1
|
Tian J, He Y, Zhang Z, Zhu Y, Ren H, Zhang L, Li L, Li W, Zhang W, Xiao T, Zhou H, Li X. miR-224-5p Suppresses Non-Small Cell Lung Cancer via IL6ST-Mediated Regulation of the JAK2/STAT3 Pathway. Thorac Cancer 2025; 16:e15516. [PMID: 39840666 PMCID: PMC11751714 DOI: 10.1111/1759-7714.15516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/14/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Our study aimed to explore the specific functions and potential mechanisms of miR-224-5p in non-small cell lung cancer (NSCLC). METHODS We first analyzed the expression of miR-224-5p in NSCLC patients and cell lines through the GEO database and qRT-PCR analysis. Then, we used MTT assays, wound healing assays, Transwell assays, and western blotting to evaluate the effects of miR-224-5p on NSCLC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Furthermore, we used a xenograft tumor model to evaluate the effect of miR-224-5p on NSCLC tumor growth. Potential binding targets of miR-224-5p were further identified through the target prediction databases, and the relationships between miR-224-5p, its targets, and downstream signaling pathways were further verified using luciferase reporter gene assays and western blotting. RESULTS The GEO database and qRT-PCR analysis indicated that miR-224-5p was significantly downregulated in NSCLC patients and cell lines. Functional assays indicated that inhibiting miR-224-5p could enhance the proliferation, migration, invasion, and EMT of NSCLC cells, as well as accelerate tumor growth. In contrast, overexpression of miR-224-5p inhibited these processes. We identified IL6ST (interleukin 6 signal transducer) as a binding target of miR-224-5p. We observed that miR-224-5p could bind to and inhibit IL6ST expression and JAK2/STAT3 signaling pathway, and the inhibition of NSCLC tumor growth and JAK2/STAT3 pathway by miR-224-5p could be reversed by IL6ST overexpression. CONCLUSION Our study demonstrated that miR-224-5p inhibited NSCLC by targeting IL6ST, thereby downregulating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jiao Tian
- Department of Thoracic Surgery, Tianjin First Central Hospital, School of MedicineNankai UniversityTianjinChina
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Yiming He
- Department of Thoracic Surgery, Tianjin First Central Hospital, School of MedicineNankai UniversityTianjinChina
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Zihui Zhang
- Department of Thoracic Surgery, Tianjin First Central Hospital, School of MedicineNankai UniversityTianjinChina
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Yuxin Zhu
- Department of Thoracic Surgery, Tianjin First Central Hospital, School of MedicineNankai UniversityTianjinChina
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Haixia Ren
- Department of Thoracic Surgery, Tianjin First Central Hospital, School of MedicineNankai UniversityTianjinChina
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Liang Zhang
- Department of Thoracic Surgery, Tianjin First Central Hospital, School of MedicineNankai UniversityTianjinChina
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Lei Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, School of MedicineNankai UniversityTianjinChina
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Wei Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, School of MedicineNankai UniversityTianjinChina
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Weidong Zhang
- Department of Thoracic Surgery, Tianjin First Central Hospital, School of MedicineNankai UniversityTianjinChina
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Ting Xiao
- Department of Thoracic Surgery, Tianjin First Central Hospital, School of MedicineNankai UniversityTianjinChina
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Pharmaceutical SciencesTiangong UniversityTianjinChina
| | - Honggang Zhou
- Department of Thoracic Surgery, Tianjin First Central Hospital, School of MedicineNankai UniversityTianjinChina
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Xiaoping Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, School of MedicineNankai UniversityTianjinChina
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| |
Collapse
|
2
|
Chakraborty S, Nandi P, Mishra J, Niharika, Roy A, Manna S, Baral T, Mishra P, Mishra PK, Patra SK. Molecular mechanisms in regulation of autophagy and apoptosis in view of epigenetic regulation of genes and involvement of liquid-liquid phase separation. Cancer Lett 2024; 587:216779. [PMID: 38458592 DOI: 10.1016/j.canlet.2024.216779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cellular physiology is critically regulated by multiple signaling nexuses, among which cell death mechanisms play crucial roles in controlling the homeostatic landscape at the tissue level within an organism. Apoptosis, also known as programmed cell death, can be induced by external and internal stimuli directing the cells to commit suicide in unfavourable conditions. In contrast, stress conditions like nutrient deprivation, infection and hypoxia trigger autophagy, which is lysosome-mediated processing of damaged cellular organelle for recycling of the degraded products, including amino acids. Apparently, apoptosis and autophagy both are catabolic and tumor-suppressive pathways; apoptosis is essential during development and cancer cell death, while autophagy promotes cell survival under stress. Moreover, autophagy plays dual role during cancer development and progression by facilitating the survival of cancer cells under stressed conditions and inducing death in extreme adversity. Despite having two different molecular mechanisms, both apoptosis and autophagy are interconnected by several crosslinking intermediates. Epigenetic modifications, such as DNA methylation, post-translational modification of histone tails, and miRNA play a pivotal role in regulating genes involved in both autophagy and apoptosis. Both autophagic and apoptotic genes can undergo various epigenetic modifications and promote or inhibit these processes under normal and cancerous conditions. Epigenetic modifiers are uniquely important in controlling the signaling pathways regulating autophagy and apoptosis. Therefore, these epigenetic modifiers of both autophagic and apoptotic genes can act as novel therapeutic targets against cancers. Additionally, liquid-liquid phase separation (LLPS) also modulates the aggregation of misfolded proteins and provokes autophagy in the cytosolic environment. This review deals with the molecular mechanisms of both autophagy and apoptosis including crosstalk between them; emphasizing epigenetic regulation, involvement of LLPS therein, and possible therapeutic approaches against cancers.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
3
|
Song H, Zhao Z, Ma L, Zhao W, Hu Y, Song Y. Novel exosomal circEGFR facilitates triple negative breast cancer autophagy via promoting TFEB nuclear trafficking and modulating miR-224-5p/ATG13/ULK1 feedback loop. Oncogene 2024; 43:821-836. [PMID: 38280941 PMCID: PMC10920198 DOI: 10.1038/s41388-024-02950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Triple-negative breast cancer (TNBC) cells are in a more hypoxic and starved state than non-TNBC cells, which makes TNBC cells always maintain high autophagy levels. Emerging evidence has demonstrated that circular RNAs (circRNAs) are involved in the progress of tumorigenesis. However, the regulation and functions of autophagy-induced circRNAs in TNBC remain unclear. In our study, autophagy-responsive circRNA candidates in TNBC cells under amino acid starved were identified by RNA sequencing. The results showed that circEGFR expression was significantly upregulated in autophagic cells. Knockdown of circEGFR inhibited autophagy in TNBC cells, and circEGFR derived from exosomes induced autophagy in recipient cells in the tumor microenvironment. In vitro and in vivo functional assays identified circEGFR as an oncogenic circRNA in TNBC. Clinically, circEGFR was significantly upregulated in TNBC and was positively associated with lymph node metastasis. CircEGFR in plasma-derived exosomes was upregulated in breast cancer patients compared with healthy people. Mechanistically, circEGFR facilitated the translocation of Annexin A2 (ANXA2) toward the plasma membrane in TNBC cells, which led to the release of Transcription Factor EB (a transcription factor of autophagy-related proteins, TFEB) from ANXA2-TFEB complex, causing nuclear translocation of TFEB, thereby promoting autophagy in TNBC cells. Meanwhile, circEGFR acted as ceRNA by directly binding to miR-224-5p and inhibited the expression of miR-224-5p, which weakened the suppressive role of miR-224-5p/ATG13/ULK1 axis on autophagy. Overall, our study demonstrates the key role of circEGFR in autophagy, malignant progression, and metastasis of TNBC. These indicate circEGFR is a potential diagnosis biomarker and therapeutic target for TNBC.
Collapse
Affiliation(s)
- Huachen Song
- Senior Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liying Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Weihong Zhao
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yi Hu
- Senior Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
4
|
Chen S, Dai M. The miR-224-5p/SIRT3/AMPK/mTOR axis is involved in the melatonin-mediated inhibition of glucocorticoid-induced osteoporosis by activating autophagy. Hum Cell 2023; 36:1965-1977. [PMID: 37486565 DOI: 10.1007/s13577-023-00929-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/02/2023] [Indexed: 07/25/2023]
Abstract
Melatonin has been shown to exert an inhibitory effect on osteoporosis. This study investigates the function of the miR-224-5p/SIRT3/AMPK/mTOR axis in melatonin-mediated effects against osteoporosis. Human bone marrow mesenchymal stem cells (hBMSCs) were treated with glucocorticoid dexamethasone to induce an in vitro osteoporosis model. After melatonin treatment, miR-224-5p and SIRT3 levels were measured by RT‒PCR. Transmission electron microscopy and immunofluorescence were conducted for evaluating autophagy. Western blotting was carried out to determine the expression of osteogenesis-related proteins (Runx2, OSX, OPN, and OCN), SIRT3-AMPK-mTOR axis, and autophagy-related markers (LC3 and p62). Alizarin red staining was used to measure matrix mineralization. The data showed that melatonin inhibited dexamethasone-induced osteoporosis in vitro, and enhanced autophagic levels (as indicated by increased LC3 puncta, LC3II/I ratio, and autophagic vacuoles). In terms of the mechanisms, melatonin decreased miR-224-5p expression and increased SIRT3. SRIT3 was shown to be a direct target of miR-224-5p. miR-224-5p upregulation or SIRT3 downregulation reversed the effects of melatonin on osteoporosis and suppressed autophagy. Additionally, miR-224-5p inhibited SIRT3 expression and AMPK pathway activation. In summary, we discovered that melatonin suppressed glucocorticoid-induced osteoporosis and autophagy inhibition via the miR-224-5p/SIRT3/AMPK/mTOR axis.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Orthopedic, Shaoxing Second Hospital, No.123 Yan'an Road, Shaoxing, 312000, Zhejiang, China
| | - Min Dai
- Department of Orthopedic, The First Affiliated Hospital of Nanchang University, No.17 Yongwai Zheng Street, Donghu District, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
5
|
Zayakin P, Sadovska L, Eglītis K, Romanchikova N, Radoviča-Spalviņa I, Endzeliņš E, Liepniece-Karele I, Eglītis J, Linē A. Extracellular Vesicles-A Source of RNA Biomarkers for the Detection of Breast Cancer in Liquid Biopsies. Cancers (Basel) 2023; 15:4329. [PMID: 37686605 PMCID: PMC10487078 DOI: 10.3390/cancers15174329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Over the past decade, extracellular vesicles (EVs) have emerged as a promising source of cancer-derived RNAs for liquid biopsies. However, blood contains a pool of heterogeneous EVs released by a variety of cell types, making the identification of cancer RNA biomarkers challenging. Here, we performed deep sequencing of plasma EV RNA cargo in 32 patients with locally advanced breast cancer (BC) at diagnosis and 7 days after breast surgery and in 30 cancer-free healthy controls (HCs). To identify BC-derived RNA biomarkers, we searched for RNAs that had higher levels in BC EVs at the time of diagnosis compared with HCs and decreased after surgery. Data analysis showed that the fractions of miRNAs, snRNAs, snoRNAs, and tRFs were increased, but the fraction of lncRNAs was decreased in BC EVs as compared to HCs. BC-derived biomarker candidates were identified across various RNA biotypes. Considered individually, they had very high specificity but moderate sensitivity for the detection of BC, whereas a biomarker model composed of eight RNAs: SNORD3H, SNORD1C, SNORA74D, miR-224-5p, piR-32949, lnc-IFT-122-2, lnc-C9orf50-4, and lnc-FAM122C-3 was able to distinguish BC from HC EVs with an AUC of 0.902 (95% CI = 0.872-0.931, p = 3.4 × 10-9) in leave-one-out cross-validation. Furthermore, a number of RNA biomarkers were correlated with the ER and HER2 expression and additional biomarker models were created to predict hormone receptor and HER2 status. Overall, this study demonstrated that the RNA composition of plasma EVs is altered in BC patients and that they contain cancer-derived RNA biomarkers that can be used for BC detection and monitoring using liquid biopsies.
