallee 59, 04109, Leipzig, Germany
| |
Collapse
|
8
|
Morya VK, Lee HW, Park CW, Park CW, Hyun JT, Noh KC. Computational Analysis of miR-140 and miR-135 as Potential Targets to Develop Combinatorial Therapeutics for Degenerative Tendinopathy. Clin Orthop Surg 2023; 15:463-476. [PMID: 37274502 PMCID: PMC10232305 DOI: 10.4055/cios22237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/06/2023] Open
Abstract
Background Degenerative tendinopathy, a condition causing movement restriction due to high pain, highly impacts productivity and quality of life. The healing process is a complex phenomenon and involves a series of intra-cellular and inter-cellular processes. Proliferation and differentiation of the tenocyte is a major and essential process to heal degenerative tendinopathy. The recent development in microRNA (miRNA)-mediated reprogramming of the cellular function through specific pathways opened door for the development of new regenerative therapeutics. Based on information about gene expression and regulation of tendon injury and healing, we attempted to evaluate the combinatorial effect of selected miRNAs for better healing of degenerative tendinopathy. Methods The present study was designed to evaluate the combinatorial effect of two miRNAs (has-miR-140 and has-miR-135) in the healing process of the tendon. Publicly available information/data were retrieved from appropriate platforms such as PubMed. Only molecular data, directly associated with tendinopathies, including genes/proteins and miRNAs, were used in this study. The miRNAs involved in tendinopathy were analyzed by a Bioinformatics tools (e.g., TargetScan, miRDB, and the RNA22v2). Interactive involvement of the miRNAs with key proteins involved in tendinopathy was predicted by the Insilco approach. Results Based on information available in the public domain, tendon healing-associated miRNAs were predicted to explore their therapeutic potentials. Based on computation analysis, focusing on the potential regulatory effect on tendon healing, the miR-135 and miR-140 were selected for this study. These miRNAs were found as key players in tendon healing through Rho-associated coiled-coil containing protein kinase 1 (ROCK1), IGF-1/PI3K/Akt, PIN, and Wnt signaling pathways. It was also predicted that these miRNAs may reprogram the cells to induce proliferation and differentiation activity. Many miRNAs are likely to regulate genes important for the tendinopathy healing process, and the result of this study allows an approach for miRNA-mediated regeneration of the tenocyte for tendon healing. Based on computational analysis, the role of these miRNAs in different pathways was established, and the results provided insights into the combinatorial approach of miRNA-mediated cell reprogramming. Conclusions In this study, the association between miRNAs and the disease was evaluated to correlate the tendinopathy genes and the relevant role of different miRNAs in their regulation. Through this study, it was established that the synergistic effect of more than one miRNA on directed reprogramming of the cell could be helpful in the regeneration of damaged tissue. It is anticipated that this study will be helpful for the design of miRNA cocktails for the orchestration of cellular reprogramming events.
Collapse
Affiliation(s)
- Vivek Kumar Morya
- Department of Orthopaedics, Kangnam Sacred Heart Hospital, Hallym University School of Medicine, Seoul, Korea
| | - Ho-Won Lee
- Department of Orthopaedics, Kangnam Sacred Heart Hospital, Hallym University School of Medicine, Seoul, Korea
| | - Chang-Wook Park
- Department of Orthopaedics, Kangnam Sacred Heart Hospital, Hallym University School of Medicine, Seoul, Korea
| | - Chang-Won Park
- Department of Orthopaedics, Kangnam Sacred Heart Hospital, Hallym University School of Medicine, Seoul, Korea
| | - Jin Tak Hyun
- Department of Orthopaedics, Kangnam Sacred Heart Hospital, Hallym University School of Medicine, Seoul, Korea
| | - Kyu-Cheol Noh
- Department of Orthopaedics, Kangnam Sacred Heart Hospital, Hallym University School of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Song F, Li S, Dai X, Yang F, Cao Y. Activation of KLF6 by titanate nanofibers and regulatory roles of KLF6 on ATF3 in the endothelial monolayer and mouse aortas. Mol Omics 2023; 19:150-161. [PMID: 36538054 DOI: 10.1039/d1mo00470k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although titanium (Ti)-based nanomaterials (NMs) were traditionally considered as biologically inert materials, it was recently reported that Ti-based NMs induce adverse vascular effects by inhibiting Kruppel-like factor 2 (KLF2) and/or KLF4, vasoprotective KLFs with well-documented regulatory activity in NO signaling. However, the potential roles of other KLFs are not clear. KLF6 was recently identified as an important KLF involved in regulating endothelial dysfunction, inflammation, and angiogenesis, therefore, this study investigated the influence of titanate nanofibers (TiNFs) on KLF6-mediated