1
|
Lin C, Wu J, Wang Z, Xiang Y. Long non-coding RNA LNC-POTEM-4 promotes HCC progression via the LNC-POTEM-4/miR-149-5p/Wnt4 signaling axis. Cell Signal 2024; 124:111412. [PMID: 39278454 DOI: 10.1016/j.cellsig.2024.111412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Information on the potential role of the long non-coding RNA LNC-POTEM-4 in cancer progression is limited. Our preliminary study found that LNC-POTEM-4 was overexpressed in hepatocellular carcinoma (HCC) tissues, which led us to further investigate the biological function and molecular mechanism of LNC-POTEM-4 in HCC development. LNC-POTEM-4 expression in HCC tissues was examined using transcriptome sequencing and quantitative reverse transcription PCR. The relationships between LNC-POTEM-4 and the stage and prognosis of HCC in patient data from the TCGA database were analyzed. The effects of LNC-POTEM-4 on proliferation, invasion/migration, and epithelial-mesenchymal transition marker expression in HCC cells were evaluated in vitro using gain- and loss-of-function assays, while its effects on tumor growth and metastasis were explored through animal experiments. A LNC-POTEM-4/microRNA (miR)-149-5p/Wnt4 regulatory signaling axis was identified using bioinformatics analysis, and dual luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays. Co-transfection of LNC-POTEM-4 and Wnt4 expression plasmids was employed to confirm the new signaling pathway. We found that LNC-POTEM-4 was overexpressed in HCC tissues and was linked to poor staging and prognosis. LNC-POTEM-4 promoted proliferation, invasion, migration, and the epithelial-mesenchymal transition of HCC cells in vitro. Silencing of LNC-POTEM-4 inhibited HCC growth and distant metastasis in vivo. Mechanically, LNC-POTEM-4 was found to function as a competitive endogenous RNA, upregulating Wnt4 by sponging miR-149-5p to promote HCC progression. Wnt4 overexpression may have counteracted the tumor-inhibition effect of LNC-POTEM-4 silencing. In conclusion, LNC-POTEM-4 upregulated Wnt4 to activate the Wnt signaling pathway and stimulate the malignancy tendency of HCC by sponging miR-149-5p, providing a prospective target for the detection and therapy of HCC. However, the effects of LNC-POTEM-4 on the miR-149-5p/Wnt4 signaling axis should be further studied in animal experiments.
Collapse
Affiliation(s)
- Chao Lin
- Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Jiacheng Wu
- Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - Zhixuan Wang
- Intensive Care Medicine, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Yien Xiang
- Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
2
|
Zhou Y, Zhao K, Li J, Peng C, Jin J, Chen J, Li Y, Xu G, Pan S. LINC00461 promotes bladder cancer cells EMT through miR-518b/HNRNPUL1 axis. Discov Oncol 2024; 15:419. [PMID: 39254804 PMCID: PMC11387575 DOI: 10.1007/s12672-024-01294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Bladder cancer (BC) is a prevalent type of tumor in the urinary system, and it has been discovered that long non-coding RNA (lncRNA) plays a significant role in its occurrence and development. However, thus far, no reports have been published on the involvement of LINC00461 in BC. Here, we found that LINC00461 levels were upregulated in BC tissues and cell lines. Besides, knockdown of LINC00461 inhibited BC cell proliferation, migration, invasion through epithelial-mesenchymal transition (EMT), and slowed down tumor growth in vivo. Moreover, we found that LINC00461 regulated HNRNPUL1 expression through miR-518b sponge activity, and the miR-518 inhibitor could reverse the inhibitory effects of LINC00461 knockdown on BC cell proliferation, migration, and EMT. Our results suggest that LINC00461 may serve as a potential biomarker and therapeutic target for BC.
Collapse
Affiliation(s)
- Yijie Zhou
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Keyuan Zhao
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Junlong Li
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Chao Peng
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Jing Jin
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Jiajun Chen
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Yulei Li
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Gang Xu
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.
| | - Shouhua Pan
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
3
|
El-Aziz MKA, Dawoud A, Kiriacos CJ, Fahmy SA, