1
|
Sun H, Ma X, Ma H, Li S, Xia Y, Yao L, Wang Y, Pang X, Zhong J, Yao G, Liu X, Zhang M. High glucose levels accelerate atherosclerosis via NLRP3-IL/ MAPK/NF-κB-related inflammation pathways. Biochem Biophys Res Commun 2024; 704:149702. [PMID: 38422898 DOI: 10.1016/j.bbrc.2024.149702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND As a chronic inflammatory disease, diabetes mellitus (DM) contributes to the development of atherosclerosis (AS). However, how the NLRP3 inflammasome participates in diabetes-related AS remains unclear. Therefore, this study aimed to elucidate the mechanism through which NLRP3 uses high glucose (HG) levels to promote AS. METHODS Serum and coronary artery tissues were collected from coronary artery disease (CAD) patients with and without DM, respectively. The expression of NLRP3 was detected, and the effects of this inflammasome on diabetes-associated AS were evaluated using streptozotocin (STZ)-induced diabetic apoE-/- mice injected with Adenovirus-mediated NLRP3 interference (Ad-NLRP3i). To elucidate the potential mechanism involved, ox-LDL-irritated human aortic smooth muscle cells were divided into the control, high-glucose, Si-NC, and Si-NLRP3 groups to observe the changes induced by downregulating NLRP3 expression. For up-regulating NLRP3, control and plasmid contained NLRP3 were used. TNF-α, IL-1β, IL-6, IL-18, phosphorylated and total p38, JNK, p65, and IκBα expression levels were detected following the downregulation or upregulation of NLRP3 expression. RESULTS Patients with comorbid CAD and DM showed higher serum levels and expression of NLRP3 in the coronary artery than those with only CAD. Moreover, mice in the Ad-NLRP3i group showed markedly smaller and more stable atherosclerotic lesions compared to those in other DM groups. These mice had decreased inflammatory cytokine production and improved glucose tolerance, which demonstrated the substantial effects of NLRP3 in the progression of diabetes-associated AS. Furthermore, using the siRNA or plasmid to downregulate or upregulate NLRP3 expression in vitro altered cytokines and the MAPK/NF-κB pathway. CONCLUSIONS NLRP3 expression was significantly increased under hyperglycemia. Additionally, it accelerated AS by promoting inflammation via the IL/MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Hui Sun
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiaotian Ma
- Department of Medicine Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Hong Ma
- Qingdao Branch of Shandong Public Health Clinical Center, Qingdao, China
| | - Shuen Li
- Department of Pathology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Yan Xia
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Lijie Yao
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Yingcui Wang
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xuelian Pang
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Jingquan Zhong
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Guihua Yao
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiaoling Liu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Mei Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
2
|
Cai Y, Zhou Y, Li Z, Xia P, ChenFu X, Shi A, Zhang J, Yu P. Non-coding RNAs in necroptosis, pyroptosis, and ferroptosis in cardiovascular diseases. Front Cardiovasc Med 2022; 9:909716. [PMID: 35990979 PMCID: PMC9386081 DOI: 10.3389/fcvm.2022.909716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Accumulating evidence has proved that non-coding RNAs (ncRNAs) play a critical role in the genetic programming and gene regulation of cardiovascular diseases (CVDs). Cardiovascular disease morbidity and mortality are rising and have become a primary public health issue that requires immediate resolution through effective intervention. Numerous studies have revealed that new types of cell death, such as pyroptosis, necroptosis, and ferroptosis, play critical cellular roles in CVD progression. It is worth noting that ncRNAs are critical novel regulators of cardiovascular risk factors and cell functions by mediating pyroptosis, necroptosis, and ferroptosis. Thus, ncRNAs can be regarded as promising therapeutic targets for treating and diagnosing cardiovascular diseases. Recently, there has been a surge of interest in the mediation of ncRNAs on three types of cell death in regulating tissue homeostasis and pathophysiological conditions in CVDs. Although our understanding of ncRNAs remains in its infancy, the studies reviewed here may provide important new insights into how ncRNAs interact with CVDs. This review summarizes what is known about the functions of ncRNAs in modulating cell death-associated CVDs and their role in CVDs, as well as their current limitations and future prospects.