events. Ingenuity pathway analysis (IPA) showed that TiNFs altered the expression of a panel of KLF6-related genes: KLF6-mediated gene ontology (GO) terms were altered, categories including cytokine-mediated signaling pathways, transcription factor (TF) functions and membrane-bound organelles. Additionally, RT-PCR confirmed that TiNFs increased KLF6 activating transcription factor 3 (ATF3), a TF involved in endoplasmic reticulum (ER) stress, and ELISA confirmed the increase of soluble monocyte chemotactic protein 1 (sMCP-1), a KLF6-related inflammatory cytokine. Interestingly, the activation of klf6, atf3 and C-C motif chemokine ligand 2 (ccl2; mcp-1 encoding gene) was observed in aortas of mice following one-time intravenous injection but not intratracheal instillation of TiNFs (100 μg per mouse), indicating a need for direct contact with NMs to activate klf6-mediated pathways in vivo. In endothelial cells, KLF6 knockdown inhibited the expression of ATF3 but not CCL2, suggesting the regulatory role of KLF6 in ATF3 expression. Overall, this study uncovered a previously unknown role of KLF6 in TiNF-induced vascular effects both in vitro and in vivo.
Collapse
Affiliation(s)
- Fengmei Song
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Shuang Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Xuyan Dai
- Economic College, Hunan Agricultural University, Changsha, 410128, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
10
|
Li J, Wang ZH, Sun YH. TGF-β1 stimulated mesenchymal stem cells-generated exosomal miR-29a promotes the proliferation, migration and fibrogenesis of tenocytes by targeting FABP3. Cytokine 2023; 162:156090. [PMID: 36481477 DOI: 10.1016/j.cyto.2022.156090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/30/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Rotator cuff Tear (RCT) causes a lot of inconvenience for patients. In most cases, RCT injury does not heal back to bone after repair, and there is a high chance of retearing. Therefore, there is a need to explore more effective targeted therapies. Bone mesenchymal stem cell-derived exosome (BMSCs-Exo) has been proved to be beneficial to the proliferation of tendon cells, but its specific mechanism remains to be further explored. METHODS BMSCs-Exo was isolated and identified by detecting the specific markers using flow cytometry and western blot assays. qRT-PCR and western blot were utilized to determine the gene or protein expressions, respectively. Cell proliferation, and migration in tenocytes were measured by CCK8, EdU and transwell assays. The interaction between miR-29a and FABP3 was analyzed using dual-luciferase reporter assay. RESULTS Our findings demonstrated that miR-29a was expressed in BMSCs-Exo and could be significantly enriched after TGF-β1 treatment. Moreover, TGF-β1-modified BMSCs-Exo co-cultured could promote the proliferation, migration and fibrosis of tenocytes by carrying miR-29a. Upon miR-29a was reduced in BMSCs-Exo, the regulatory roles of BMSCs-Exo on tenocytes were reversed. Mechanistically, miR-29a negatively regulated FABP3 via interaction with its 3'-UTR. Enforced expression of FABP3 could reverse the modulation of exosomal miR-29a in tenocytes. CONCLUSION Exosomal miR-29a derived from TGF-β1-modified BMSCs facilitated the proliferation, migration and fibrosis of tenocytes through targeting FABP3.
Collapse
Affiliation(s)
- Jia Li
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, PR China.
| | - Zhi-Hui Wang
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, PR China
| | - Yu-Hang Sun
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, PR China
| |
Collapse
|
11
|
Epigenetic Alterations in Sports-Related Injuries. Genes (Basel) 2022; 13:genes13081471. [PMID: 36011382 PMCID: PMC9408207 DOI: 10.3390/genes13081471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
It is a well-known fact that physical activity benefits people of all age groups. However, highly intensive training, maladaptation, improper equipment, and lack of sufficient rest lead to contusions and sports-related injuries. From the perspectives of sports professionals and those performing regular–amateur sports activities, it is important to maintain proper levels of training, without encountering frequent injuries. The bodily responses to physical stress and intensive physical activity are detected on many levels. Epigenetic modifications, including DNA methylation, histone protein methylation, acetylation, and miRNA expression occur in response to environmental changes and play fundamental roles in the regulation of cellular activities. In the current review, we summarise the available knowledge on epigenetic alterations present in tissues and organs (e.g., muscles, the brain, tendons, and bones) as a consequence of sports-related injuries. Epigenetic mechanism observations have the potential to become useful tools in sports medicine, as predictors of approaching pathophysiological alterations and injury biomarkers that have already taken place.
Collapse
|
12
|
Xu T, Lin Y, Yu X, Jiang G, Wang J, Xu K, Fang J, Wang S, Dai X. Comparative Effects of Exosomes and Ectosomes Isolated From Adipose-Derived Mesenchymal Stem Cells on Achilles Tendinopathy in a Rat Model. Am J Sports Med 2022; 50:2740-2752. [PMID: 35867349 DOI: 10.1177/03635465221108972] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Extracellular vesicles derived from mesenchymal stem cells (MSC-EVs) have gained momentum as a treatment for tendinopathy. Multiple studies have demonstrated significant differences in cargo composition between the 2 subtypes of MSC-EVs (ie, exosomes and ectosomes), which may result in different therapeutic effects. However, the effects of the 2 EV subtypes on tendinopathy have not yet been compared. PURPOSE To compare the effects of adipose stem cell-derived exosomes (ASC-Exos) and ectosomes (ASC-Ectos) on Achilles tendinopathy. STUDY DESIGN Controlled laboratory study. METHODS Rats were administered collagenase injections to generate a model of Achilles tendinopathy. A week later, 36 rats were randomly assigned to 3 groups. In each group, Achilles tendons were injected with equal volumes of ASC-Exos, ASC-Ectos, or saline (12 legs/group). The healing outcomes were evaluated by magnetic resonance imaging, histology, immunohistochemistry, transmission electron microscopy, and biomechanical testing at 3 and 5 weeks after collagenase injection. RESULTS At 3 and 5 weeks, the ASC-Exo group had better histological scores (P = .0036 and P = .0276, respectively), a lower fibril density (P < .0001 and P = .0310, respectively), and a larger collagen diameter (P = .0052 and P < .0001, respectively) than the ASC-Ecto group. At 5 weeks, the expression of collagen type 1 and CD206 in the ASC-Exo group was significantly higher than that in the ASC-Ecto group (P = .0025 and P = .0010, respectively). Regarding biomechanical testing, the ASC-Exo group showed higher failure load (P = .0005), tensile stress (P < .0001), and elastic modulus (P < .0001) than the ASC-Ecto group. CONCLUSION ASC-Exos had more beneficial effects on tendon repair than ASC-Ectos in a rat model of Achilles tendinopathy. CLINICAL RELEVANCE Administration of ASC-EVs may have the potential to treat Achilles tendinopathy, and delivery of ASC-Exos could provide additional benefits. It is necessary to compare the healing responses caused by different EV subtypes to further understand their effects on tendinopathy and to aid clinical decision making.
Collapse
Affiliation(s)
- Tengjing Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.,Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Yunting Lin
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.,Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Xinning Yu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.,Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Guangyao Jiang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.,Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Jiajie Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.,Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Kaiwang Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.,Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Jinghua Fang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.,Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Siheng Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.,Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Xuesong Dai
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.,Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| |
Collapse
|
13
|
Human Milk Extracellular Vesicles: A Biological System with Clinical Implications. Cells 2022; 11:cells11152345. [PMID: 35954189 PMCID: PMC9367292 DOI: 10.3390/cells11152345] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
The consumption of human milk by a breastfeeding infant is associated with positive health outcomes, including lower risk of diarrheal disease, respiratory disease, otitis media, and in later life, less risk of chronic disease. These benefits may be mediated by antibodies, glycoproteins, glycolipids, oligosaccharides, and leukocytes. More recently, human milk extracellular vesicles (hMEVs) have been identified. HMEVs contain functional cargos, i.e., miRNAs and proteins, that may transmit information from the mother to promote infant growth and development. Maternal health conditions can influence hMEV composition. This review summarizes hMEV biogenesis and functional contents, reviews the functional evidence of hMEVs in the maternal–infant health relationship, and discusses challenges and opportunities in hMEV research.