Collapse
Affiliation(s)
- Pawel Zayakin
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k-1, LV-1067 Riga, Latvia; (P.Z.); (L.S.); (N.R.); (E.E.)
| | - Lilite Sadovska
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k-1, LV-1067 Riga, Latvia; (P.Z.); (L.S.); (N.R.); (E.E.)
| | - Kristaps Eglītis
- Latvian Oncology Center, Riga Eastern Clinical University Hospital, LV-1038 Riga, Latvia; (K.E.)
| | - Nadezhda Romanchikova
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k-1, LV-1067 Riga, Latvia; (P.Z.); (L.S.); (N.R.); (E.E.)
| | | | - Edgars Endzeliņš
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k-1, LV-1067 Riga, Latvia; (P.Z.); (L.S.); (N.R.); (E.E.)
| | | | - Jānis Eglītis
- Latvian Oncology Center, Riga Eastern Clinical University Hospital, LV-1038 Riga, Latvia; (K.E.)
| | - Aija Linē
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k-1, LV-1067 Riga, Latvia; (P.Z.); (L.S.); (N.R.); (E.E.)
| |
Collapse
|
6
|
Patel D, Thankachan S, Fawaz P P A, Venkatesh T, Prasada Kabekkodu S, Suresh PS. Deciphering the role of MitomiRs in cancer: A comprehensive review. Mitochondrion 2023; 70:118-130. [PMID: 37120081 DOI: 10.1016/j.mito.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/01/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate many metabolic and signal transduction pathways. The role of miRNAs, usually found in the cytoplasm, in regulating gene expression and cancer progression has been extensively studied in the last few decades. However, very recently, miRNAs were found to localize in the mitochondria. MiRNAs that specifically localize in the mitochondria and the cytoplasmic miRNAs associated with mitochondria that directly or indirectly modulate specific mitochondrial functions are termed as "mitomiRs". Although it is not clear about the origin of mitomiRs that are situated within mitochondria (nuclear or mitochondrial origin), it is evident that they have specific functions in modulating gene expression and regulating important mitochondrial metabolic pathways. Through this review, we aim to delineate the mechanisms by which mitomiRs alter mitochondrial metabolic pathways and influence the initiation and progression of cancer. We further discuss the functions of particular mitomiRs, which have been widely studied in the context of mitochondrial metabolism and oncogenic signaling pathways. Based on the current knowledge, we can conclude that mitomiRs contribute significantly to mitochondrial function and metabolic regulation, and that dysregulation of mitomiRs can aid the proliferation of cancer cells. Therefore, the less explored area of mitomiRs' biology can be an important topic of research investigation in the future for targeting cancer cells.
Collapse
Affiliation(s)
- Dimple Patel
- School of Biotechnology, National Institute of Technology, Calicut-673601, Kerala, India
| | - Sanu Thankachan
- School of Biotechnology, National Institute of Technology, Calicut-673601, Kerala, India
| | - Abu Fawaz P P
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipa1-576104, Karnataka, India
| | - Thejaswini Venkatesh
- Dept of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, Kerala, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipa1-576104, Karnataka, India
| | - Padmanaban S Suresh
- School of Biotechnology, National Institute of Technology, Calicut-673601, Kerala, India.
| |
Collapse
|
7
|
Kim WR, Park EG, Lee YJ, Bae WH, Lee DH, Kim HS. Integration of TE Induces Cancer Specific Alternative Splicing Events. Int J Mol Sci 2022; 23:10918. [PMID: 36142830 PMCID: PMC9502224 DOI: 10.3390/ijms231810918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing of messenger RNA (mRNA) precursors contributes to genetic diversity by generating structurally and functionally distinct transcripts. In a disease state, alternative splicing promotes incidence and development of several cancer types through regulation of cancer-related biological processes. Transposable elements (TEs), having the genetic ability to jump to other regions of the genome, can bring about alternative splicing events in cancer. TEs can integrate into the genome, mostly in the intronic regions, and induce cancer-specific alternative splicing by adjusting various mechanisms, such as exonization, providing splicing donor/acceptor sites, alternative regulatory sequences or stop codons, and driving exon disruption or epigenetic regulation. Moreover, TEs can produce microRNAs (miRNAs) that control the proportion of transcripts by repressing translation or stimulating the degradation of transcripts at the post-transcriptional level. Notably, TE insertion creates a cancer-friendly environment by controlling the overall process of gene expression before and after transcription in cancer cells. This review emphasizes the correlative interaction between alternative splicing by TE integration and cancer-associated biological processes, suggesting a macroscopic mechanism controlling alternative splicing by TE insertion in cancer.
Collapse
Affiliation(s)
- Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Woo Hyeon Bae
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| |
Collapse
|
8
|
Non-coding RNAs associated with autophagy and their regulatory role in cancer therapeutics. Mol Biol Rep 2022; 49:7025-7037. [PMID: 35534587 DOI: 10.1007/s11033-022-07517-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Cancer widely affects the world's health population and ranks second leading cause of death globally. Because of poor prognosis of various types of cancer such as sarcoma, lymphoma, adenomas etc., their high recurrence and metastasis rate and low early diagnosis rate have become concern lately. Role of autophagy in cancer progression is being studied since long. Autophagy is cell's self-degradative mechanism towards stress and has role in degradation of the cytoplasmic macromolecules which has potential to damage other cytosolic molecules. Autophagy can promote as well as inhibit tumorigenesis depending upon the associated protein combinations in cancer cells. Recent studies have shown that non-coding RNAs (ncRNAs) do not code for protein but play essential role in modulation of gene expression. At transcriptional level, different ncRNAs like lncRNAs, miRNAs and circRNAs directly or indirectly affect different stages of autophagy like autophagy-dependent and non-apoptotic cell death in cancer cells. This review focuses on the involvement of ncRNAs in autophagy and the modulation of several cancer signal transduction pathways in cancers such as lung, breast, prostate, pancreatic, thyroid, and kidney cancer.
Collapse
|
9
|
Ghafouri-Fard S, Shoorei H, Mohaqiq M, Majidpoor J, Moosavi MA, Taheri M. Exploring the role of non-coding RNAs in autophagy. Autophagy 2022; 18:949-970. [PMID: 33525971 PMCID: PMC9196749 DOI: 10.1080/15548627.2021.1883881] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/13/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
As a self-degradative mechanism, macroautophagy/autophagy has a role in the maintenance of energy homeostasis during critical periods in the development of cells. It also controls cellular damage through the eradication of damaged proteins and organelles. This process is accomplished by tens of ATG (autophagy-related) proteins. Recent studies have shown the involvement of non-coding RNAs in the regulation of autophagy. These transcripts mostly modulate the expression of ATG genes. Both long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been shown to modulate the autophagy mechanism. Levels of several lncRNAs and miRNAs are altered in this process. In the present review, we discuss the role of lncRNAs and miRNAs in the regulation of autophagy in diverse contexts such as cancer, deep vein thrombosis, spinal cord injury, diabetes and its complications, acute myocardial infarction, osteoarthritis, pre-eclampsia and epilepsy.Abbreviations: AMI: acute myocardial infarction; ATG: autophagy-related; lncRNA: long non-coding RNA; miRNA: microRNA.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Wang Y, Lu H, Wang Z, Li Y, Chen X. TGF-β1 Promotes Autophagy and Inhibits Apoptosis in Breast Cancer by Targeting TP63. Front Oncol 2022; 12:865067. [PMID: 35480110 PMCID: PMC9035888 DOI: 10.3389/fonc.2022.865067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background Breast cancer (BC) is a prevalent female cancer, which has high morbidity and mortality. However, the pathogenesis of BC has not been fully elucidated. Studies have shown that TGF-β1 plays an important role in regulating the balance between autophagy and apoptosis of tumor. We aim to clarify the specific mechanism of autophagy and apoptosis in breast cancer maintaining the tumor microenvironment. Methods The clinical characteristics of 850 BC patients were retrieved from the TCGA database. Differentially expressed autophagy-related genes (DEARGs) between tumor and normal tissues were obtained by the Wilcox test. Through Cox proportional hazard regression analysis, the prognostic risk model was constructed and verified by the ROC curve. We used MDC staining, colony formation assay, CCK-8, flow cytometric analysis to confirm the importance of TGF-β1 on the autophagy and apoptosis of breast cancer cells. Furthermore, western blot was performed to determine the relative expression of protein. The Kaplan-Meier Plotter database was utilized to identify the prognostic value of TP63. Results We successfully constructed a prognostic risk model of breast cancer and screened out an autophagy-related prognostic gene -TP63. We predicted that TGF-β1 and TP63 have a binding site in the JASPAR database as expected. Additionally, TGF-β1 promoted autophagy and inhibited apoptosis of breast cancer cells by inhibiting the expression of TP63. Conclusion Our study demonstrated that the molecular mechanism of TGF-β/TP63 signaling in regulating autophagy and apoptosis of breast cancer and provided a potential prognostic marker in breast cancer.