Collapse
Affiliation(s)
- Yuxi Cai
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiwen Zhou
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Panpan Xia
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Xinxi ChenFu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Ao Shi
- School of Medicine, University of Nicosia, Nicosia, Cyprus
- School of Medicine, St. George University of London, London, United Kingdom
| | - Jing Zhang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jing Zhang
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- *Correspondence: Peng Yu
| |
Collapse
|
3
|
A Review of Functional Analysis of Endothelial Cells in Flow Chambers. J Funct Biomater 2022; 13:jfb13030092. [PMID: 35893460 PMCID: PMC9326639 DOI: 10.3390/jfb13030092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
The vascular endothelial cells constitute the innermost layer. The cells are exposed to mechanical stress by the flow, causing them to express their functions. To elucidate the functions, methods involving seeding endothelial cells as a layer in a chamber were studied. The chambers are known as parallel plate, T-chamber, step, cone plate, and stretch. The stimulated functions or signals from endothelial cells by flows are extensively connected to other outer layers of arteries or organs. The coculture layer was developed in a chamber to investigate the interaction between smooth muscle cells in the middle layer of the blood vessel wall in vascular physiology and pathology. Additionally, the microfabrication technology used to create a chamber for a microfluidic device involves both mechanical and chemical stimulation of cells to show their dynamics in in vivo microenvironments. The purpose of this study is to summarize the blood flow (flow inducing) for the functions connecting to endothelial cells and blood vessels, and to find directions for future chamber and device developments for further understanding and application of vascular functions. The relationship between chamber design flow, cell layers, and microfluidics was studied.
Collapse
|
4
|
Choublier N, Taghi M, Menet MC, Le Gall M, Bruce J, Chafey P, Guillonneau F, Moreau A, Denizot C, Parmentier Y, Nakib S, Borderie D, Bouzinba-Segard H, Couraud PO, Bourdoulous S, Declèves X. Exposure of human cerebral microvascular endothelial cells hCMEC/D3 to laminar shear stress induces vascular protective responses. Fluids Barriers CNS 2022; 19:41. [PMID: 35658915 PMCID: PMC9164338 DOI: 10.1186/s12987-022-00344-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/23/2022] [Indexed: 01/01/2023] Open
Abstract
Endothelial cells (ECs) are constantly submitted in vivo to hemodynamical forces derived from the blood circulation, including shear stress (SS). ECs are able to detect SS and consequently adapt their phenotype, thus affecting many endothelial functions. If a plethora of shear stress-regulated molecular networks have been described in peripheral ECs, less is known about the molecular responses of microvascular brain ECs which constitute the blood-brain barrier (BBB). In this work, we investigated the response of human cerebral microvascular ECs to laminar physiological shear stress using the well characterized hCMEC/D3 cell line. Interestingly, we showed that hCMEC/D3 cells responded to shear stress by aligning perpendicularly to the flow direction, contrary to peripheral endothelial cells which aligned in the flow direction. Whole proteomic profiles were compared between hCMEC/D3 cells cultured either in static condition or under 5 or 10 dyn.cm-2 SS for 3 days. 3592 proteins were identified and expression levels were significantly affected for 3% of them upon both SS conditions. Pathway analyses were performed which revealed that most proteins overexpressed by SS refer to the antioxidant defense, probably mediated by activation of the NRF2 transcriptional factor. Regarding down-regulated proteins, most of them participate to the pro-inflammatory response, cell motility and proliferation. These findings confirm the induction of EC quiescence by laminar physiological SS and reveal a strong protective effect of SS on hCMEC/D3 cells, suggesting a similar effect on the BBB. Our results also showed that SS did not significantly increase expression levels nor did it affect the localization of junctional proteins and did not afect either the functional activity of several ABC transporters (P-glycoprotein and MRPs). This work provides new insights on the response of microvascular brain ECs to SS and on the importance of SS for optimizing in vitro BBB models.