Collapse
|
14
|
Ding L, Wang M, Qin S, Xu L. The Roles of MicroRNAs in Tendon Healing and Regeneration. Front Cell Dev Biol 2021; 9:687117. [PMID: 34277629 PMCID: PMC8283311 DOI: 10.3389/fcell.2021.687117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/11/2021] [Indexed: 01/20/2023] Open
Abstract
Tendons connect the muscle abdomen of skeletal muscles to the bone, which transmits the force generated by the muscle abdomen contraction and pulls the bone into motion. Tendon injury is a common clinical condition occurring in certain populations, such as repeated tendon strains in athletes. And it can lead to substantial pain and loss of motor function, in severe cases, significant disability. Tendon healing and regeneration have attracted growing interests. Some treatments including growth factors, stem cell therapies and rehabilitation programs have been tried to improve tendon healing. However, the basic cellular biology and pathology of tendons are still not fully understood, and the management of tendon injury remains a considerable challenge. Regulating gene expression at post-transcriptional level, microRNA (miRNA) has been increasingly recognized as essential regulators in the biological processes of tendon healing and regeneration. A wide range of miRNAs in tendon injury have been shown to play vital roles in maintaining and regulating its physiological function, as well as regulating the tenogenic differentiation potential of stem cells. In this review, we show the summary of the latest information on the role of miRNAs in tendon healing and regeneration, and also discuss potentials for miRNA-directed diagnosis and therapy in tendon injuries and tendinopathy, which may provide new theoretical foundation for tenogenesis and tendon healing.
Collapse
Affiliation(s)
- Lingli Ding
- Lingnan Medical Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Wang
- Lingnan Medical Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengnan Qin
- Department of Orthopaedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Liangliang Xu
- Lingnan Medical Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Wang J, Yao Y, Wang K, Li J, Chu T, Shen H. MicroRNA-148a-3p alleviates high glucose-induced diabetic retinopathy by targeting TGFB2 and FGF2. Acta Diabetol 2020; 57:1435-1443. [PMID: 32661705 DOI: 10.1007/s00592-020-01569-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022]
Abstract
AIMS Diabetic retinopathy (DR), a common complication of type 1 or type 2 diabetes mellitus, has become the leading cause of blindness among adults in working age. The dysregulation of microRNA has been reported to be strongly related to the initiation or progression of DR. However, neither the biological role nor the molecular mechanism of miR-148a-3p has been researched in DR. This study is designed to investigate the function and mechanism of miR-148a-3p in DR. METHODS The bioinformatics analysis (Targetscan: https://www.targetscan.org/vert_72/ ) and numerous experiments including real-time quantitative polymerase chain reaction, terminal deoxynucleotidyltransferase dUTP nick end labeling, CCK-8, western blot, vasculogenesis and luciferase reporter assays were used to research the function and mechanism of miR-148a-3p in DR. RESULTS We constructed DR cell model by treating human retinal microvascular endothelial cells (HRECs) with different concentration gradients of high glucose (HG). Additionally, HG treatment reduced miR-148a-3p level in HRECs. In function, overexpression of miR-148a-3p caused an increase in cell viability and a decrease in cell apoptosis. Besides, miR-148a-3p overexpression led to a damage on blood-retinal barrier (BRB) and suppressed angiogenesis. In mechanism, miR-148a-3p specifically bound to 3' untranslated region of TGFB2 and FGF2. At least, rescue assays demonstrated that the inhibitive influence of miR-148a-3p mimics on BRB injury was offset by overexpression of TGFB2 and the attenuation of angiogenesis resulting from miR-148a-3p mimics was abrogated by overexpression of FGF2 CONCLUSIONS: In a word, we discovered that miR-148a-3p alleviated HG-induced DR by targeting TGFB2 and FGF2. This novel discovery indicated miR-148a-3p as a potential target for DR diagnosis or treatment.
Collapse
Affiliation(s)
- Jihong Wang
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, No. 200 Huihe Road, Wuxi, 214000, Jiangsu, China.
| | - Yong Yao
- Department of Ophthalmology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Kelei Wang
- Department of Ophthalmology, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, 214000, Jiangsu, China
| | - Jia Li
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, No. 200 Huihe Road, Wuxi, 214000, Jiangsu, China
| | - Ting Chu
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, No. 200 Huihe Road, Wuxi, 214000, Jiangsu, China
| | - Haicui Shen
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, No. 200 Huihe Road, Wuxi, 214000, Jiangsu, China
| |
Collapse
|
16
|
Wang M, Zhao Y, Yu ZY, Zhang RD, Li SA, Zhang P, Shan TK, Liu XY, Wang ZM, Zhao PC, Sun HW. Glioma exosomal microRNA-148a-3p promotes tumor angiogenesis through activating the EGFR/MAPK signaling pathway via inhibiting ERRFI1. Cancer Cell Int 2020; 20:518. [PMID: 33117083 PMCID: PMC7590612 DOI: 10.1186/s12935-020-01566-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background Glioma is the most frequent and lethal primary brain malignancy. Amounting evidence has highlighted the importance of exosomal microRNAs (miRNAs or miRs) in this malignancy. This study aimed to investigate the regulatory role of exosomal miR-148a-3p in glioma. Methods Bioinformatics analysis was firstly used to predict the target genes of miR-148a-3p. Exosomes were then extracted from normal human astrocytes and glioma cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was applied to determine the expression patterns of miR-148a-3p and ERBB receptor feedback inhibitor 1 (ERRFI1). Dual-luciferase reporter gene assay was applied to verify the direct binding between miR-148a-3p and ERRFI1. Cell counting kit-8 and tube formation assays were further conducted to assess the proliferation and angiogenic properties of human umbilical vein endothelial cells (HUVECs) in the co-culture system with exosomes. Lastly, glioma tumor models were established in BALB/c nude mice to study the role of exosomal miR-148a-3p in vivo. Results miR-148a-3p was highly expressed, while ERRFI1 was poorly expressed in glioma. miR-148a-3p was found to be enriched in glioma cells-derived exosomes and could be transferred to HUVECs via exosomes to promote their proliferation and angiogenesis. ERRFI1 was identified as a target gene of miR-148a-3p. In addition, miR-148a-3p activated the epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK) signaling pathway by inhibiting ERRFI1. In the co-culture system, our data demonstrated that glioma cells-derived exosomal miR-148a-3p down-regulated ERRFI1 and activated the EGFR/MAPK signaling pathway, so as to promote cell proliferation and angiogenesis. In vivo experimentation further demonstrated that this mechanism was responsible for the promotive role of exosomal miR-148a-3p in tumorigenesis and angiogenesis. Conclusion Taken together, glioma-derived exosomal miR-148a-3p promoted tumor angiogenesis through activation of the EGFR/MAPK signaling pathway by ERRFI1 inhibition.
Collapse
Affiliation(s)
- Meng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Yi Zhao
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 People's Republic of China
| | - Zhi-Yun Yu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Ren-De Zhang
- Department of Medical, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Shu-Ang Li
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 People's Republic of China
| | - Peng Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Ti-Kun Shan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Xue-You Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Ze-Ming Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Pei-Chao Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Hong-Wei Sun
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East RoadHenan Province, Zhengzhou, 450052 Henan Province People's Republic of China
| |
Collapse
|
17
|
Lacerda JZ, Ferreira LC, Lopes BC, Aristizábal-Pachón AF, Bajgelman MC, Borin TF, Zuccari DAPDC. Therapeutic Potential of Melatonin in the Regulation of MiR-148a-3p and Angiogenic Factors in Breast Cancer. Microrna 2020; 8:237-247. [PMID: 30806335 DOI: 10.2174/2211536608666190219095426] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/23/2018] [Accepted: 02/06/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND The high mortality rate of breast cancer is related to the occurrence of metastasis, a process that is promoted by tumor angiogenesis. MicroRNAs are small molecules of noncoding mRNA that play a key role in gene regulation and are directly involved in the progression and angiogenesis of various tumor types, including breast cancer. Several miRNAs have been described as promoters or suppressors angiogenesis and may be associated with tumor growth and metastasis. Melatonin is an oncostatic agent with a capacity of modifying the expression of innumerable genes and miRNAs related to cancer. OBJECTIVE The aim of this study was to evaluate the role of melatonin and the tumor suppressor miR- 148a-3p on angiogenesis of breast cancer. METHOD MDA-MB-231 cells were treated with melatonin and modified with the overexpression of miR-148a-3p. The relative quantification in real-time of miR-148a-3p, IGF-IR and VEGF was performed by real-time PCR. The protein expression of these targets was performed by immunocytochemistry and immunohistochemistry. Survival, migration and invasion rates of tumor cells were evaluated. Finally, the xenograft model of breast cancer was performed to confirm the role of melatonin in the tumor. RESULTS The melatonin was able to increase the gene level of miR-148a-3p and decreased the gene and protein expression of IGF-1R and VEGF, both in vitro and in vivo. In addition, it also had an inhibitory effect on the survival, migration and invasion of breast tumor cells. CONCLUSION Our results confirm the role of melatonin in the regulation of miR-148a-3p and decrease of angiogenic factors.
