1
|
Sabouri S, Rostamirad M, Dempski RE. Unlocking the brain's zinc code: implications for cognitive function and disease. FRONTIERS IN BIOPHYSICS 2024; 2:1406868. [PMID: 39758530 PMCID: PMC11698502 DOI: 10.3389/frbis.2024.1406868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Zn2+ transport across neuronal membranes relies on two classes of transition metal transporters: the ZnT (SLC30) and ZIP (SLC39) families. These proteins function to decrease and increase cytosolic Zn2+ levels, respectively. Dysfunction of ZnT and ZIP transporters can alter intracellular Zn2+ levels resulting in deleterious effects. In neurons, imbalances in Zn2+ levels have been implicated as risk factors in conditions such as Alzheimer's disease and neurodegeneration, highlighting the pivotal role of Zn2+ homeostasis in neuropathologies. In addition, Zn2+ modulates the function of plasma membrane proteins, including ion channels and receptors. Changes in Zn2+ levels, on both sides of the plasma membrane, profoundly impact signaling pathways governing cell development, differentiation, and survival. This review is focused on recent developments of neuronal Zn2+ homeostasis, including the impact of Zn2+ dyshomeostasis in neurological disorders, therapeutic approaches, and the increasingly recognized role of Zn2+ as a neurotransmitter in the brain.
Collapse
Affiliation(s)
| | | | - Robert E. Dempski
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
2
|
Wang Y, Song Y, Zhang L, Huang X. The paradoxical role of zinc on microglia. J Trace Elem Med Biol 2024; 83:127380. [PMID: 38171037 DOI: 10.1016/j.jtemb.2023.127380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Zinc is an essential trace element for humans, and its homeostasis is essential for the health of the central nervous system. Microglia, the resident immune cells in the central nervous system, play the roles of sustaining, nourishing, and immune surveillance. Microglia are sensitive to microenvironment changes and are easily activated to M1 phenotype to enhance disease progression or the M2 phenotype to improve peripheral nerves injury repair. Zinc is requisite for microglial activation, However, the cytotoxicity outcome of zinc against microglia, the activated microglia phenotype, and activated microglia function are ambiguous. Herein, we have reviewed the neurological function of zinc and microglia, particularly the ambiguous role of zinc on microglia. We also pay attention to the role of zinc homeostasis on microglial function within the central nervous system disease. Finally, we observe the relationship between zinc and microglia, attempting to design new therapeutic measures against major nervous system disorders.
Collapse
Affiliation(s)
- Yehong Wang
- Graduate Faculty, Xi'an Physical Education University, Xi'an 710068, PR China; Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, PR China
| | - Yi Song
- Department of Neurosurgery, Chongqing University Three Gorges Hospital, Chongqing 404100, PR China.
| | - Lingdang Zhang
- Department of Neurosurgery, Chongqing University Three Gorges Hospital, Chongqing 404100, PR China
| | - Xiao Huang
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, PR China.
| |
Collapse
|
3
|
Yang X, Li W, Ding M, Liu KJ, Qi Z, Zhao Y. Contribution of zinc accumulation to ischemic brain injury and its mechanisms about oxidative stress, inflammation, and autophagy: an update. Metallomics 2024; 16:mfae012. [PMID: 38419293 DOI: 10.1093/mtomcs/mfae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Ischemic stroke is a leading cause of death and disability worldwide, and presently, there is no effective neuroprotective therapy. Zinc is an essential trace element that plays important physiological roles in the central nervous system. Free zinc concentration is tightly regulated by zinc-related proteins in the brain under normal conditions. Disruption of zinc homeostasis, however, has been found to play an important role in the mechanism of brain injury following ischemic stroke. A large of free zinc releases from storage sites after cerebral ischemia, which affects the functions and survival of nerve cells, including neurons, astrocytes, and microglia, resulting in cell death. Ischemia-triggered intracellular zinc accumulation also disrupts the function of blood-brain barrier via increasing its permeability, impairing endothelial cell function, and altering tight junction levels. Oxidative stress and neuroinflammation have been reported to be as major pathological mechanisms in cerebral ischemia/reperfusion injury. Studies have showed that the accumulation of intracellular free zinc could impair mitochondrial function to result in oxidative stress, and form a positive feedback loop between zinc accumulation and reactive oxygen species production, which leads to a series of harmful reactions. Meanwhile, elevated intracellular zinc leads to neuroinflammation. Recent studies also showed that autophagy is one of the important mechanisms of zinc toxicity after ischemic injury. Interrupting the accumulation of zinc will reduce cerebral ischemia injury and improve neurological outcomes. This review summarizes the role of zinc toxicity in cellular and tissue damage following cerebral ischemia, focusing on the mechanisms about oxidative stress, inflammation, and autophagy.