Collapse
Affiliation(s)
- Nina Choublier
- INSERM, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, 75006, Paris, France.
| | - Meryam Taghi
- INSERM, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, 75006, Paris, France
| | - Marie-Claude Menet
- Institut de Chimie Physique, CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Morgane Le Gall
- 3P5 Proteom'IC Facility, Institut Cochin, INSERM, CNRS, Université de Paris, F-75014, Paris, France
| | - Johanna Bruce
- 3P5 Proteom'IC Facility, Institut Cochin, INSERM, CNRS, Université de Paris, F-75014, Paris, France
| | - Philippe Chafey
- 3P5 Proteom'IC Facility, Institut Cochin, INSERM, CNRS, Université de Paris, F-75014, Paris, France
| | - François Guillonneau
- 3P5 Proteom'IC Facility, Institut Cochin, INSERM, CNRS, Université de Paris, F-75014, Paris, France
| | | | | | | | - Samir Nakib
- Service de Biochimie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014, Paris, France
| | - Didier Borderie
- Service de Biochimie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014, Paris, France
| | - Haniaa Bouzinba-Segard
- CNRS, INSERM, Institut Cochin, Inserm, CNRS, Université Paris Cité, 75014, Paris, France
| | - Pierre-Olivier Couraud
- CNRS, INSERM, Institut Cochin, Inserm, CNRS, Université Paris Cité, 75014, Paris, France
| | - Sandrine Bourdoulous
- CNRS, INSERM, Institut Cochin, Inserm, CNRS, Université Paris Cité, 75014, Paris, France
| | - Xavier Declèves
- INSERM, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, 75006, Paris, France.
- Biologie du Médicament Et Toxicologie, AP-HP, Hôpital Cochin, 75014, Paris, France.
| |
Collapse
|
5
|
Hiroshima Y, Oyama Y, Sawasaki K, Nakamura M, Kimura N, Kawahito K, Fujie H, Sakamoto N. A Compressed Collagen Construct for Studying Endothelial-Smooth Muscle Cell Interaction Under High Shear Stress. Ann Biomed Eng 2022; 50:951-963. [PMID: 35471673 DOI: 10.1007/s10439-022-02972-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/18/2022] [Indexed: 11/29/2022]
Abstract
The coculture of vascular endothelial cells (ECs) on collagen gels containing smooth muscle cells (SMCs) has been carried out to investigate cellular interactions associated with blood vessel pathophysiology under wall shear stress (WSS) conditions. However, due to a lack of gel stiffness, the previous collagen gel coculture constructs are difficult to use for pathologic higher WSS conditions. Here, we newly constructed a coculture model with centrifugally compressed cell-collagen combined construct (C6), which withstands higher WSS conditions. The elastic modulus of C6 was approximately 6 times higher than that of the uncompressed collagen construct. The level of α-smooth muscle actin, a contractile SMC phenotype marker observed in healthy arteries, was elevated in C6 compared with that of the uncompressed construct, and further increased by exposure to a physiological level WSS of 2 Pa, but not by a pathological level of 20 Pa. WSS conditions of 2 and 20 Pa also induced different expression ratios of matrix metalloproteinases and their inhibitors in the C6 coculture model but did not in monocultured ECs and SMCs. The C6 coculture model will be a powerful tool to investigate interactions between ECs and SMCs under pathologically high WSS conditions.