Collapse
Affiliation(s)
- Jéssica Zani Lacerda
- Sao Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Sao Jose do Rio Preto (SP), Brazil.,Laboratory of Molecular Research in Cancer (LIMC), Medical School of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto (SP), Brazil
| | - Lívia Carvalho Ferreira
- Laboratory of Molecular Research in Cancer (LIMC), Medical School of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto (SP), Brazil
| | - Beatriz Camargo Lopes
- Sao Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Sao Jose do Rio Preto (SP), Brazil.,Laboratory of Molecular Research in Cancer (LIMC), Medical School of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto (SP), Brazil
| | - Andrés Felipe Aristizábal-Pachón
- Laboratory of Molecular Genetics and Bioinformatics (LGMB), Faculty of Medicine of Ribeirao Preto, University of Sao Paulo (FMRP/USP), Ribeirao Preto (SP), Brazil
| | - Marcio Chaim Bajgelman
- Laboratory of Biosciences of the National Center of Research in Energy and Materials (LNBio/CNPEM), Campinas (SP), Brazil
| | - Thaiz Ferraz Borin
- Georgia Cancer Center, Augusta University, 1120 15th Street, Augusta, GA 30912, United States
| | - Debora Aparecida Pires de Campos Zuccari
- Sao Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Sao Jose do Rio Preto (SP), Brazil.,Laboratory of Molecular Research in Cancer (LIMC), Medical School of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto (SP), Brazil
| |
Collapse
|
18
|
Giordano L, Porta GD, Peretti GM, Maffulli N. Therapeutic potential of microRNA in tendon injuries. Br Med Bull 2020; 133:79-94. [PMID: 32219416 DOI: 10.1093/bmb/ldaa002] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/07/2020] [Accepted: 01/24/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The regulatory role of microRNA (miRNA) in several conditions has been studied, but their function in tendon healing remains elusive. This review summarizes how miRNAs are related to the pathogenesis of tendon injuries and highlights their clinical potential, focusing on the issues related to their delivery for clinical purposes. SOURCES OF DATA We searched multiple databases to perform a systematic review on miRNA in relation to tendon injuries. We included in the present work a total of 15 articles. AREAS OF AGREEMENT The mechanism of repair of tendon injuries is probably mediated by resident tenocytes. These maintain a fine equilibrium between anabolic and catabolic events of the extracellular matrix. Specific miRNAs regulate cytokine expression and orchestrate proliferation and differentiation of stromal cell lines involved in the composition of the extracellular matrix. AREAS OF CONTROVERSY The lack of effective delivery systems poses serious obstacles to the clinical translation of these basic science findings. GROWING POINT In vivo studies should be planned to better explore the relationship between miRNA and tendon injuries and evaluate the most suitable delivery system for these molecules. AREAS TIMELY FOR DEVELOPING RESEARCH Investigations ex vivo suggest therapeutic opportunities of miRNA for the management of tendon injuries. Given the poor pharmacokinetic properties of miRNAs, these must be delivered by an adequate adjuvant transport system.
Collapse
Affiliation(s)
- Lorenzo Giordano
- Department of Musculoskeletal Disorder, Faculty of Medicine, Surgery and Dentistry, University of Salerno, Via San Leonardo 1, 84131 Salerno, Italy
| | - Giovanna Della Porta
- Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | - Giuseppe M Peretti
- Department of Biomedical Sciences for Health, University of Milan, Via Riccardo Galeazzi 4, 20161, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy
| | - Nicola Maffulli
- Department of Musculoskeletal Disorder, Faculty of Medicine, Surgery and Dentistry, University of Salerno, Via San Leonardo 1, 84131 Salerno, Italy.,Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy.,Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, London E1 4DG, England.,School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent ST5 5B, England
| |
Collapse
|
19
|
Steinmann S, Pfeifer CG, Brochhausen C, Docheva D. Spectrum of Tendon Pathologies: Triggers, Trails and End-State. Int J Mol Sci 2020; 21:ijms21030844. [PMID: 32013018 PMCID: PMC7037288 DOI: 10.3390/ijms21030844] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/18/2020] [Accepted: 01/24/2020] [Indexed: 12/31/2022] Open
Abstract
The biggest compartment of the musculoskeletal system is the tendons and ligaments. In particular, tendons are dense tissues connecting muscle to bone that are critical for the integrity, function and locomotion of this system. Due to the increasing age of our society and the overall rise in engagement in extreme and overuse sports, there is a growing prevalence of tendinopathies. Despite the recent advances in tendon research and due to difficult early diagnosis, a multitude of risk factors and vague understanding of the underlying biological mechanisms involved in the progression of tendon injuries, the toolbox of treatment strategies remains limited and non-satisfactory. This review is designed to summarize the current knowledge of triggers, trails and end state of tendinopathies.
