1
|
Kelleni MT. NSAIDs and Kelleni's protocol as potential early COVID-19 treatment game changer: could it be the final countdown? Inflammopharmacology 2022; 30:343-348. [PMID: 34822026 PMCID: PMC8613510 DOI: 10.1007/s10787-021-00896-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
Abstract
We have previously published several papers illustrating numerous immunomodulatory and anti-inflammatory potential benefits when we repurposed safe, generic non-steroidal anti-inflammatory drugs (NSAIDs)/nitazoxanide/azithromycin (Kelleni's protocol), to early manage our COVID-19 pediatric, adult, and pregnant patients. In this manuscript, we discuss some recently published meta-analysis and clinical studies supporting our practice and discuss a molecular study that might be interpreted as an academic proof that our protocol might also prevent SARS-CoV-2 replication. Moreover, after aspirin has been suggested to be independently associated with reduced risk of mechanical ventilation, ICU admission and in-hospital mortality of COVID-19, we claim that the molecular interpretation of the results that led to this suggestion was not scientifically accurate, and we provide our academic interpretation confirming that low-dose aspirin is least likely to improve COVID-19 mortality through anticoagulation as was suggested. Furthermore, we describe other potential benefits related to aspirin-triggered lipoxins and resolvins while illustrating how NSAIDs interfere with COX-1, COX-2, SARS-CoV-2/ SARS-CoV-2 ORF protein-dependent activation of caspases and their subsequent mitochondrial dysfunction, endoplasmic reticulum stress, apoptosis and necroptosis which were associated with COVID-19 complications. Similarly, NSAIDs are known caspase inhibitors and thus they might independently inhibit other caspase-related COVID-19-associated downstream pathological signaling mechanisms. Finally, we postulated that CARD-14, a caspase recruitment domain-containing protein, polymorphisms might play a role in the development of severe and critical COVID-19 and confirmed our old call to early adopt NSAIDs, as an integral part of Kelleni's protocol, as of choice in its management aiming to end this pandemic.
Collapse
Affiliation(s)
- Mina T Kelleni
- Pharmacology Department, College of Medicine, Minia University, Minya, Egypt.
| |
Collapse
|
2
|
Putilina M, Teplova N. Possibilities of individual choice of NSAIDs on the example of the oxicam class, taking into account clinical and pharmacological characteristics. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:36-41. [DOI: 10.17116/jnevro202212207136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Rivera-Velez SM, Broughton-Neiswanger LE, Suarez MA, Slovak JE, Hwang JK, Navas J, Leung AWS, Piñeyro PE, Villarino NF. Understanding the effect of repeated administration of meloxicam on feline renal cortex and medulla: A lipidomics and metabolomics approach. J Vet Pharmacol Ther 2019; 42:476-486. [PMID: 31190341 DOI: 10.1111/jvp.12788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 12/31/2022]
Abstract
Repeated administration of meloxicam can cause kidney damage in cats by mechanisms that remain unclear. Metabolomics and lipidomics are powerful, noninvasive approaches used to investigate tissue response to drug exposure. Thus, the objective of this study was to assess the effects of meloxicam on the feline kidney using untargeted metabolomics and lipidomics approaches. Female young-adult purpose-breed cats were allocated into the control (n = 4) and meloxicam (n = 4) groups. Cats in the control and meloxicam groups were treated daily with saline and meloxicam at 0.3 mg/kg subcutaneously for 17 days, respectively. Renal cortices and medullas were collected at the end of the treatment period. Random forest and metabolic pathway analyses were used to identify metabolites that discriminate meloxicam-treated from saline-treated cats and to identify disturbed metabolic pathways in renal tissue. Our results revealed that the repeated administration of meloxicam to cats altered the kidney metabolome and lipidome and suggest that at least 40 metabolic pathways were altered in the renal cortex and medulla. These metabolic pathways included lipid, amino acid, carbohydrate, nucleotide and energy metabolisms, and metabolism of cofactors and vitamins. This is the first study using a pharmacometabonomics approach for studying the molecular effects of meloxicam on feline kidneys.
Collapse
Affiliation(s)
- Sol M Rivera-Velez
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Liam E Broughton-Neiswanger
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Martin A Suarez
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Jennifer E Slovak
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Julianne K Hwang
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Jinna Navas
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Amy W S Leung
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Pablo E Piñeyro
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Nicolas F Villarino
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington
| |
Collapse
|
4
|
Rivera-Velez SM, Broughton-Neiswanger LE, Suarez M, Piñeyro P, Navas J, Chen S, Hwang J, Villarino NF. Repeated administration of the NSAID meloxicam alters the plasma and urine lipidome. Sci Rep 2019; 9:4303. [PMID: 30867479 PMCID: PMC6416286 DOI: 10.1038/s41598-019-40686-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/21/2019] [Indexed: 12/31/2022] Open
Abstract
Non-steroidal anti-inflammatories (NSAIDs), such as meloxicam, are the mainstay for treating painful and inflammatory conditions in animals and humans; however, the repeated administration of NSAIDs can cause adverse effects, limiting the long-term administration of these drugs to some patients. The primary aim of this study was to determine the effects of repeated meloxicam administration on the feline plasma and urine lipidome. Cats (n = 12) were treated subcutaneously with either saline solution or 0.3 mg/kg body weight of meloxicam daily for up to 31 days. Plasma and urine lipidome were determined by LC-MS before the first treatment and at 4, 9 and 13 and 17 days after the first administration of meloxicam. The repeated administration of meloxicam altered the feline plasma and urine lipidome as demonstrated by multivariate statistical analysis. The intensities of 94 out of 195 plasma lipids were altered by the repeated administration of meloxicam to cats (p < 0.05). Furthermore, we identified 12 lipids in plasma and 10 lipids in urine that could serve as biomarker candidates for discriminating animals receiving NSAIDs from healthy controls. Expanding our understanding about the effects of NSAIDs in the body could lead to the discovery of mechanism(s) associated with intolerance to NSAIDs.
Collapse
Affiliation(s)
- Sol M Rivera-Velez
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, 99164, WA, United States
| | - Liam E Broughton-Neiswanger
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, 99164, WA, United States
| | - Martin Suarez
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, 99164, WA, United States
| | - Pablo Piñeyro
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, 1134, IA, United States
| | - Jinna Navas
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, 99164, WA, United States
| | - Sandy Chen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, 99164, WA, United States
| | - Julianne Hwang
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, 99164, WA, United States
| | - Nicolas F Villarino
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, 99164, WA, United States.
| |
Collapse
|