Collapse
Affiliation(s)
- Yichao Wang
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou Univesity Hospital), Taizhou, China
| | - Hongsheng Lu
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou Univesity Hospital), Taizhou, China
| | - Zhongrong Wang
- Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province College of Electron and Information Engineering, Hebei University, Baoding, China
| | - Yueguo Li
- Department of Clinical Laboratory, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiaoying Chen
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou Univesity Hospital), Taizhou, China
| |
Collapse
|
11
|
Wang P, Chen W, Zhang Y, Zhong Q, Li Z, Wang Y. MicroRNA-1246 suppresses the metastasis of breast cancer cells by targeting the DYRK1A/PGRN axis to prevent the epithelial-mesenchymal transition. Mol Biol Rep 2022; 49:2711-2721. [PMID: 35059968 DOI: 10.1007/s11033-021-07080-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Breast cancer is one of the most common malignant and highly heterogeneous tumors in women. MicroRNAs (miRNAs), such as miR-1246, play important roles in various types of malignant cancers, including triple-negative breast cancer (TNBC). However, the biological role of miR-1246 in TNBC has not yet been fully elucidated. In this study, we studied the role of miR-1246 in the occurrence and development of TNBC and its mechanism of action. METHODS Cell Counting Kit-8 (CCK-8), wound healing, and Transwell assays were performed to observe the effects of miR-1246 on TNBC cell proliferation, migration, and invasion, respectively. The expression of epithelial-mesenchymal transition (EMT) markers was detected by western blotting. Dual luciferase reporter assays were performed to determine whether DYRK1A is a novel target of miR-1246. In addition, an immunoprecipitation experiment was performed to verify the binding of DYRK1A to PGRN. Rescue experiments were performed to determine whether DYRK1A is a novel target of miR-1246 and whether miR-1246 suppresses the metastasis of breast cancer cells by targeting the DYRK1A/PGRN axis to prevent the epithelial-mesenchymal transition. RESULTS Our results show that miR‑1246 suppresses the proliferation, migration, and invasion of TNBC cells, DYRK1A is a novel target of miR-1246 and Importin-8 mediated miR-1246 nuclear translocation. MiR‑1246 plays a suppressive role in the regulation of the EMT of TNBC cells by targeting DYRK1A. DYRK1A mediates the metastasis of triple-negative breast cancer via activation of the EMT. We identified PGRN as a novel DYRK1A-interacting protein. Overexpression of PGRN and DYRK1A promoted cell proliferation and migration of TNBC, but this effect was reversed by co-expression of miR-1246 mimics.DYRK1A and PGRN act together to regulate the occurrence and development of breast cancer through miR-1246. CONCLUSION MiR-1246 suppresses the metastasis of breast cancer cells by targeting the DYRK1A/PGRN axis and preventing the epithelial-mesenchymal transition. The MiR-1246/DYRK1A/PGRN axis regulates TNBC progression, suggesting that MiR-1246 could be promising therapeutic targets for the treatment of TNBC.
Collapse
Affiliation(s)
- Pan Wang
- Department of Laboratory Medicine, Taizhou Central Hospital, Taizhou, 318000, Zhejiang, China
| | - Wenju Chen
- Department of Laboratory Medicine, Taizhou Central Hospital, Taizhou, 318000, Zhejiang, China
| | - Yaqiong Zhang
- Department of Laboratory Medicine, Taizhou Central Hospital, Taizhou, 318000, Zhejiang, China
| | - Qianyi Zhong
- Department of Laboratory Medicine, Taizhou Central Hospital, Taizhou, 318000, Zhejiang, China
| | - Zhaoyun Li
- Department of Laboratory Medicine, Taizhou Central Hospital, Taizhou, 318000, Zhejiang, China
| | - Yichao Wang
- Department of Laboratory Medicine, Taizhou Central Hospital, Taizhou, 318000, Zhejiang, China.
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), No. 999 Donghai Road, Jiaojiang District, Taizhou, 318000, Zhejiang, People's Republic of China.
| |
Collapse
|
12
|
Circular RNA circFGFR1 Functions as an Oncogene in Glioblastoma Cells through Sponging to hsa-miR-224-5p. J Immunol Res 2022; 2022:7990251. [PMID: 35059468 PMCID: PMC8764274 DOI: 10.1155/2022/7990251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/28/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, increased studies have shown the important regulatory role of circular RNA (circRNA) in cancer progression and development, including glioblastoma (GBM). However, the function of circRNAs in glioblastoma is still largely unclear. Here, we state that circFGFR1 is elevated in glioma cells, resulting in aggravated glioma aggravated malignancy. The upregulation of circFGFR1 also promotes glioma growth in mouse xenograft models. Furthermore, CXCR4 level in glioma cells is positively correlated with circFGFR1 level, and higher CXCR4 expression is found in circFGFR1 overexpression groups. The effect of circFGFR1 on glioma malignancy is abolished in CXCR4 knockout cells. Then, RIP, RNA pull-down, and luciferase reporter assay results showed that hsa-miR-224-5p directly binds to circFGFR1 and CXCR4 mRNA. The CXCR4 3′-untranslated region (UTR) activated luciferase activity was reduced with hsa-miR-224-5p transfection, while it is reversed when cotransfected with circFGFR1, indicating that circFGFR1 acts as a hsa-miR-244-5p sponge to increase CXCR4 expression. The hsa-miR-224-5p expression is negatively corrected with the glioma malignancy through inhibiting CXCR4 level. Besides, the circFGFR1-induced regulation in glioma malignancy is also abrogated in hsa-miR-224-5p knockout cells. Taken together, our findings suggest that circFGFR1 plays a critical role in the tumorigenic behaviors in glioma cells by upregulating CXCR4 expression via sponging to hsa-miR-224-5p. These findings provide a new perspective on circRNAs during GBM development.
Collapse
|
13
|
YU S, HUANG Y, WU Y, WU Y, HUANG G, XIONG J, YOU Y. Curcumin chitosan microsphere improve ulcerative colitis inflammatory response by regulating miR-224-3p/TLR4 axise. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.65721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Shujiao YU
- The First Affiliated Hospital of Nanchang University, China
| | - Yuanhua HUANG
- Hengyang Hospital Affiliated to Hunan University of Chinese Medicine, China
| | - Yinglin WU
- First Affiliated Hospital of Nanchang University, China
| | - Yan WU
- First Affiliated Hospital of Nanchang University, China
| | - Guodong HUANG
- First Affiliated Hospital of Nanchang University, China
| | - Jun XIONG
- First Affiliated Hospital of Nanchang University, China
| | - Yu YOU
- First Affiliated Hospital of Nanchang University, China
| |
Collapse
|
14
|
Liu L, Xu Q, Xiong Y, Deng H, Zhou J. LncRNA LINC01094 contributes to glioma progression by modulating miR-224-5p/CHSY1 axis. Hum Cell 2022; 35:214-225. [PMID: 34716872 DOI: 10.1007/s13577-021-00637-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/07/2021] [Indexed: 01/20/2023]
Abstract
Glioma serves as the most common malignancy influencing modern people and is associated with severe morbidity and high mortality. Long non-coding RNAs (lncRNAs) as crucial regulators participate in multiple cancer progression. However, the role of lncRNA LINC01094 in the development of glioma remains unclear. Here, we aimed to explore the effect of lncRNA LINC01094 on the glioma progression and the underlying mechanism. Significantly, we revealed that the expression levels of LINC01094 were elevated in the glioma patient tissues compared to adjacent normal tissues. The LINC01094 expression was enhanced in the glioma cell lines. The depletion of LINC01094 inhibited cell viability and colony formation in the glioma cells. Meanwhile, the migration and invasion of glioma cells were impaired by the depletion of LINC01094. Mechanically, we identified that LINC01094 was able to sponge the miR-224-5p in the glioma cells and miR-224-5p inhibitor could reverse the effect of LINC01094 on glioma progression. In addition, miR-224-5p targeted CHSY1 and LINC01094 up-regulated CHSY1 by targeting miR-224-5p in the glioma cells. LINC01094 promoted glioma progression by the positive regulation of CHSY1. Moreover, tumorigenicity analysis showed that LINC01094 enhanced tumor growth of glioma in vivo. Thus, we conclude that lncRNA LINC01094 promotes glioma progression by modulating miR-224-5p/CHSY1 axis. Our finding provides new insights into the mechanism by which lncRNA LINC01094 contributes to the development of glioma, improving the understanding of lncRNA LINC01094 and glioma. LncRNA LINC01094, miR-224-5p, and CHSY1 may serve as potential targets for glioma.
Collapse
Affiliation(s)
- Luotong Liu
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qian Xu
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yu Xiong
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huajiang Deng
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie Zhou
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
15
|
Zhang J, Zhang M, Liang Y, Liu M, Huang Z. Downregulation of Smad4 expression confers chemoresistance against imatinib mesylate to chronic myeloid leukemia K562 cells. Hematology 2021; 27:43-52. [PMID: 34957936 DOI: 10.1080/16078454.2021.2010331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Objective: Imatinib mesylate (IM), a tyrosine kinase inhibitor, exhibits clinically prominent effects against chronic myeloid leukemia (CML); however, a few patients have shown resistance to IM treatment, resulting in disease progression. Smad4 is a tumor inhibitor that transduces TGF-β signaling and modulates genomic stability. Previous studies have indicated that decreased Smad4 expression played a bidirectional role in chemosensitivity in many types of cancers. Therefore, this study aims to evaluate the association between IM sensitivity and decreased Smad4 expression in human CML K562 cells.Methods: Bone marrow (BM) samples were acquired from the patients prior to treatment. qRT-PCR, Western Blotting (WB), colony formation assay (CFA), and apoptosis assay were used to detect relevant indices.Results: Smad4 expression was downregulated in the bone marrow and plasma of patients with multidrug-resistant CML as well as IM-resistant K562 (K562R) cells compared with samples collected from CML patients and K562 cells. Smad4 overexpression inhibited IM-treated K562R cell proliferation and augmented apoptosis, whereas Smad4 silencing promoted viability and inhibited apoptosis in IM-treated K562 cells. In addition, Smad4 expression was inversely correlated with laminin subunit gamma 1 (LAMC1) expression. The upregulation or downregulation of LAMC1 expression partially abolished the effect of Smad4 overexpression or silencing on the IM resistance of CML cells.Conclusion: The downregulation of Smad4 expression might induce drug resistance in CML cells and displayed a possible mechanism through which Smad4 modulates CML cell survival and apoptosis upon IM treatment.