Collapse
Affiliation(s)
- Xueqi Yang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China
- Beijing Geriatric Medical Research Center, Beijing 100053, China
| | - Wei Li
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China
- Beijing Geriatric Medical Research Center, Beijing 100053, China
| | - Mao Ding
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China
| | - Ke Jian Liu
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Zhifeng Qi
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China
- Beijing Geriatric Medical Research Center, Beijing 100053, China
| | - Yongmei Zhao
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China
- Beijing Geriatric Medical Research Center, Beijing 100053, China
| |
Collapse
|
4
|
Nakamura R, Konishi M, Higashi Y, Saito M, Akizawa T. Five-mer peptides prevent short-term spatial memory deficits in Aβ25-35-induced Alzheimer's model mouse by suppressing Aβ25-35 aggregation and resolving its aggregate form. Alzheimers Res Ther 2023; 15:83. [PMID: 37076912 PMCID: PMC10114458 DOI: 10.1186/s13195-023-01229-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND The development of drugs for Alzheimer's disease (AD), which is related to the misfolding and aggregation of amyloid-β (Aβ), is high in demand due to the growing number of AD patients. In this study, we screened 22 kinds of 5-mer synthetic peptides derived from the Box A region of Tob1 protein to find a peptide effective against Aβ aggregation. METHODS A Thioflavin T (ThT) assay was performed to evaluate aggregation and screen aggregation inhibitors. Male ICR mice (6 weeks old) were administered saline, 9 nmol Aβ25-35, or a mixture of 9 nmol Aβ25-35 and 9 nmol GSGFK in the right lateral ventricle. Short-term spatial memory was assessed through Y-maze. Microglia cells (BV-)2 cells were plated on 24-well plates (4 × 104 cells/well) and incubated for 48 h, and then, the cells were treated with 0.01, 0.05, 0.1, 0.2, or 0.5 mM GSGFK. After incubation for 24 h, bead uptake was evaluated using a laser confocal microscope and Cytation 5. RESULTS We found two kinds of peptides, GSGNR and GSGFK, that were not only suppressed by aggregation of Aβ25-35 but also resolved the aggregated Aβ25-35. Results obtained from the Y-maze test on an Aβ25-35-induced AD model mouse indicated that GSGFK prevents the deficits in short-term memory induced by Aβ25-35. The effect of GSGFK on phagocytosis in BV-2 cells proved that GSGFK activates the phagocytic ability of microglia. CONCLUSIONS In conclusion, 5-mer peptides prevent short-term memory deficit in Aβ25-35 induced AD model mouse by reducing the aggregated Aβ25-35. They may also upregulate the phagocytic ability of microglia, which makes 5-mer peptides suitable candidates as therapeutic drugs against AD.
Collapse
Affiliation(s)
- Rina Nakamura
- Department of Pharmacology, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
- O-Force Co., Ltd, 3454 Irino Kuroshio-Cho, Hata-Gun, Kochi, 789-1931, Japan
| | - Motomi Konishi
- Department of Integrative Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-Cho, Hirakata, Osaka, 573-0101, Japan
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Toshifumi Akizawa
- Department of Pharmacology, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan.