Collapse
Affiliation(s)
- Sara Steinmann
- Experimental Trauma Surgery, Department of Trauma Surgery, University Medical Center Regensburg, Am Biopark 9, 93053 Regensburg, Germany; (S.S.); (C.G.P.)
| | - Christian G. Pfeifer
- Experimental Trauma Surgery, Department of Trauma Surgery, University Medical Center Regensburg, Am Biopark 9, 93053 Regensburg, Germany; (S.S.); (C.G.P.)
- Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany;
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Medical Center Regensburg, Am Biopark 9, 93053 Regensburg, Germany; (S.S.); (C.G.P.)
- Department of Medical Biology, Medical University-Plovdiv, 15A Vassil Aprilov Blvd., 4002 Plovdiv, Bulgaria
- Correspondence: ; Tel.: +49 941 943-1605
| |
Collapse
|
20
|
Song C, Yang J, Jiang R, Yang Z, Li H, Huang Y, Lan X, Lei C, Ma Y, Qi X, Chen H. miR-148a-3p regulates proliferation and apoptosis of bovine muscle cells by targeting KLF6. J Cell Physiol 2019; 234:15742-15750. [PMID: 30793769 DOI: 10.1002/jcp.28232] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Skeletal muscle development is regulated by a series of regulatory factors, and also including noncoding RNA, especially microRNAs (miRNAs). Recently, miR-148a has been found to be involved in murine C2C12 differentiation by targeting ROCK1. However, the function of miR-148a-3p for the proliferation and apoptosis of bovine muscle cells has not been determined. In this study, we found that miR-148a-3p was highly expressed in fetal bovine skeletal muscle and exhibited a decreasing trend in muscle cells during its growth phase. Functional studies indicated that gain of miR-148a-3p inhibited the proliferation of bovine muscle cells and promoted apoptosis. Conversely, interference with miR-148a-3p inhibitor promoted muscle cell proliferation and inhibited its apoptosis. Mechanistically, KLF6 was confirmed as a new potential target gene of miR-148a-3p by TargetScan software prediction and the dual-luciferase assay verification. Additionally, after a gain or loss of KLF6, the function of KLF6 for muscle cell proliferation and apoptosis was opposite to that of miR-148a-3p. Collectively, these findings proposed a novel avenue whereby miR-148a-3p impeded bovine myoblast cell proliferation and promoted apoptosis through the posttranscriptional downregulation of KLF6.
Collapse
Affiliation(s)
- Chengchuang Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiameng Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhaoxin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yun Ma
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Xinglei Qi
- Bureau of Animal Husbandry of Biyang County, Biyang, Henan, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
21
|
MicroRNA expression profile in retina and choroid in oxygen-induced retinopathy model. PLoS One 2019; 14:e0218282. [PMID: 31188886 PMCID: PMC6561584 DOI: 10.1371/journal.pone.0218282] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
Background Ischemic retinopathies (IRs) are leading causes of visual impairment. They are characterized by an initial phase of microvascular degeneration and a second phase of aberrant pre-retinal neovascularization (NV). microRNAs (miRNAs) regulate gene expression, and a number play a role in normal and pathological NV. But, post-transcriptional modulation of miRNAs in the eye during the development of IRs has not been systematically evaluated. Aims & methods Using Next Generation Sequencing (NGS) we profiled miRNA expression in the retina and choroid during vasodegenerative and NV phases of oxygen-induced retinopathy (OIR). Results Approximately 20% of total miRNAs exhibited altered expression (up- or down-regulation); 6% of miRNA were found highly expressed in retina and choroid of rats subjected to OIR. During OIR-induced vessel degeneration phase, miR-199a-3p, -199a-5p, -1b, -126a-3p displayed a robust decreased expression (> 85%) in the retina. While in the choroid, miR-152-3p, -142-3p, -148a-3p, -532-3p were upregulated (>200%) and miR-96-5p, -124-3p, -9a-3p, -190b-5p, -181a-1-3p, -9a-5p, -183-5p were downregulated (>70%) compared to controls. During peak pathological NV, miR-30a-5p, -30e-5p and 190b-5p were markedly reduced (>70%), and miR-30e-3p, miR-335, -30b-5p strongly augmented (by up to 300%) in the retina. Whereas in choroid, miR-let-7f-5p, miR-126a-5p and miR-101a-3p were downregulated by (>81%), and miR-125a-5p, let-7e-5p and let-7g-5p were upregulated by (>570%) during NV. Changes in miRNA observed using NGS were validated using qRT-PCR for the 24 most modulated miRNAs. In silico approach to predict miRNA target genes (using algorithms of miRSystem database) identified potential new target genes with pro-inflammatory, apoptotic and angiogenic properties. Conclusion The present study is the first comprehensive description of retinal/choroidal miRNAs profiling in OIR (using NGS technology). Our results provide a valuable framework for the characterization and possible therapeutic potential of specific miRNAs involved in ocular IR-triggered inflammation, angiogenesis and degeneration.