Collapse
Affiliation(s)
- Yuya Hiroshima
- Department of Cardiovascular Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yuki Oyama
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Kaoru Sawasaki
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Masanori Nakamura
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, 466-8555, Japan
| | - Naoyuki Kimura
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Amanuma 1-847, Omiya, Saitama, 330-834, Japan
| | - Koji Kawahito
- Department of Cardiovascular Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hiromichi Fujie
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan.,Research Center for Medicine-Engineering Collaboration, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Naoya Sakamoto
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan. .,Research Center for Medicine-Engineering Collaboration, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
6
|
Meki M, El-Baz A, Sethu P, Giridharan G. Effects of Pulsatility on Arterial Endothelial and Smooth Muscle Cells. Cells Tissues Organs 2022; 212:272-284. [PMID: 35344966 PMCID: PMC10782761 DOI: 10.1159/000524317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/16/2022] [Indexed: 01/04/2023] Open
Abstract
Continuous flow ventricular assist device (CFVAD) support in advanced heart failure patients causes diminished pulsatility, which has been associated with adverse events including gastrointestinal bleeding, end organ failure, and arteriovenous malformation. Recently, pulsatility augmentation by pump speed modulation has been proposed as a means to minimize adverse events. Pulsatility primarily affects endothelial and smooth muscle cells in the vasculature. To study the effects of pulsatility and pulse modulation using CFVADs, we have developed a microfluidic co-culture model with human aortic endothelial (ECs) and smooth muscle cells (SMCs) that can replicate physiologic pressures, flows, shear stresses, and cyclical stretch. The effects of pulsatility and pulse frequency on ECs and SMCs were evaluated during (1) normal pulsatile flow (120/80 mmHg, 60 bpm), (2) diminished pulsatility (98/92 mmHg, 60 bpm), and (3) low cyclical frequency (115/80 mmHg, 30 bpm). Shear stresses were estimated using computational fluid dynamics (CFD) simulations. While average shear stresses (4.2 dynes/cm2) and flows (10.1 mL/min) were similar, the peak shear stresses for normal pulsatile flow (16.9 dynes/cm2) and low cyclic frequency (19.5 dynes/cm2) were higher compared to diminished pulsatility (6.45 dynes/cm2). ECs and SMCs demonstrated significantly lower cell size with diminished pulsatility compared to normal pulsatile flow. Low cyclical frequency resulted in normalization of EC cell size but not SMCs. SMCs size was higher with low frequency condition compared to diminished pulsatility but did not normalize to normal pulsatility condition. These results may suggest that pressure amplitude augmentation may have a greater effect in normalizing ECs, while both pressure amplitude and frequency may be required to normalize SMCs morphology. The co-culture model may be an ideal platform to study flow modulation strategies.
Collapse
Affiliation(s)
- Moustafa Meki
- Bioengineering, University of Louisville, Louisville, KY, USA
| | - Ayman El-Baz
- Bioengineering, University of Louisville, Louisville, KY, USA
| | - Palanaippan Sethu
- Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
7
|
Tsukamoto S, Chiam KH, Asakawa T, Sawasaki K, Takesue N, Sakamoto N. Compressive forces driven by lateral actin fibers are a key to the nuclear deformation under uniaxial cell-substrate stretching. Biochem Biophys Res Commun 2022; 597:37-43. [PMID: 35123264 DOI: 10.1016/j.bbrc.2022.01.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 01/10/2023]
Abstract
Cells sense the direction of mechanical stimuli including substrate stretching and show morphological and functional responses. The nuclear deformation with respect to the direction of mechanical stimuli is thought of as a vital factor in mechanosensitive intracellular signaling and gene transcription, but the detailed relationship between the direction of stimuli and nuclear deformation behavior is not fully solved yet. Here, we assessed the role of actin cytoskeletons in nuclear deformation caused by cell substrate stretching with different directions. Cells on a PDMS stretching chamber were subjected to a step-strain and changes of long- and short-axes of nucleus before and after stretching were evaluated in terms of nuclear orientation against the direction of stretching. Nuclei oriented parallel to the stretching direction showed elongation and shrinkage in the long and short axes, respectively, and vice versa. However, calculation of the aspect ratio (ratio of long- and short-axes) changes revealed orientation-depend nuclear deformation: The nucleus oriented parallel to the stretching direction showed a greater aspect ratio change than it aligned in the perpendicular direction of the stretching. A decrease in actin cytoskeletal tension significantly changed the nuclear deformation only in the short axis direction, thereby abolishing the orientation-depend deformation of the nucleus. These results suggest that lateral compressive forces exerted by the actin cytoskeleton is a key factor of orientation-depend deformation in short axis of the nucleus under the cell-substrate stretching condition, and may be crucial for mechano-sensing and responses to the cell-substrate stretching direction.