- O-Force Co., Ltd, 3454 Irino Kuroshio-Cho, Hata-Gun, Kochi, 789-1931, Japan.
| |
Collapse
|
5
|
Chen LL, Fan YG, Zhao LX, Zhang Q, Wang ZY. The metal ion hypothesis of Alzheimer's disease and the anti-neuroinflammatory effect of metal chelators. Bioorg Chem 2023; 131:106301. [PMID: 36455485 DOI: 10.1016/j.bioorg.2022.106301] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/13/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD), characterized by the β-amyloid protein (Aβ) deposition and tau hyperphosphorylation, is the most common dementia with uncertain etiology. The clinical trials of Aβ monoclonal antibody drugs have almost failed, giving rise to great attention on the other etiologic hypothesis regarding AD such as metal ions dysmetabolism and chronic neuroinflammation. Mounting evidence revealed that the metal ions (iron, copper, and zinc) were dysregulated in the susceptible brain regions of AD patients, which was highly associated with Aβ deposition, tau hyperphosphorylation, neuronal loss, as well as neuroinflammation. Further studies uncovered that iron, copper and zinc could not only enhance the production of Aβ but also directly bind to Aβ and tau to promote their aggregations. In addition, the accumulation of iron and copper could respectively promote ferroptosis and cuproptosis. Therefore, the metal ion chelators were recognized as promising agents for treating AD. This review comprehensively summarized the effects of metal ions on the Aβ dynamics and tau phosphorylation in the progression of AD. Furthermore, taking chronic neuroinflammation contributes to the progression of AD, we also provided a summary of the mechanisms concerning metal ions on neuroinflammation and highlighted the metal ion chelators may be potential agents to alleviate neuroinflammation under the condition of AD. Nevertheless, more investigations regarding metal ions on neuroinflammation should be taken into practice, and the effects of metal ion chelators on neuroinflammation should gain more attention. Running title: Metal chelators against neuroinflammation.
Collapse
Affiliation(s)
- Li-Lin Chen
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Qi Zhang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
6
|
Wong KA, Benowitz LI. Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Injury: Role of Inflammation and Other Factors. Int J Mol Sci 2022; 23:ijms231710179. [PMID: 36077577 PMCID: PMC9456227 DOI: 10.3390/ijms231710179] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
The optic nerve, like most pathways in the mature central nervous system, cannot regenerate if injured, and within days, retinal ganglion cells (RGCs), the neurons that extend axons through the optic nerve, begin to die. Thus, there are few clinical options to improve vision after traumatic or ischemic optic nerve injury or in neurodegenerative diseases such as glaucoma, dominant optic neuropathy, or optic pathway gliomas. Research over the past two decades has identified several strategies to enable RGCs to regenerate axons the entire length of the optic nerve, in some cases leading to modest reinnervation of di- and mesencephalic visual relay centers. This review primarily focuses on the role of the innate immune system in improving RGC survival and axon regeneration, and its synergy with manipulations of signal transduction pathways, transcription factors, and cell-extrinsic suppressors of axon growth. Research in this field provides hope that clinically effective strategies to improve vision in patients with currently untreatable losses could become a reality in 5-10 years.
Collapse
Affiliation(s)
- Kimberly A. Wong
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (K.A.W.); (L.I.B.)
| | - Larry I. Benowitz
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (K.A.W.); (L.I.B.)
| |
Collapse
|
7
|
Menet R, Lecordier S, ElAli A. Wnt Pathway: An Emerging Player in Vascular and Traumatic Mediated Brain Injuries. Front Physiol 2020; 11:565667. [PMID: 33071819 PMCID: PMC7530281 DOI: 10.3389/fphys.2020.565667] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
The Wnt pathway, which comprises the canonical and non-canonical pathways, is an evolutionarily conserved mechanism that regulates crucial biological aspects throughout the development and adulthood. Emergence and patterning of the nervous and vascular systems are intimately coordinated, a process in which Wnt pathway plays particularly important roles. In the brain, Wnt ligands activate a cell-specific surface receptor complex to induce intracellular signaling cascades regulating neurogenesis, synaptogenesis, neuronal plasticity, synaptic plasticity, angiogenesis, vascular stabilization, and inflammation. The Wnt pathway is tightly regulated in the adult brain to maintain neurovascular functions. Historically, research in neuroscience has emphasized essentially on investigating the pathway in neurodegenerative disorders. Nonetheless, emerging findings have demonstrated that the pathway is deregulated in vascular- and traumatic-mediated brain injuries. These findings are suggesting that the pathway constitutes a promising target for the development of novel therapeutic protective and restorative interventions. Yet, targeting a complex multifunctional signal transduction pathway remains a major challenge. The review aims to summarize the current knowledge regarding the implication of Wnt pathway in the pathobiology of ischemic and hemorrhagic stroke, as well as traumatic brain injury (TBI). Furthermore, the review will present the strategies used so far to manipulate the pathway for therapeutic purposes as to highlight potential future directions.