Collapse
|
22
|
Ouyang B, Xie Y, Zhang C, Deng C, Lv L, Yao J, Zhang Y, Liu G, Deng J, Deng C. Extracellular Vesicles From Human Urine-Derived Stem Cells Ameliorate Erectile Dysfunction in a Diabetic Rat Model by Delivering Proangiogenic MicroRNA. Sex Med 2019; 7:241-250. [PMID: 30910509 PMCID: PMC6522949 DOI: 10.1016/j.esxm.2019.02.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/18/2019] [Accepted: 02/11/2019] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Stem cell therapies represent a promising new frontier for the treatment of refractory diabetic erectile dysfunction (DED). The use of stem cell-derived extracellular vesicles (EVs) is a novel strategy for cell-free stem cell therapy. We have reported that urine-derived stem cells (USCs) can improve DED; however, the therapeutic effects of EVs secreted by USCs (USC-EVs) remain unknown. AIM To determine the therapeutic effects of USC-EVs on DED in a rat model. METHODS USC-EVs were isolated from conditioned medium by ultracentrifugation. DED was induced in male Sprague-Dawley rats via an intraperitoneal injection of streptozotocin. Sixteen DED rats were divided into phosphate-buffered saline (PBS) and USC-EV groups. Eight normal rats served as the normal control group. PBS or USC-EVs were transplanted into the corpora cavernosa in the corresponding groups. MAIN OUTCOME MEASURE Intracavernosal pressure (ICP), mean arterial pressure (MAP), expression of endothelial markers (CD31), endothelial nitric oxide synthase (eNOS), phospho-eNOS, and neural nitric oxide synthase (nNOS) were assessed in each group. Masson's trichrome staining was used to determine the collagen deposition and ratio of smooth muscle cells to collagen. The microRNA (miRNA) cargo of USC-EVs was characterized by high-throughput RNA sequencing. RESULTS Recovery of erectile function was observed in the USC-EV group, as represented by improved ICP and ICP/MAP ratio. CD31, eNOS, phospho-eNOS, and nNOS expression in the penis was significantly improved in the USC-EV group. In addition, the ratio of smooth muscle to collagen was significantly increased in the USC-EV group. RNA sequencing revealed that USC-EVs were enriched for distinct classes of miRNA (miR-21-5p, let-7 family, miR-10 family, miR-30 family, and miR-148a-3p) that promote angiogenesis. CONCLUSION USC-EV transplantation can ameliorate DED in rats. Its mechanism may involve the delivery of proangiogenic miRNA. Ouyang B, Xie Y, Zhang C, et al. Extracellular Vesicles From Human Urine-Derived Stem Cells Ameliorate Erectile Dysfunction in a Diabetic Rat Model by Delivering Proangiogenic MicroRNA. Sex Med 2019;7:241-250.
Collapse
Affiliation(s)
- Bin Ouyang
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China; Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yun Xie
- Department of Andrology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chi Zhang
- Department of Andrology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cuncan Deng
- Reproductive Medicine Research Center, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linyan Lv
- Reproductive Medicine Research Center, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiahui Yao
- Department of Andrology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuanyuan Zhang
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China; Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China; Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Guihua Liu
- Reproductive Medicine Research Center, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junhong Deng
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China; Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Chunhua Deng
- Department of Andrology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|