1
|
Zhao Y, Liang J, Liu X, Li H, Chang C, Gao P, Du F, Zhang R. Tcap deficiency impedes striated muscle function and heart regeneration with elevated ROS and autophagy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167485. [PMID: 39226992 DOI: 10.1016/j.bbadis.2024.167485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
Telethonin/titin-cap (TCAP) encodes a Z-disc protein that plays important roles in sarcomere/T-tubule interactions, stretch-sensing and signaling. Mutations in TCAP are associated with muscular dystrophy and cardiomyopathy; however, the complete etiology and its roles in myocardial infarction and regeneration are not fully understood. Here, we generated tcap gene knockout zebrafish with CRISPR/Cas9 technology and observed muscular dystrophy-like phenotypes and abnormal mitochondria in skeletal muscles. The stretch-sensing ability was inhibited in tcap-/- mutants. Moreover, Tcap deficiency led to alterations in cardiac morphology and function as well as increases in reactive oxygen species (ROS) and mitophagy. In addition, the cardiac regeneration and cardiomyocyte proliferation ability of tcap-/- mutants were impaired, but these impairments could be rescued by supplementation with ROS scavengers or autophagy inhibitors. Overall, our study demonstrates the essential roles of Tcap in striated muscle function and heart regeneration. Additionally, elevations in ROS and autophagy may account for the phenotypes resulting from Tcap deficiency and could serve as novel therapeutic targets for muscular dystrophy and cardiomyopathy.
Collapse
Affiliation(s)
- Yan Zhao
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China.
| | - Jieling Liang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Xuan Liu
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Huicong Li
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Cheng Chang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Peng Gao
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Fen Du
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| | - Ruilin Zhang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| |
Collapse
|
2
|
Liang S, Zhou Y, Chang Y, Li J, Zhang M, Gao P, Li Q, Yu H, Kawakami K, Ma J, Zhang R. A novel gene-trap line reveals the dynamic patterns and essential roles of cysteine and glycine-rich protein 3 in zebrafish heart development and regeneration. Cell Mol Life Sci 2024; 81:158. [PMID: 38556571 PMCID: PMC10982097 DOI: 10.1007/s00018-024-05189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 04/02/2024]
Abstract
Mutations in cysteine and glycine-rich protein 3 (CSRP3)/muscle LIM protein (MLP), a key regulator of striated muscle function, have been linked to hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) in patients. However, the roles of CSRP3 in heart development and regeneration are not completely understood. In this study, we characterized a novel zebrafish gene-trap line, gSAIzGFFM218A, which harbors an insertion in the csrp3 genomic locus, heterozygous fish served as a csrp3 expression reporter line and homozygous fish served as a csrp3 mutant line. We discovered that csrp3 is specifically expressed in larval ventricular cardiomyocytes (CMs) and that csrp3 deficiency leads to excessive trabeculation, a common feature of CSRP3-related HCM and DCM. We further revealed that csrp3 expression increased in response to different cardiac injuries and was regulated by several signaling pathways vital for heart regeneration. Csrp3 deficiency impeded zebrafish heart regeneration by impairing CM dedifferentiation, hindering sarcomere reassembly, and reducing CM proliferation while aggravating apoptosis. Csrp3 overexpression promoted CM proliferation after injury and ameliorated the impairment of ventricle regeneration caused by pharmacological inhibition of multiple signaling pathways. Our study highlights the critical role of Csrp3 in both zebrafish heart development and regeneration, and provides a valuable animal model for further functional exploration that will shed light on the molecular pathogenesis of CSRP3-related human cardiac diseases.
Collapse
Affiliation(s)
- Shuzhang Liang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yating Zhou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yue Chang
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jiayi Li
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Min Zhang
- Shanghai Pediatric Congenital Heart Disease Institute and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Peng Gao
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Qi Li
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Hong Yu
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, 411-8540, Japan
| | - Jinmin Ma
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China.
| | - Ruilin Zhang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China.
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
3
|
Aboonabi A, McCauley MD. Myofilament dysfunction in diastolic heart failure. Heart Fail Rev 2024; 29:79-93. [PMID: 37837495 PMCID: PMC10904515 DOI: 10.1007/s10741-023-10352-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/16/2023]
Abstract
Diastolic heart failure (DHF), in which impaired ventricular filling leads to typical heart failure symptoms, represents over 50% of all heart failure cases and is linked with risk factors, including metabolic syndrome, hypertension, diabetes, and aging. A substantial proportion of patients with this disorder maintain normal left ventricular systolic function, as assessed by ejection fraction. Despite the high prevalence of DHF, no effective therapeutic agents are available to treat this condition, partially because the molecular mechanisms of diastolic dysfunction remain poorly understood. As such, by focusing on the underlying molecular and cellular processes contributing to DHF can yield new insights that can represent an exciting new avenue and propose a novel therapeutic approach for DHF treatment. This review discusses new developments from basic and clinical/translational research to highlight current knowledge gaps, help define molecular determinants of diastolic dysfunction, and clarify new targets for treatment.
Collapse
Affiliation(s)
- Anahita Aboonabi
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago, 840 S. Wood St., 920S (MC 715), Chicago, IL, 60612, USA.
- Jesse Brown VA Medical Center, Chicago, IL, USA.
| | - Mark D McCauley
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago, 840 S. Wood St., 920S (MC 715), Chicago, IL, 60612, USA.
- Jesse Brown VA Medical Center, Chicago, IL, USA.
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Wishard R, Jayaram M, Ramesh SR, Nongthomba U. Spatial and temporal requirement of Mlp60A isoforms during muscle development and function in Drosophila melanogaster. Exp Cell Res 2023; 422:113430. [PMID: 36423661 DOI: 10.1016/j.yexcr.2022.113430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Many myofibrillar proteins undergo isoform switching in a spatio-temporal manner during muscle development. The biological significance of the variants of several of these myofibrillar proteins remains elusive. One such myofibrillar protein, the Muscle LIM Protein (MLP), is a vital component of the Z-discs. In this paper, we show that one of the Drosophila MLP encoding genes, Mlp60A, gives rise to two isoforms: a short (279 bp, 10 kDa) and a long (1461 bp, 54 kDa) one. The short isoform is expressed throughout development, but the long isoform is adult-specific, being the dominant of the two isoforms in the indirect flight muscles (IFMs). A concomitant, muscle-specific knockdown of both isoforms leads to partial developmental lethality, with most of the surviving flies being flight defective. A global loss of both isoforms in a Mlp60A-null background also leads to developmental lethality, with muscle defects in the individuals that survive to the third instar larval stage. This lethality could be rescued partially by a muscle-specific overexpression of the short isoform. Genetic perturbation of only the long isoform, through a P-element insertion in the long isoform-specific coding sequence, leads to defective flight, in around 90% of the flies. This phenotype was completely rescued when the P-element insertion was precisely excised from the locus. Hence, our data show that the two Mlp60A isoforms are functionally specialized: the short isoform being essential for normal embryonic muscle development and the long isoform being necessary for normal adult flight muscle function.
Collapse
Affiliation(s)
- Rohan Wishard
- Department of Molecular Reproduction, Development and Genetics; Indian Institute of Science, Bengaluru, 560012, India.