Collapse
Affiliation(s)
- Romain Menet
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
8
|
Yuan Y, Wu C, Ling EA. Heterogeneity of Microglia Phenotypes: Developmental, Functional and Some Therapeutic Considerations. Curr Pharm Des 2020; 25:2375-2393. [PMID: 31584369 DOI: 10.2174/1381612825666190722114248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Microglia play a pivotal role in maintaining homeostasis in complex brain environment. They first exist as amoeboid microglial cells (AMCs) in the developing brain, but with brain maturation, they transform into ramified microglial cells (RMCs). In pathological conditions, microglia are activated and have been classified into M1 and M2 phenotypes. The roles of AMCs, RMCs and M1/M2 microglia phenotypes especially in pathological conditions have been the focus of many recent studies. METHODS Here, we review the early development of the AMCs and RMCs and discuss their specific functions with reference to their anatomic locations, immunochemical coding etc. M1 and M2 microglia phenotypes in different neuropathological conditions are also reviewed. RESULTS Activated microglia are engaged in phagocytosis, production of proinflammatory mediators, trophic factors and synaptogenesis etc. Prolonged microglia activation, however, can cause damage to neurons and oligodendrocytes. The M1 and M2 phenotypes featured prominently in pathological conditions are discussed in depth. Experimental evidence suggests that microglia phenotype is being modulated by multiple factors including external and internal stimuli, local demands, epigenetic regulation, and herbal compounds. CONCLUSION Prevailing views converge that M2 polarization is neuroprotective. Thus, proper therapeutic designs including the use of anti-inflammatory drugs, herbal agents may be beneficial in suppression of microglial activation, especially M1 phenotype, for amelioration of neuroinflammation in different neuropathological conditions. Finally, recent development of radioligands targeting 18 kDa translocator protein (TSPO) in activated microglia may hold great promises clinically for early detection of brain lesion with the positron emission tomography.
Collapse
Affiliation(s)
- Yun Yuan
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, China
| | - Chunyun Wu
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, 4 Medical Drive, MD10, National University of Singapore, 117594, Singapore
| |
Collapse
|
9
|
Higashi Y, Aratake T, Shimizu S, Shimizu T, Saito M. [Brain zinc dyshomeostasis and glial cells in ischemic stroke]. Nihon Yakurigaku Zasshi 2019; 154:138-142. [PMID: 31527364 DOI: 10.1254/fpj.154.138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Zinc, an essential trace element, plays an important role in a large number of biological functions. In mammalian brain, whereas the majority of brain zinc is bound to proteins including metallothionein, about 5-15% is stored in presynaptic vesicles of glutamatergic neurons throughout the forebrain, especially in the hippocampus, in a relatively free state. Thus, free zinc (Zn2+) concentration in the brain is considered to be regulated in order to maintain normal brain functions such as learning and memory. On the other hand, brain Zn2+ dyshomeostasis has been recognized as a mechanism for neuronal injury in brain disorders including Alzheimer's disease and brain ischemia. In particular, after transient brain ischemia, Zn2+ accumulates in hippocampal neurons via a zinc transport system, or via release from cytosolic zinc-binding proteins, which results in neuronal cell death. Recently, it has been demonstrated that Zn2+ dyshomeostasis also occurs in glial cells such as microglia, astrocytes and oligodendrocytes after brain ischemia. In oligodendrocytes, ischemic insult triggers intracellular Zn2+ accumulation, resulting in cell death via mitochondrial dysfunction. Increased extracellular Zn2+ inhibits astrocytic glutamate uptake. In addition, extracellular Zn2+ massively released from ischemic neurons primes microglia to enhance production of pro-inflammatory cytokines in response to stimuli that trigger M1 activation. This review aims to describe the impact of brain Zn2+ dyshomeostasis on alterations in glial cell survival and functions in post-ischemic brains.