Collapse
Affiliation(s)
- Jiangzhao Zhang
- Department of Hematology, Jingzhou Central Hospital, Institute of Hematology, Yangtze University, Jingzhou, People's Republic of China
| | - Min Zhang
- Department of Nephrology, Jingzhou Central Hospital, Jingzhou, People's Republic of China
| | - Yan Liang
- Department of Hematology, Jingzhou Central Hospital, Jingzhou, People's Republic of China
| | - Min Liu
- Department of Hematology, Jingzhou Central Hospital, Jingzhou, People's Republic of China
| | - Zhiping Huang
- Department of Hematology, Jingzhou Central Hospital, Institute of Hematology, Yangtze University, Jingzhou, People's Republic of China
| |
Collapse
|
16
|
Ghafouri-Fard S, Khanbabapour Sasi A, Abak A, Shoorei H, Khoshkar A, Taheri M. Contribution of miRNAs in the Pathogenesis of Breast Cancer. Front Oncol 2021; 11:768949. [PMID: 34804971 PMCID: PMC8602198 DOI: 10.3389/fonc.2021.768949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer among females. Gene expression profiling methods have shown the deregulation of several genes in breast cancer samples and have confirmed the heterogeneous nature of breast cancer at the genomic level. microRNAs (miRNAs) are among the recently appreciated contributors in breast carcinogenic processes. These small-sized transcripts have been shown to partake in breast carcinogenesis through modulation of apoptosis, autophagy, and epithelial-mesenchymal transition. Moreover, they can confer resistance to chemotherapy. Based on the contribution of miRNAs in almost all fundamental aspects of breast carcinogenesis, therapeutic intervention with their expression might affect the course of this disorder. Moreover, the presence of miRNAs in the peripheral blood of patients potentiates these transcripts as tools for non-invasive diagnosis of breast cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Khanbabapour Sasi
- Biochemistry Group, School of Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Khoshkar
- Department of Surgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Trelford CB, Di Guglielmo GM. Canonical and Non-canonical TGFβ Signaling Activate Autophagy in an ULK1-Dependent Manner. Front Cell Dev Biol 2021; 9:712124. [PMID: 34760883 PMCID: PMC8573198 DOI: 10.3389/fcell.2021.712124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanism(s) in which transforming growth factor beta 1 (TGFβ) modulates autophagy in cancer remain unclear. Here, we characterized the TGFβ signaling pathways that induce autophagy in non-small cell lung cancer cells, using cells lines stably expressing GFP-LC3-RFP-LC3ΔG constructs that measure autophagic flux. We demonstrated that TGFβ1 increases Unc 51-like kinase 1 (ULK1) protein levels, 5' adenosine monophosphate-activated protein kinase (AMPK)-dependent ULK1 phosphorylation at serine (S) 555 and ULK1 complex formation but decreases mechanistic target of rapamycin (mTOR) activity on ULK1. Further analysis revealed that the canonical Smad4 pathway and the non-canonical TGFβ activated kinase 1/tumor necrosis factor receptor-associated factor 6/P38 mitogen activated protein kinase (TAK1-TRAF6-P38 MAPK) pathway are important for TGFβ1-induced autophagy. The TAK1-TRAF6-P38 MAPK pathway was essential for downregulating mTOR S2448 phosphorylation, ULK1 S555 phosphorylation and autophagosome formation. Furthermore, although siRNA-mediated Smad4 silencing did not alter mTOR-dependent ULK1 S757 phosphorylation, it did reduce AMPK-dependent ULK1 S555 phosphorylation and autophagosome formation. Additionally, Smad4 silencing and inhibiting the TAK1-TRAF6-P38 MAPK pathway decreased autophagosome-lysosome co-localization in the presence of TGFβ. Our results suggest that the Smad4 and TAK1-TRAF6-P38 MAPK signaling pathways are essential for TGFβ-induced autophagy and provide specific targets for the inhibition of TGFβ in tumor cells that utilize autophagy in their epithelial-mesenchymal transition program.
Collapse
Affiliation(s)
| | - Gianni M. Di Guglielmo
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
18
|
Roy SG. Regulation of autophagy by miRNAs in human diseases. ACTA ACUST UNITED AC 2021; 64:317-329. [PMID: 34690368 PMCID: PMC8520464 DOI: 10.1007/s13237-021-00378-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/06/2021] [Indexed: 12/30/2022]
Abstract
Autophagy is a homeostatic process designed to eliminate dysfunctional and aging organelles and misfolded proteins through a well-concerted pathway, starting with forming a double-membrane vesicle and culminating in the lysosomal degradation of the cargo enclosed inside the mature vesicle. As a vital sentry of cellular health, autophagy is regulated in every human disease condition and is an essential target for non-coding RNAs like microRNAs (miRNAs). miRNAs are short oligonucleotides that specifically bind to the 3'-untranslated region (UTR) of target mRNAs, thus leading to mRNA silencing, degradation, or translation blockage. This review summarizes the recent findings regarding the regulation of autophagy and autophagy-related genes by different miRNAs in various pathological conditions, including cancer, kidney and liver disorders, neurodegeneration, cardiovascular disorders, infectious diseases, aging-related conditions, and inflammation-related diseases. As miRNAs are being identified as prime regulators of autophagy in human disease, pharmacological molecules and traditional medicines targeting these miRNAs are also being tested in disease models, thus initiating a new series of therapeutic interventions targeting autophagy.
Collapse
Affiliation(s)
- Sounak Ghosh Roy
- Department of Internal Medicine – Nephrology, Yale School of Medicine, New Haven, CT USA
| |
Collapse
|
19
|
Mandhair HK, Novak U, Radpour R. Epigenetic regulation of autophagy: A key modification in cancer cells and cancer stem cells. World J Stem Cells 2021; 13:542-567. [PMID: 34249227 PMCID: PMC8246247 DOI: 10.4252/wjsc.v13.i6.542] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/02/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Aberrant epigenetic alterations play a decisive role in cancer initiation and propagation via the regulation of key tumor suppressor genes and oncogenes or by modulation of essential signaling pathways. Autophagy is a highly regulated mechanism required for the recycling and degradation of surplus and damaged cytoplasmic constituents in a lysosome dependent manner. In cancer, autophagy has a divergent role. For instance, autophagy elicits tumor promoting functions by facilitating metabolic adaption and plasticity in cancer stem cells (CSCs) and cancer cells. Moreover, autophagy exerts pro-survival mechanisms to these cancerous cells by influencing survival, dormancy, immunosurveillance, invasion, metastasis, and resistance to anti-cancer therapies. In addition, recent studies have demonstrated that various tumor suppressor genes and oncogenes involved in autophagy, are tightly regulated via different epigenetic modifications, such as DNA methylation, histone modifications and non-coding RNAs. The impact of epigenetic regulation of autophagy in cancer cells and CSCs is not well-understood. Therefore, uncovering the complex mechanism of epigenetic regulation of autophagy provides an opportunity to improve and discover novel cancer therapeutics. Subsequently, this would aid in improving clinical outcome for cancer patients. In this review, we provide a comprehensive overview of the existing knowledge available on epigenetic regulation of autophagy and its importance in the maintenance and homeostasis of CSCs and cancer cells.
Collapse
Affiliation(s)
- Harpreet K Mandhair
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Urban Novak
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Ramin Radpour
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| |
Collapse
|
20
|
Zheng Y, Zeng J, Lin D, Xia H, Wang X, Chen L, Chen H, Huang L, Zeng C. Extracellular vesicles derived from cancer-associated fibroblast carries miR-224-5p targeting SLC4A4 to promote the proliferation, invasion and migration of colorectal cancer cells. Carcinogenesis 2021; 42:1143-1153. [PMID: 34170291 DOI: 10.1093/carcin/bgab055] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/24/2021] [Accepted: 06/24/2021] [Indexed: 12/09/2022] Open
Abstract
More and more studies indicated that extracellular vesicles (EVs) carrying miRNAs have been potential biomarkers of various cancers including colorectal cancer (CRC). This study aims to explore the function of miR-224-5p carried by EVs derived from cancer-associated fibroblasts (CAFs) in CRC. Here, we found that miR-224-5p was highly expressed while SLC4A4 was lowly expressed in CRC cells. Moreover, dual-luciferase reporter gene assay testified that miR-224-5p targeted SLC4A4. The expression of miR-224-5p in CAFs-derived EVs was found to be elevated. It was also testified that CAFs-derived EVs could transfer miR-224-5p into CRC cells. miR-224-5p in CAFs-derived EVs facilitated the proliferation, migration, invasion and anti-apoptosis of CRC cells. Overexpressing miR-224-5p increased the proliferative, migratory and invasive abilities of CRC cells and inhibit CRC cell apoptosis, while overexpressing SLC4A4 caused the opposite result. Research in vitro and in vivo further indicated that miR-224-5p promoted CRC cell progression via binding to its downstream target gene SLC4A4. Rescue assay also demonstrated that overexpressing miR-224-5p reversed the inhibitory effect of overexpressed SLC4A4 on cancer cell growth. In addition, in vivo assay identified that high level of miR-224-5p promoted the growth of cancer cells in mice in vivo. In conclusion, we explored the effect of miR-224-5p in CRC, which helps for further exploration of new methods for CRC targeted therapy.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, Fujian Province, China
| | - Jintao Zeng
- Basic Medical College, Chengde Medical University, Chengde 067000, Hebei Province, China
| | - Dajia Lin
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, Fujian Province, China
| | - Haoyun Xia
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, Fujian Province, China
| | - Xiangyu Wang
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, Fujian Province, China
| | - Liqi Chen
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, Fujian Province, China
| | - Hongyuan Chen
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, Fujian Province, China
| | - Liangxiang Huang
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, Fujian Province, China
| | - Changqing Zeng
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
21
|
He J, Qiu Z, Zhang H, Gao Z, Jiang Y, Li Z, Kong C, Man X. MicroRNA‑16‑5p/BIMP1/NF‑κB axis regulates autophagy to exert a tumor‑suppressive effect on bladder cancer. Mol Med Rep 2021; 24:576. [PMID: 34132358 PMCID: PMC8223104 DOI: 10.3892/mmr.2021.12215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer (BC) is the second most common urological disease worldwide. Previous studies have reported that microRNA (miR)-16-5p is associated with the development of BC, but whether miR-16-5p regulates BC cell autophagy remains unknown. Thus, the aim of the present study was to investigate this issue. miR-16-5p expression in BC cells was assessed by reverse transcription-quantitative PCR. Cell viability and apoptosis were detected via Cell Counting Kit-8 and flow cytometry assays, respectively. For cell autophagy detection, autophagic flux was detected using a mCherry-green fluorescent protein-microtubule-associated proteins 1A/1B light chain 3B (LC3) puncta formation assay, followed by determination of autophagy-related protein markers. The targeting relationship between miR-16-5p and caspase recruitment domain family member 10 (BIMP1) was confirmed using a dual-luciferase reporter assay, followed by detection of the BIMP1/NF-κB signaling pathway. The results showed that miR-16-5p overexpression inhibited cell viability, whereas miR-16-5p knockdown promoted cell viability in BC. Furthermore, miR-16-5p overexpression induced autophagy, which was accompanied by increased autophagic flux and expression of the autophagy-related proteins LC3-II and beclin 1, as well as decreased p62 expression, whereas miR-16-5p silencing led to an inhibition of autophagy in BC cells. Moreover, autophagy inhibitor 3-methyladenine treatment inhibited cell autophagy and apoptosis in miR-16-5p-overexpressing cells. Mechanistic studies demonstrated that miR-16-5p could inhibit the BIMP1/NF-κB signaling pathway and this inhibition was achieved by directly targeting BIMP1. Furthermore, it was found that blockade of the BIMP1/NF-κB signaling pathway inversed the inhibitory effects of miR-16-5p knockdown on autophagy in BC cells. In vivo experiments further verified the tumor-suppressive effect on BC of the miR-16-5p/BIMP1/NF-κB axis. Therefore, the results of the present study indicated that miR-16-5p promotes autophagy of BC cells via the BIMP1/NF-κB signaling pathway, and an improved understanding of miR-16-5p function may provide therapeutic targets for clinical intervention in this disease.