Collapse
Affiliation(s)
- Shingo Tsukamoto
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan; Bioinformatics Institute, A∗STAR, Singapore.
| | | | - Takumi Asakawa
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Kaoru Sawasaki
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Naoyuki Takesue
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Naoya Sakamoto
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.
| |
Collapse
|
8
|
Tsukamoto S, Asakawa T, Kimura S, Takesue N, Mofrad MRK, Sakamoto N. Intranuclear strain in living cells subjected to substrate stretching: A combined experimental and computational study. J Biomech 2021; 119:110292. [PMID: 33667883 DOI: 10.1016/j.jbiomech.2021.110292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 01/11/2021] [Accepted: 01/23/2021] [Indexed: 10/22/2022]
Abstract
Nuclear deformation caused by mechanical stimuli has been suggested to significantly impact various cellular activities, such as gene expression, protein synthesis and mechanotransduction. To understand how nuclear deformation regulates cellular behaviors, the details of intranuclear strain distribution caused by mechanical stimuli as well as intranuclear mechanical properties are required. Here, we examine local mechanical strains within the nucleus in a living cell subjected to substrate stretching and estimate the local nuclear mechanical properties. A HeLa cell in a PDMS chamber was subjected to a 10% step-strain by using a custom-made uni-axial stretching device. Local displacements and the distribution of the equivalent strain within the nucleus were obtained from fluorescence images of the nucleus before and after the application of stretching. The intranuclear strain showed heterogeneous distribution, and higher strain regions were observed not only at the center, but also periphery of the nucleus. We examined the role of the chromatin condensation level and actin cytoskeleton by treating cells with Trichostatin A and Cytochalasin D, respectively. Interestingly, these treatments did not cause significant changes in the intranuclear strain distribution. Referring to the experimental results, we reproduced the nuclear strain distribution in a finite element model to estimate relative distribution of Young's modulus within the nucleus, and observed substantially lower Young's modulus levels in the peripheral regions of the nucleus relative to those found in the central regions of the nucleus. We reveal heterogeneous strain distribution within the nucleus in a living cell subjected to substrate stretching, and the results provide insights into the importance of heterogeneity of intranuclear mechanical properties.
Collapse
Affiliation(s)
- Shingo Tsukamoto
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan; Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA.
| | - Takumi Asakawa
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Shun Kimura
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Naoyuki Takesue
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Naoya Sakamoto
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.
| |
Collapse
|
9
|
Xu X, Yang Y, Wang G, Yin Y, Han S, Zheng D, Zhou S, Zhao Y, Chen Y, Jin Y. Low shear stress regulates vascular endothelial cell pyroptosis through miR-181b-5p/STAT-3 axis. J Cell Physiol 2020; 236:318-327. [PMID: 32510626 DOI: 10.1002/jcp.29844] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/03/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
Low shear stress and pyroptosis both play an important role in the onset and development of atherosclerosis (AS). MicroRNAs (miRNAs) are a kind of short (18-22) nucleotide sequences that can bind to the 3'-untranslated region (3'-UTR) of messenger RNA, thereby regulating programmed cell death including pyroptosis. However, the function of miRNAs in cells subjected to shear stress conditions is unknown. Therefore, we conducted the current study to demonstrate the effect of low shear stress on pyroptosis and the underlying mechanism. Human umbilical vein endothelial cells (HUVECs) stimulated by undisturbed shear stress (5 dynes/cm2 ) were the experimental group while HUVECs without shear stress treatment were the control group in our experiments. We observed that shear stress can suppress mechanosensitive miR-181b-5p expression, accompanying the elevated expression of NLRP3 inflammasome-dependent pyroptosis. Introduction of miR-181b-5p could alleviate NLRP3 inflammasome-dependent pyroptosis. Luciferase assay showed specific binding of miR-181b-5p to the 3'-UTR of signal transduction and transcriptional activation factor 3 (STAT-3) gene. Inhibition of STAT-3 gene expression at the posttranscriptional level results in the alleviation of NLRP3 inflammasome-dependent pyroptosis. Besides, the silencing of STAT-3 reduced anti-miR-181b-5p-mediated HUVEC pyroptosis via regulating NLRP3 inflammasome activation. Given the role of mechanosensitive miR-181b-5p and STAT-3 in the shear stress-induced pyroptosis, regulation of their expression levels may be a promising strategy to control AS.
Collapse
Affiliation(s)
- Xiangshan Xu
- Department of Cardiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yang Yang
- Department of Cardiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Guofeng Wang
- Department of Cardiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu Yin
- Department of Cardiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuo Han
- Department of Cardiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Donghan Zheng
- Department of Cardiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shaobo Zhou
- Department of Cardiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Zhao
- Department of Cardiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yong Chen
- Department of Cardiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuanzhe Jin
- Department of Cardiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|