| | - Mohan Jayaram
- Department of Molecular Reproduction, Development and Genetics; Indian Institute of Science, Bengaluru, 560012, India; Department of Studies in Zoology, University of Mysore, Manasgangotri, Mysuru, 570006, India
| | - Saraf R Ramesh
- Department of Studies in Zoology, University of Mysore, Manasgangotri, Mysuru, 570006, India; Department of Life Sciences, Pooja Bhagvat Memorial Mahajana Education Center, K. R. S. Road, Mysuru, 570016, India
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics; Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
5
|
Germain P, Delalande A, Pichon C. Role of Muscle LIM Protein in Mechanotransduction Process. Int J Mol Sci 2022; 23:ijms23179785. [PMID: 36077180 PMCID: PMC9456170 DOI: 10.3390/ijms23179785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/14/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
The induction of protein synthesis is crucial to counteract the deconditioning of neuromuscular system and its atrophy. In the past, hormones and cytokines acting as growth factors involved in the intracellular events of these processes have been identified, while the implications of signaling pathways associated with the anabolism/catabolism ratio in reference to the molecular mechanism of skeletal muscle hypertrophy have been recently identified. Among them, the mechanotransduction resulting from a mechanical stress applied to the cell appears increasingly interesting as a potential pathway for therapeutic intervention. At present, there is an open question regarding the type of stress to apply in order to induce anabolic events or the type of mechanical strain with respect to the possible mechanosensing and mechanotransduction processes involved in muscle cells protein synthesis. This review is focused on the muscle LIM protein (MLP), a structural and mechanosensing protein with a LIM domain, which is expressed in the sarcomere and costamere of striated muscle cells. It acts as a transcriptional cofactor during cell proliferation after its nuclear translocation during the anabolic process of differentiation and rebuilding. Moreover, we discuss the possible opportunity of stimulating this mechanotransduction process to counteract the muscle atrophy induced by anabolic versus catabolic disorders coming from the environment, aging or myopathies.
Collapse
Affiliation(s)
- Philippe Germain
- UFR Sciences and Techniques, University of Orleans, 45067 Orleans, France
- Center for Molecular Biophysics, CNRS Orleans, 45071 Orleans, France
| | - Anthony Delalande
- UFR Sciences and Techniques, University of Orleans, 45067 Orleans, France
- Center for Molecular Biophysics, CNRS Orleans, 45071 Orleans, France
| | - Chantal Pichon
- UFR Sciences and Techniques, University of Orleans, 45067 Orleans, France
- Center for Molecular Biophysics, CNRS Orleans, 45071 Orleans, France
- Institut Universitaire de France, 1 Rue Descartes, 75231 Paris, France
- Correspondence:
| |
Collapse
|
6
|
Knockout of Shelterin subunit genes in zebrafish results in distinct outcomes. Biochem Biophys Res Commun 2022; 617:22-29. [DOI: 10.1016/j.bbrc.2022.05.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022]
|
7
|
Huang H, Chen Y, Jin J, Du R, Tang K, Fan L, Xiang R. CSRP3, p.Arg122*, is responsible for hypertrophic cardiomyopathy in a Chinese family. J Gene Med 2021; 24:e3390. [PMID: 34558151 DOI: 10.1002/jgm.3390] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/17/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a hereditary disease manifested by a thickened ventricular wall. Cysteine and glycine-rich protein 3 (CSRP3), the gene encoding muscle LIM protein, is important for initiating hypertrophic gene expression. The mutation of CSRP3 causes dilated cardiomyopathy or HCM. METHODS In the present study, we enrolled a Chinese family with HCM across three generations. Whole-exome sequencing (WES) was performed in the proband to detect the candidate genes of the family. Sanger sequencing was performed for mutational analysis and confirmation of cosegregation. RESULTS Through histopathological and imaging examinations, an obvious left ventricular hypertrophy was found in the proband. After WES data filtering, bioinformatic prediction and co-segregation analysis, a nonsense mutation (NM_003476.5:c.364C>T; NP_003467.1:p.Arg122*) of CSRP3 was identified in this family. This variant was predicted to be disease-causing and resulted in a truncated protein. CONCLUSIONS This is the first HCM family case of CSRP3 (p.Arg122*) variation in Asia. The finding here not only contributes to the genetic diagnosis and counseling of the family, but also provides a new case with detailed phenotypes that may be caused by the CSRP3 variant.
Collapse
Affiliation(s)
- Hao Huang
- Department of Nephrology, Xiangya Hospital Central South University, Changsha, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Yaqin Chen
- Department of Cardiology, Second Xiangya Hospital Central South University, Changsha, China
| | - Jieyuan Jin
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Ran Du
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Ke Tang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Liangliang Fan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Rong Xiang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| |
Collapse
|