Collapse
Affiliation(s)
- Jiani He
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhongkai Qiu
- Department of Urology, Benxi Central Hospital, Benxi, Liaoning 117000, P.R. China
| | - Hao Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhipeng Gao
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuanjun Jiang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhenhua Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaojun Man
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
22
|
Delivery of miR-224-5p by Exosomes from Cancer-Associated Fibroblasts Potentiates Progression of Clear Cell Renal Cell Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5517747. [PMID: 34122615 PMCID: PMC8169240 DOI: 10.1155/2021/5517747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/07/2021] [Indexed: 11/18/2022]
Abstract
Objectives Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma. Cancer-associated fibroblasts (CAFs) as the primary components of cancer stroma can affect tumor progression by secreting exosomes, while exosomes are carriers for proteins, nucleic acids, and other agents that responsible for delivery of biological information. Given this, exosomes derived from CAFs are emerging as promising biomarkers in clinical cancer diagnosis. Nevertheless, their role in clear cell renal cell carcinoma (ccRCC) remains poorly understood. Methods Here, we separated fibroblasts from ccRCC tissue, extracted exosomes, observed their morphology, and detected the expression of exosome marker proteins including Hsp70, CD9, and CD63. In the meantime, we labeled exosomes and performed coculture experiment to verify the delivery of miR-224-5p from CAFs to 769-P cells with exosomes as a carrier, so as to clarify the effect of CAF-derived exosomes on ccRCC cell malignant behaviors, as well as to discuss how miR-224-5p involves in above regulation. Results Transmission electron microscopy was firstly applied, and it was noted that the exosomes we isolated were in normal range. Besides, Western blot also confirmed the presence of exosome marker proteins Hsp70, CD9, and CD63. Furthermore, coculture experiments were performed and the CAF-derived exosomes were observed to be able to facilitate the malignant behaviors of ccRCC cells, and the exosomal miR-224-5p could be internalized by ccRCC cells to participate in regulation of cell proliferation, migration, invasion, and apoptosis. Conclusion To sum up, miR-224-5p can enter ccRCC cells via CAF-derived exosomes, in turn, promoting the malignant behaviors of ccRCC cells, which indicates that miR-224-5p has the potential severing as a therapeutic target for ccRCC.
Collapse
|
23
|
Wang Y, Wang P, Zhao L, Chen X, Lin Z, Zhang L, Li Z. miR-224-5p Carried by Human Umbilical Cord Mesenchymal Stem Cells-Derived Exosomes Regulates Autophagy in Breast Cancer Cells via HOXA5. Front Cell Dev Biol 2021; 9:679185. [PMID: 34095151 PMCID: PMC8176026 DOI: 10.3389/fcell.2021.679185] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/29/2021] [Indexed: 01/22/2023] Open
Abstract
Objective: In this study, we focused on the potential mechanism of miRNAs carried by human umbilical cord mesenchymal stem cells-derived exosomes (hUCMSCs-exo) in breast cancer (BC). Methods: RT-qPCR was conducted for the expression of miR-224-5p and HOXA5 in tissues and cells. After co-culture of exosomes and MCF-7 or MDA-MB-231 cells, the cell proliferation was observed by MTT and cell colony formation assay, while apoptosis was measured by flow cytometry. In addition, the expression of HOXA5 and autophagy pathway-related proteins LC3-II, Beclin-1 and P62 was detected by western blotting. And immunofluorescence was applied for detection of LC3 spots. The binding of miR-224-5p to HOXA5 was verified by the luciferase reporter gene assay and RNA-binding protein immunoprecipitation assay. Finally, in vivo experiment was performed to investigate the effect of miR-224-5p on BC growth. Results: MiR-224-5p was up-regulated and HOXA5 was down-regulated in BC tissues and cells. HOXA5 was confirmed to be the target gene of miR-224-5p. MiR-224-5p carried by hUCMSCs-exo was able to promote the proliferation and autophagy of BC cells, while inhibited apoptosis. Bases on xenograft models in nude mice, it was also revealed that miR-224-5p carried by hUCMSCs-exo could regulate autophagy and contribute to the occurrence and development of BC in vivo. Conclusion: MiR-224-5p carried by hUCMSCs-exo can regulate autophagy via inhibition of HOXA5, thus affecting the proliferation and apoptosis of BC cells.
Collapse
Affiliation(s)
- Yichao Wang
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou City, China
| | - Pan Wang
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou City, China
| | - Lei Zhao
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou City, China
| | - Xiaoying Chen
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou City, China
| | - Zhu Lin
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University Hospital), Taizhou City, China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou City, China
| | - Zhaoyun Li
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou City, China
| |
Collapse
|
24
|
Wang Y, Zhong Q, Li Z, Lin Z, Chen H, Wang P. Integrated Profiling Identifies CCNA2 as a Potential Biomarker of Immunotherapy in Breast Cancer. Onco Targets Ther 2021; 14:2433-2448. [PMID: 33859479 PMCID: PMC8043851 DOI: 10.2147/ott.s296373] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction Breast cancer is the main reason for cancer-related deaths in women and the most common malignant cancer among women. In recent years, immunosuppressive factors have become a new type of treatment for cancer. However, there are no effective biomarkers for breast cancer immunotherapy. Therefore, exploring immune-related biomarkers is presently an important topic in breast cancer. Methods Gene expression profile data of breast cancer from The Cancer Genome Atlas (TCGA) was downloaded. Scale-free gene co-expression networks were built with weighted gene co-expression network analysis. The correlation of genes was performed with Pearson’s correlation values. The potential associations between clinical features and gene sets were studied, and the hub genes were screened out. Gene Ontology and gene set enrichment analysis were used to reveal the function of hub gene in breast cancer. The gene expression profiles of GSE15852, downloaded from the Gene Expression Omnibus database, were used for hub gene verification. In addition, candidate biomarkers expression in breast cancer was studied. Survival analysis was performed using Log rank test and Kaplan–Meier. Immunohistochemistry was used to analyze the expression of CCNA2. Results A total of 6 modules related to immune cell infiltration were identified via the average linkage hierarchical clustering. According to the threshold criteria (module membership >0.9 and gene significance >0.35), a significant module consisting of 13 genes associated with immune cells infiltration were identified as candidate hub genes after performed with the human protein interaction network. And 3 genes with high correlation to clinical traits were identified as hub genes, which were negatively associated with the overall survival. Among them, the expression of CCNA2 was increased in metastatic breast cancer compare with non-metastatic breast cancer, who underwent immunotherapy. Immunohistochemistry results showed that CCNA2 expression in carcinoma tissues was elevated compared with normal control. Discussion CCNA2 identified as a potential immune therapy marker in breast cancer, which were first reported here and deserved further research.
Collapse
Affiliation(s)
- Yichao Wang
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, People's Republic of China
| | - Qianyi Zhong
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, People's Republic of China
| | - Zhaoyun Li
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, People's Republic of China
| | - Zhu Lin
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, People's Republic of China
| | - Hanjun Chen
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, People's Republic of China
| | - Pan Wang
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, People's Republic of China
| |
Collapse
|
25
|
Chong ZX, Yeap SK, Ho WY. Regulation of autophagy by microRNAs in human breast cancer. J Biomed Sci 2021; 28:21. [PMID: 33761957 PMCID: PMC7992789 DOI: 10.1186/s12929-021-00715-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is the most common solid cancer that affects female population globally. MicroRNAs (miRNAs) are short non-coding RNAs that can regulate post-transcriptional modification of multiple downstream genes. Autophagy is a conserved cellular catabolic activity that aims to provide nutrients and degrade un-usable macromolecules in mammalian cells. A number of in vitro, in vivo and clinical studies have reported that some miRNAs could modulate autophagy activity in human breast cancer cells, and these would influence human breast cancer progression and treatment response. Therefore, this review was aimed to discuss the roles of autophagy-regulating miRNAs in influencing breast cancer development and treatment response. The review would first introduce autophagy types and process, followed by the discussion of the roles of different miRNAs in modulating autophagy in human breast cancer, and to explore how would this miRNA-autophagy regulatory process affect the disease progression or treatment response. Lastly, the potential applications and challenges of utilizing autophagy-regulating miRNAs as breast cancer biomarkers and novel therapeutic agents would be discussed.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900, Sepang, Selangor, Malaysia
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
26
|
Yu L, Shi Q, Jin Y, Liu Z, Li J, Sun W. Blockage of AMPK-ULK1 pathway mediated autophagy promotes cell apoptosis to increase doxorubicin sensitivity in breast cancer (BC) cells: an in vitro study. BMC Cancer 2021; 21:195. [PMID: 33632157 PMCID: PMC7905888 DOI: 10.1186/s12885-021-07901-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
Background Activation of autophagy flux contributed to resistance of breast cancer (BC) cells to current chemotherapeutic drugs, which seriously limited their therapeutic efficacy and facilitated BC recurrence in clinic. However, the detailed mechanisms are still not fully understood. In the present study, we identified that inactivation of AMPK-ULK1 signaling cascade mediated protective autophagy sensitized BC cells to doxorubicin in vitro. Methods Cell counting kit-8 (CCK-8) assay and colony formation assay were performed to evaluate cell proliferation abilities. Trypan blue staining assay was used to examine cell viability, and Annexin V-FITC/PI double staining method was conducted to determine cell apoptosis. The autophagosomes in BC cells were observed and photographed by electronic microscope (EM). Western Blot analysis was employed to examine genes expressions at protein levels. Results The parental doxorubicin-sensitive BC (DS-BC) cells were exposed to increasing concentrations of doxorubicin to establish doxorubicin-resistant BC (DR-BC) cells, and the DR-BC cells were much more resistant to high-dose doxorubicin treatment compared to the DS-BC cells. Interestingly, high-dose doxorubicin specifically increased LC3B-II/I ratio, promoted autophagosomes formation and decreased p62 expression levels to facilitate autophagy in DR-BC cells, instead of DS-BC cells, and the autophagy inhibitor 3-methyladenine (3-MA) enhanced the cytotoxic effects of high-dose doxorubicin on DR-BC cells. In addition, we proved that high-dose doxorubicin triggered protective autophagy in DR-BC cells by activating AMPK-ULK1 pathway. Functionally, high-dose doxorubicin increased the expression levels of phosphorylated AMPK (p-AMPK) and ULK1 (p-ULK1) to activate AMPK-ULK1 pathway in DR-BC cells, and the inhibitors for AMPK (compound C) and ULK1 (SBI-0206965) blocked autophagy to promote cell death and slow down cell growth in DR-BC cells treated with high-dose doxorubicin. Conclusions Collectively, our in vitro data indicated that blockage of AMPK-ULK1 signaling cascade mediated protective autophagy might be a promising strategy to increase doxorubicin sensitivity for BC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07901-w.