Collapse
Affiliation(s)
| | - Takaaki Aratake
- Department of Pharmacology, Kochi Medical School, Kochi University
| | - Shogo Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University
| | - Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University
| |
Collapse
|
10
|
Wang Y, Bao DJ, Xu B, Cheng CD, Dong YF, Wei XP, Niu CS. Neuroprotection mediated by the Wnt/Frizzled signaling pathway in early brain injury induced by subarachnoid hemorrhage. Neural Regen Res 2019; 14:1013-1024. [PMID: 30762013 PMCID: PMC6404485 DOI: 10.4103/1673-5374.250620] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Wnt/Frizzled signaling pathway participates in many inflammation-linked diseases. However, the inflammatory response mediated by the Wnt/Frizzled signaling pathway in experimental subarachnoid hemorrhage has not been thoroughly investigated. Consequently, in this study, we examined the potential role of the Wnt/Frizzled signaling pathway in early brain injury in rat models of subarachnoid hemorrhage. Simultaneously, possible neuroprotective mechanisms were also investigated. Experimental subarachnoid hemorrhage rat models were induced by injecting autologous blood into the prechiasmatic cistern. Experiment 1 was designed to examine expression of the Wnt/Frizzled signaling pathway in early brain injury induced by subarachnoid hemorrhage. In total, 42 adult rats were divided into sham (injection of equivalent volume of saline), 6-, 12-, 24-, 48-, 72-hour, and 1-week subarachnoid hemorrhage groups. Experiment 2 was designed to examine neuroprotective mechanisms of the Wnt/Frizzled signaling pathway in early brain injury induced by subarachnoid hemorrhage. Rats were treated with recombinant human Wnt1 (rhwnt1), small interfering Wnt1 (siwnt1) RNA, and monoclonal antibody of Frizzled1 (anti-Frizzled1) at 48 hours after subarachnoid hemorrhage. Expression levels of Wnt1, Frizzled1, β-catenin, peroxisome proliferator-activated receptor-γ, CD36, and active nuclear factor-κB were examined by western blot assay and immunofluorescence staining. Microglia type conversion and inflammatory cytokine levels in brain tissue were examined by immunofluorescence staining and enzyme-linked immunosorbent assay. Our results show that compared with the sham group, expression levels of Wnt1, Frizzled1, and β-catenin were low and reduced to a minimum at 48 hours, gradually returning to baseline at 1 week after subarachnoid hemorrhage. rhwnt1 treatment markedly increased Wnt1 expression and alleviated subarachnoid hemorrhage-induced early brain injury (within 72 hours), including cortical cell apoptosis, brain edema, and neurobehavioral deficits, accompanied by increasing protein levels of β-catenin, CD36, and peroxisome proliferator-activated receptor-γ and decreasing protein levels of nuclear factor-κB. Of note, rhwnt1 promoted M2-type microglia conversion and inhibited release of inflammatory cytokines (interleukin-1β, interleukin-6, and tumor necrosis factor-α). In contrast, siwnt1 RNA and anti-Frizzled1 treatment both resulted in an opposite effect. In conclusion, the Wnt/Frizzled1 signaling pathway may participate in subarachnoid hemorrhage-induced early brain injury via inhibiting the inflammatory response, including regulating microglia type conversion and decreasing inflammatory cytokine release. The study was approved by the Animal Ethics Committee of Anhui Medical University and First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (approval No. LLSC-20180202) in May 2017.
Collapse
Affiliation(s)
- Yang Wang
- Department of Neurosurgery, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - De-Jun Bao
- Department of Neurosurgery, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Bin Xu
- Anhui Medical University Auhui Province Medical Genetic Center, Hefei, Anhui Province, China
| | - Chuan-Dong Cheng
- Department of Neurosurgery, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Yong-Fei Dong
- Department of Neurosurgery, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Xiang-Pin Wei
- Department of Neurosurgery, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Chao-Shi Niu
- Department of Neurosurgery, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China; Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, Anhui Province, China
| |
Collapse
|