Collapse
Affiliation(s)
- Libo Yu
- Medicine Department, Harbin Medical University Cancer Hospital, Haping Road No.150, Harbin, 150081, Heilongjiang, China
| | - Qingtao Shi
- Medicine Department, Harbin Medical University Cancer Hospital, Haping Road No.150, Harbin, 150081, Heilongjiang, China
| | - Yan Jin
- Medicine Department, Harbin Medical University Cancer Hospital, Haping Road No.150, Harbin, 150081, Heilongjiang, China
| | - Zhixin Liu
- Medicine Department, Harbin Medical University Cancer Hospital, Haping Road No.150, Harbin, 150081, Heilongjiang, China
| | - Jiaxin Li
- Medicine Department, Harbin Medical University Cancer Hospital, Haping Road No.150, Harbin, 150081, Heilongjiang, China
| | - Wenzhou Sun
- Medicine Department, Harbin Medical University Cancer Hospital, Haping Road No.150, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
27
|
Cardiac Shock Wave Therapy Alleviates Hypoxia/Reoxygenation-Induced Myocardial Necroptosis by Modulating Autophagy. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8880179. [PMID: 33532500 PMCID: PMC7837773 DOI: 10.1155/2021/8880179] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/15/2020] [Accepted: 12/24/2020] [Indexed: 12/25/2022]
Abstract
Regulated necrosis (necroptosis) is crucially involved in cardiac ischaemia-reperfusion injury (MIRI). The aim of our study is to investigate whether shock wave therapy (SWT) is capable of exerting protective effects by inhibiting necroptosis during myocardial ischaemia-reperfusion (I/R) injury and the possible role of autophagy in this process. We established a hypoxia/reoxygenation (H/R) model in vitro using HL-1 cells to simulate MIRI. MTS assays and LDH cytotoxicity assay were performed to measure cell viability and cell damage. Annexin V/PI staining was used to determine apoptosis and necrosis. Western blotting was performed to assess the changes in cell signaling pathways associated with autophagy, necroptosis, and apoptosis. Reactive oxygen species (ROS) production was detected using DHE staining. Autophagosome generation and degradation (autophagic flux) were analysed using GFP and RFP tandemly tagged LC3 (tfLC3). HL-1 cells were then transfected with p62/SQSTM1 siRNA in order to analyse its role in cardioprotection. Our results revealed that SWT increased cell viability in the H/R model and decreased receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3 expression. ROS production was also inhibited by SWT. Moreover, SWT decreased Beclin1 expression and the ratio of LC3-II/LC3-I following H/R. Simultaneously, in the tfLC3 assay, the SWT provoked a decrease in the cumulative autophagosome abundance. siRNA-mediated knockdown of p62 attenuated H/R-induced necroptosis, and SWT did not exert additive effects. Taken together, SWT ameliorated H/R injury by inhibiting necroptosis. SWT also relieved the blockade of autophagic flux in response to H/R injury. The restoration of autophagic flux by SWT might contribute to its cardioprotective effect on necroptosis following H/R injury.
Collapse
|
28
|
Wang X, Wang Y, Lin F, Xu M, Zhao X. Long non-coding RNA LINC00665 promotes melanoma cell growth and migration via regulating the miR-224-5p/VMA21 axis. Exp Dermatol 2020; 31:64-73. [PMID: 33247967 DOI: 10.1111/exd.14246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/15/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Melanoma is an aggressive malignant skin tumor endangering the health of patients. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been increasingly reported to be implicated in the carcinogenesis of melanoma. Long intergenic non-coding RNA 00665 (LINC00665) has been found to exert important regulatory roles in some cancers, yet its function in melanoma remains to be investigated. QRT-PCR analysis was conducted to evaluate the relative expression of RNAs. Functional experiments in vitro including colony formation, EdU, wound-healing and transwell assays, as well as in vivo xenograft assays, were utilized to study the role of LINC00665 in melanoma. Mechanical experiments were implemented to probe into the molecular linkage of LINC00665, miR-224-5p and VMA21. LINC00665 was abnormally highly expressed in melanoma cells. Silencing LINC00665 could inhibit the proliferation and migration of melanoma cells. LINC00665 sponged miR-224-5p to upregulate VMA21. VMA21 knockdown exerted similarly interfering effects on above biological processes in melanoma cells. However, VMA21 overexpression abolished the in vitro and in vivo outcomes of LINC00665 silencing. LINC00665 promotes proliferative and migrating abilities of melanoma cells via targeting miR-224-5p/VMA21 axis.
Collapse
Affiliation(s)
- Xiaonan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yanbing Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Feifei Lin
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Meng Xu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Xin Zhao
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Zheng Q, Yu JJ, Li C, Li J, Wang J, Wang S. miR-224 targets BTRC and promotes cell migration and invasion in colorectal cancer. 3 Biotech 2020; 10:485. [PMID: 33117626 PMCID: PMC7585582 DOI: 10.1007/s13205-020-02477-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Our study aims to investigate the impact of miR-224 on cell migration and invasion in colorectal cancer (CRC) as well as its molecular mechanisms. The results showed that miR-224 was significantly upregulated in CRC compared to normal tissues via the TCGA database. Overexpression of miR-224 promoted CRC cell migration and invasion, while inhibition of miR-224 demonstrated the opposite result via transwell assays. In addition, we found that BTRC was a target gene of miR-224 through the miRecords database and dual-luciferase assay, while western blot together with RT-qPCR showed that inhibition of miR-224 led to elevated BTRC expression in protein level but not in mRNA level, and also decreased the expression of β-catenin. In reference to the Human Protein Atlas, BTRC protein expression was higher in normal tissues than in CRC tissues. In conclusion, miR-224 regulates its target BTRC protein expression and its related Wnt/β-catenin pathway. Its impact on cell migration and invasion in CRC cells suggested that miR-224 could be a prospective therapeutic target for early-stage non-metastatic CRC.
Collapse
Affiliation(s)
- Qi Zheng
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 131 Dong’an Road, Shanghai, 200032 Shanghai China
| | - Jane J. Yu
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA
| | - Chenggang Li
- State Key Laboratory of Medical Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Jiali Li
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiping Wang
- Division of Surgical Oncology, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA USA
| | - Shuyang Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 131 Dong’an Road, Shanghai, 200032 Shanghai China
| |
Collapse
|
30
|
Huang G, Li X, Chen Z, Wang J, Zhang C, Chen X, Peng X, Liu K, Zhao L, Lai Y, Ni L. A Three-microRNA Panel in Serum: Serving as a Potential Diagnostic Biomarker for Renal Cell Carcinoma. Pathol Oncol Res 2020; 26:2425-2434. [PMID: 32556891 DOI: 10.1007/s12253-020-00842-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/10/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE Renal cell carcinoma (RCC) accounts for about 120,000 death each year. Although surgery is a routine treatment, RCC could be fatal if not diagnosed at an early stage. This study aims to search for suitable serum biomarkers and construct a miRNA panel with high diagnostic sensitivity or specificity. METHODS Totally 146 RCC patients and 150 normal control were involved in this three-stage study. Serum expression levels of 30 miRNAs selected from literature were tested by reverse transcription quantitative PCR (RT-qPCR) in the screening stage, the testing stage, and the validation stage. The diagnostic efficiency of miRNAs was evaluated by receiver operating characteristic (ROC) curve and area under curve (AUC) analysis. A panel with the highest diagnostic efficiency was constructed by backward stepwise logistic regression analysis. Additionally, bioinformatics analysis was used to investigate potential biological functions and mechanisms of candidate miRNAs. RESULTS MiR-224-5p, miR-34b-3p, miR-129-2-3p and miR-182-5p with low to moderate diagnostic ability (AUC = 0.692, 0.778, 0.687 and 0.745, respectively) were selected as candidate miRNAs after the three-stage study. The final diagnostic panel was consisted by miR-224-5p, miR-34b-3p and miR-182-5p with AUC = 0.855. No significance has been found between these four miRNAs and tumor location, Fuhrman Grade and AJCC clinical stages of RCC. Bioinformatic analysis suggested that the three-miRNAs panel may participate in tumorigenesis of RCC by targeting CORO1C. CONCLUSIONS The three-miRNA panel in serum could serve as a non-invasive diagnostic biomarker of RCC.
Collapse
Affiliation(s)
- Guocheng Huang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Guangdong, 518036, Shenzhen, People's Republic of China
- Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xinji Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Guangdong, 518036, Shenzhen, People's Republic of China
- Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Zebo Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Guangdong, 518036, Shenzhen, People's Republic of China
| | - Jingyao Wang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Guangdong, 518036, Shenzhen, People's Republic of China
| | - Chunduo Zhang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Guangdong, 518036, Shenzhen, People's Republic of China
| | - Xuan Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Guangdong, 518036, Shenzhen, People's Republic of China
- Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xiqi Peng
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Guangdong, 518036, Shenzhen, People's Republic of China
- Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Kaihao Liu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Guangdong, 518036, Shenzhen, People's Republic of China
- Anhui Medical University, Hefei, Anhui, 230032, China
| | - Liwen Zhao
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Guangdong, 518036, Shenzhen, People's Republic of China
- Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yongqing Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Guangdong, 518036, Shenzhen, People's Republic of China.
- Shantou University Medical College, Shantou, Guangdong, 515041, China.
| | - Liangchao Ni
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Guangdong, 518036, Shenzhen, People's Republic of China.
- Shantou University Medical College, Shantou, Guangdong, 515041, China.
| |
Collapse
|
31
|
Tan PY, Wen LJ, Li HN, Chai SW. MiR-548c-3p inhibits the proliferation, migration and invasion of human breast cancer cell by targeting E2F3. Cytotechnology 2020; 72:751-761. [PMID: 32902720 DOI: 10.1007/s10616-020-00418-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/29/2020] [Indexed: 12/12/2022] Open
Abstract
MiR-548 has been reported to be involved in a variety of tumor processes, but its function in breast cancer remains unclear. In this study, we found that miR-548 was low expressed in breast cancer tissues and cells compared with normal control. We then examined whether up-regulation of miR-548 could improve the progression of breast cancer. Our results indicate that up-regulation of miR-548 significantly inhibits cell proliferation, migration andinvasion, and induces apoptosis in breast cancer cells. Further studies showed that miR-548 could specifically inhibit E2F3 expression. Moreover, rescue test showed that up-regulation of E2F2 could reverse the effect of miR-548 on proliferation, migration, invasion and apoptosis of breast cancer cells. In general, miR-548 could improve the progression of breast cancer. By targeting E2F2, which may make a potential target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Pei-Yi Tan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Liu-Jing Wen
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China
| | - Hua-Nan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Shi-Wei Chai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
32
|
Wong JS, Cheah YK. Potential miRNAs for miRNA-Based Therapeutics in Breast Cancer. Noncoding RNA 2020; 6:E29. [PMID: 32668603 PMCID: PMC7549352 DOI: 10.3390/ncrna6030029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that can post-transcriptionally regulate the genes involved in critical cellular processes. The aberrant expressions of oncogenic or tumor suppressor miRNAs have been associated with cancer progression and malignancies. This resulted in the dysregulation of signaling pathways involved in cell proliferation, apoptosis and survival, metastasis, cancer recurrence and chemoresistance. In this review, we will first (i) provide an overview of the miRNA biogenesis pathways, and in vitro and in vivo models for research, (ii) summarize the most recent findings on the roles of microRNAs (miRNAs) that could potentially be used for miRNA-based therapy in the treatment of breast cancer and (iii) discuss the various therapeutic applications.
Collapse
Affiliation(s)
- Jun Sheng Wong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| |
Collapse
|
33
|
Misiorek JO, Schreiber AM, Urbanek-Trzeciak MO, Jazurek-Ciesiołka M, Hauser LA, Lynch DR, Napierala JS, Napierala M. A Comprehensive Transcriptome Analysis Identifies FXN and BDNF as Novel Targets of miRNAs in Friedreich's Ataxia Patients. Mol Neurobiol 2020; 57:2639-2653. [PMID: 32291635 PMCID: PMC7253519 DOI: 10.1007/s12035-020-01899-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
Friedreich's ataxia (FRDA) is a genetic neurodegenerative disease that is caused by guanine-adenine-adenine (GAA) nucleotide repeat expansions in the first intron of the frataxin (FXN) gene. Although present in the intron, this mutation leads to a substantial decrease in protein expression. Currently, no effective treatment is available for FRDA, and, in addition to FXN, other targets with therapeutic potential are continuously sought. As miRNAs can regulate the expression of a broad spectrum of genes, are used as biomarkers, and can serve as therapeutic tools, we decided to identify and characterize differentially expressed miRNAs and their targets in FRDA cells compared to unaffected control (CTRL) cells. In this study, we performed an integrated miRNAseq and RNAseq analysis using the same cohort of primary FRDA and CTRL cells. The results of the transcriptome studies were supported by bioinformatic analyses and validated by qRT-PCR. miRNA interactions with target genes were assessed by luciferase assays, qRT-PCR, and immunoblotting. In silico analysis identified the FXN transcript as a target of five miRNAs upregulated in FRDA cells. Further studies confirmed that miRNA-224-5p indeed targets FXN, resulting in decreases in mRNA and protein levels. We also validated the ability of miRNA-10a-5p to bind and regulate the levels of brain-derived neurotrophic factor (BDNF), an important modulator of neuronal growth. We observed a significant decrease in the levels of miRNA-10a-5p and increase in the levels of BDNF upon correction of FRDA cells via zinc-finger nuclease (ZFN)-mediated excision of expanded GAA repeats. Our comprehensive transcriptome analyses identified miRNA-224-5p and miRNA-10a-5p as negative regulators of the FXN and BDNF expression, respectively. These results emphasize not only the importance of miRNAs in the pathogenesis of FRDA but also their potential as therapeutic targets for this disease.
Collapse
Affiliation(s)
- Julia O. Misiorek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna M. Schreiber
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL USA
| | | | | | - Lauren A. Hauser
- Department of Pediatrics and Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - David R. Lynch
- Department of Pediatrics and Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Jill S. Napierala
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL USA
| | - Marek Napierala
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
34
|
Li B, Jin M, Cao F, Li J, Wu J, Xu L, Liu X, Shi Y, Chen W. Hsa_circ_0017639 expression promotes gastric cancer proliferation and metastasis by sponging miR-224-5p and upregulating USP3. Gene 2020; 750:144753. [PMID: 32376451 DOI: 10.1016/j.gene.2020.144753] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/16/2022]
Abstract
Gastric cancer (GC) is a common malignant tumor having poor prognosis globally. Circular RNA (circRNA) is a circular endogenous RNA generated by special selective splicing that occurs in various traits. Studies show that hsa_circ_0017639 is abnormally expressed and involved in tumorigenesis. Nevertheless, the hsa_circ_0017639 role in GC is unknown. This study detected hsa_circ_0017639 expression in a GC cell line using RT-qPCR. Subcellular localization of hsa_circ_0017639 was verified via FISH. We assessed correlations amongst miRNA, hsa_circ_0017639 and relative protein levels using luciferase reporter assays and RNA pulldown assays. The data illustrated that in hsa_circ_assays, expression was enhanced in GC cell. Downregulation of hsa_circ_0017639 decreased GC cell proliferation and migration in in vitro and in vivo experiments. RNA pulldown and RT-qPCR analysis verified that hsa_circ_0017639 sponged miR-224-5p. Bioinformatic and luciferase reporter assays validated that miR-224-5p and USP3 were downstream targets of hsa_circ_0017639. Upregulation of USP3 or downregulation of miR-224-5p restored proliferation and migration by MKN-28 and MGC-803 cells after hsa_circ_0017639 silencing. Upregulation of USP3 restored MKN-28 and MGC-803 cell proliferation and migration after overexpression of miR-224-5p. Our collective findings advised that hsa_circ_0017639 takes part in GC progression through regulating the miR-224-5p/USP3 axis, highlighting its potential as an effective GC therapeutic target.
Collapse
Affiliation(s)
- Bojing Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou 215006, PR China; Department of Gastroenterology, Shanghai Gongli Hospital, the Second Military Medical University, 219 Miaopu Road, Pudong New Area, Shanghai 200135, PR China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Fanfan Cao
- Sino-French Cooperative Central Laboratory Shanghai Gongli Hospital, The Second Military Medical University, 219 Miaopu Road, Pudong New Area, Shanghai 200135, PR China
| | - Jie Li
- Shanghai Gongli Hospital Postgraduate Training Base, Ningxia Medical University, 219 Miaopu Road, Pudong New Area, Shanghai 200135, PR China
| | - Jian Wu
- Department of Pathology, Shanghai Gongli Hospital, the Second Military Medical University, 219 Miaopu Road, Pudong New Area, Shanghai 200135, PR China
| | - Limin Xu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, 219 Miaopu Road, Pudong New Area, Shanghai 200135, PR China
| | - Xinghui Liu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, 219 Miaopu Road, Pudong New Area, Shanghai 200135, PR China
| | - Yihai Shi
- Department of Gastroenterology, Shanghai Gongli Hospital, the Second Military Medical University, 219 Miaopu Road, Pudong New Area, Shanghai 200135, PR China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou 215006, PR China.
| |
Collapse
|
35
|
Zhang HM, Li H, Wang GX, Wang J, Xiang Y, Huang Y, Shen C, Dai ZT, Li JP, Zhang TC, Liao XH. MKL1/miR-5100/CAAP1 loop regulates autophagy and apoptosis in gastric cancer cells. Neoplasia 2020; 22:220-230. [PMID: 32315812 PMCID: PMC7167518 DOI: 10.1016/j.neo.2020.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE miR-5100 participates in the proliferation of lung cancer and pancreatic cancer cells, and participates in the differentiation of osteoblasts. However, the regulation of gastric cancer cells in gastric cancer cells remains unclear. EXPERIMENTAL DESIGN The blood of patients was collected to detect the expression level of miR-5100, and the apoptosis and autophagy levels of cells were detected using western blot, flow cytometry, and confocal. At the same time, in vitro tumor formation experiments in nude mice were used to verify the results of in vitro experiments. RESULTS The expression of miR-5100 is related to the prognosis of gastric cancer, miR-5100 can enhance the apoptosis level of gastric cancer cells and inhibit the occurrence of autophagy by targeting CAAP1. MKL1 can inhibit the apoptosis of gastric cancer cells and promote the occurrence of autophagy by targeting CAAP1. At the same time, MKL1 can also increase the expression of miR-5100. CONCLUSIONS Our research reveals the mechanism by which the MKL1/miR-5100/CAAP1 loop regulates apoptosis and autophagy levels in gastric cancer cells, and miR-5100 is expected to become a new potential target for gastric cancer treatment.
Collapse
Affiliation(s)
- Hui-Min Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, 430000, PR China
| | - Hui Li
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, 430000, PR China
| | - Gen-Xin Wang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, 430000, PR China.
| | - Jun Wang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, 430000, PR China
| | - Yuan Xiang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, 430000, PR China
| | - You Huang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, 430000, PR China
| | - Chao Shen
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, 430000, PR China
| | - Zhou-Tong Dai
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, 430000, PR China
| | - Jia-Peng Li
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, 430000, PR China
| | - Tong-Cun Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, 430000, PR China.
| | - Xing-Hua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, 430000, PR China.
| |
Collapse
|
36
|
LINC00619 restricts gastric cancer progression by preventing microRNA-224-5p-mediated inhibition of OPCML. Arch Biochem Biophys 2020; 689:108390. [PMID: 32359894 DOI: 10.1016/j.abb.2020.108390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Several long intergenic noncoding RNAs (lincRNAs) have been linked to carcinogenesis; however, little is known about the role of LINC00619 in gastric cancer (GC). LINC00619 was identified among differentially expressed lncRNAs linked to gastric cancer based on microarray analysis and its relationships with miR-224-5p and opioid binding protein/cell adhesion molecule-like gene (OPCML) were investigated. LINC00619, miR-224-5p, and OPCML expression were measured in GC tissues and cells. Ectopic expression and depletion experiments were conducted to assess the effects of LINC00619, miR-224-5p and OPCML on cell proliferation, invasion, migration and apoptosis as well as their effects on the expression of apoptosis- and metastasis-related genes (Bcl-2, Bax, MMP-2 and MMP-9). Tumorigenicity in the nude mice was also examined. Gastric cancer was characterized by downregulation of LINC00619 and OPCML and upregulation of miR-224-5p. Additionally, we found that miR-224-5p could interact with both LINC00619 and OPCML. Upregulation of LINC00619, which binds to miR-224-5p, led to decreased miR-224-5p expression while increasing the expression of OPCML, a target gene of miR-224-5p. Overexpression of LINC00619 or OPCML or downregulation of miR-224-5p suppressed cell proliferation, invasion, migration and tumorigenicity while promoting apoptosis in GC. Our results indicated that LINC00619 functions as a tumor suppressor in GC by impairing miR-224-5p-mediated inhibition of OPCML.
Collapse
|
37
|
Jamali Z, Taheri-Anganeh M, Shabaninejad Z, Keshavarzi A, Taghizadeh H, Razavi ZS, Mottaghi R, Abolhassan M, Movahedpour A, Mirzaei H. Autophagy regulation by microRNAs: Novel insights into osteosarcoma therapy. IUBMB Life 2020; 72:1306-1321. [PMID: 32233112 DOI: 10.1002/iub.2277] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/04/2020] [Accepted: 03/14/2020] [Indexed: 12/16/2022]
Abstract
Osteosarcoma (OS) is a kind of primary bone cancer that is considered as the leading cause of children death. Surgery and chemotherapy are considered as common treatment approaches for OS; the rate of survival for patients is almost 60-70%. Besides the used therapeutic approaches, it seems that there is a crucial need to launch new treatments for OS. In this regard, more understanding about cellular and molecular pathways involved in OS can contribute to recovery and develop new therapeutic platforms. Autophagy is a cellular machinery that digests and degrades dysfunctional proteins and organelles, so it can regulate the cell proliferation and survival. Most of the time, OS cells use autophagy to increase their survival and proliferation and to gain the ability to resist chemotherapy. Although, there are several controversial evidences on how OS cells use autophagy. A variety of cellular and molecular pathways, that is, microRNAs (miRNAs) can modulate autophagy. MiRNAs are some endogenous, approximately 22 nucleotide RNAs that have an important role in posttranscriptional regulation of mRNAs by targeting them. There are many evidences that the various miRNA expressions in OS cells are dysregulated, so it can propel a normal cell to cancerous one by influencing the cell survival, apoptosis, and autophagy, and eventually increased chemoresitance. Hence, miRNAs can be considered as new biomarkers for OS diagnosis, and according to the role of autophagy in OS progression, miRNAs can use inhibiting or promoting autophagy agents. The present review summarizes the effects of aberrant expression of miRNAs in OS diagnosis and treatment with focus on their roles in autophagy.
Collapse
Affiliation(s)
- Zeinab Jamali
- Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortaza Taheri-Anganeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Biological Sciences, Faculty of Nanotechnology, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolkhalegh Keshavarzi
- Burn and Wound Healing Research Center, Surgical Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Taghizadeh
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Reza Mottaghi
- Department of Oral and Maxillofacial Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadreza Abolhassan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
38
|
Gao JB, Zhu MN, Zhu XL. miRNA-215-5p suppresses the aggressiveness of breast cancer cells by targeting Sox9. FEBS Open Bio 2019; 9:1957-1967. [PMID: 31538724 PMCID: PMC6823282 DOI: 10.1002/2211-5463.12733] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/21/2019] [Accepted: 09/18/2019] [Indexed: 12/17/2022] Open
Abstract
Several studies have shown that miR-215-5p acts as a tumor suppressor in certain cancers, but its role in the progression and metastasis of breast carcinoma remains incompletely understood. Herein, we prove that miR-215-5p is substantially down-expressed in breast carcinoma as compared with nontumor tissue. Up-regulation of miR-215-5p inhibits the aggressive abilities of breast carcinoma cells in vitro. We performed luciferase reporter tests to show that SRY-Box 9 (Sox9) is the target of miR-215-5p; as predicted, Sox9 depletion replicates the suppressive effects of miR-215-5p on breast carcinoma cells, and overexpression of Sox9 rescues the effects of miR-215-5p on breast cancer cell progression. In addition, a xenograft model assay was used to reveal that miR-215-5p inhibits breast cancer cell growth and metastatic potential in vivo. Overall, these results imply that miRNA-215-5p suppresses the aggressiveness of breast cancer cells through targeting Sox9.
Collapse
Affiliation(s)
- Jia Bao Gao
- Department of Vascular Breast Surgery, People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Ming Nan Zhu
- Department of Vascular Breast Surgery, People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Xiao Liang Zhu
- Department of Vascular Breast Surgery, People's Hospital Affiliated to Nanchang University, Jiangxi, China
| |
Collapse
|
39
|
Klinge CM, Piell KM, Tooley CS, Rouchka EC. HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA transcriptome when overexpressed in MCF-7 cells. Sci Rep 2019; 9:9430. [PMID: 31263129 PMCID: PMC6603045 DOI: 10.1038/s41598-019-45636-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are dysregulated in breast cancer. Heterogeneous Nuclear Ribonucleoprotein A2/B1 (HNRNPA2/B1) is a reader of the N(6)-methyladenosine (m6A) mark in primary-miRNAs (pri-miRNAs) and promotes DROSHA processing to precursor-miRNAs (pre-miRNAs). We examined the expression of writers, readers, and erasers of m6A and report that HNRNPA2/B1 expression is higher in tamoxifen-resistant LCC9 breast cancer cells as compared to parental, tamoxifen-sensitive MCF-7 cells. To examine how increased expression of HNRNPA2/B1 affects miRNA expression, HNRNPA2/B1 was transiently overexpressed (~5.4-fold) in MCF-7 cells for whole genome miRNA profiling (miRNA-seq). 148 and 88 miRNAs were up- and down-regulated, respectively, 48 h after transfection and 177 and 172 up- and down-regulated, respectively, 72 h after transfection. MetaCore Enrichment analysis identified progesterone receptor action and transforming growth factor β (TGFβ) signaling via miRNA in breast cancer as pathways downstream of the upregulated miRNAs and TGFβ signaling via SMADs and Notch signaling as pathways of the downregulated miRNAs. GO biological processes for mRNA targets of HNRNPA2/B1-regulated miRNAs included response to estradiol and cell-substrate adhesion. qPCR confirmed HNRNPA2B1 downregulation of miR-29a-3p, miR-29b-3p, and miR-222 and upregulation of miR-1266-5p, miR-1268a, miR-671-3p. Transient overexpression of HNRNPA2/B1 reduced MCF-7 sensitivity to 4-hydroxytamoxifen and fulvestrant, suggesting a role for HNRNPA2/B1 in endocrine-resistance.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| | - Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Christine Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Eric C Rouchka
- Bioinformatics and Biomedical Computing Laboratory, Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40292, USA
| |
Collapse
|
40
|
Cui Y, Xu HF, Liu MY, Xu YJ, He JC, Zhou Y, Cang SD. Mechanism of exosomal microRNA-224 in development of hepatocellular carcinoma and its diagnostic and prognostic value. World J Gastroenterol 2019; 25:1890-1898. [PMID: 31057302 PMCID: PMC6478613 DOI: 10.3748/wjg.v25.i15.1890] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/17/2019] [Accepted: 02/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Exosomes contain proteins, lipids, and biological molecules such as DNA and RNA. Nucleic acids in exosomes are a group of molecules that can act as biomarkers. Currently, there are many reports on exosomal microRNAs, which are ideal biomarkers for the early diagnosis of cancer. However, there are few reports on the role of exosomal microRNAs in the diagnosis and prognosis of hepatocellular carcinoma (HCC).
AIM To understand the mechanism of exosomal microRNA-224 (miR-224) in the development of HCC and evaluate its diagnostic and prognostic value.
METHODS Cell culture and transfection of exosomal miRNA-224, real-time quantitative PCR, luciferase reporter assay, and other methods were used to find new biomarkers related to the development of HCC that can be used to diagnose HCC and predict HCC prognosis.
RESULTS By targeting glycine N-methyltransferase, incubating exosomes with miR-224 mimic resulted in a significant increase in cell proliferation compared to that of the control group, while incubation with the miR-224 inhibitor significantly reduced cell proliferation. The same results were obtained for the cell invasion assay. Serum exosomal miR-224 did have some ability to differentiate patients with HCC from healthy controls, with an area under the curve of 0.910, and HCC patients with higher serum exosomal miR-224 expression had lower overall survival.
CONCLUSION Exosomal miR-224 is a tumor promotor and can be a marker of diagnosis and prognosis of HCC patients, however, its ability to distinguish liver diseases needs further verification.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinogenesis/genetics
- Carcinoma, Hepatocellular/blood
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/mortality
- Cell Line, Tumor
- Cell Proliferation/genetics
- Exosomes/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Glycine N-Methyltransferase/genetics
- Glycine N-Methyltransferase/metabolism
- Humans
- Kaplan-Meier Estimate
- Liver Neoplasms/blood
- Liver Neoplasms/diagnosis
- Liver Neoplasms/genetics
- Liver Neoplasms/mortality
- Male
- MicroRNAs/blood
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Prognosis
Collapse
Affiliation(s)
- Yao Cui
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou 450003, Henan Province, China
| | - Hai-Feng Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Interventional Therapy Department, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Ming-Yue Liu
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou 450003, Henan Province, China
| | - Yu-Jie Xu
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou 450003, Henan Province, China
| | - Jun-Chuang He
- Department of Hepatobiliary Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou 450003, Henan Province, China
| | - Yun Zhou
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou 450003, Henan Province, China
| | - Shun-Dong Cang
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou 450003, Henan Province, China
| |
Collapse
|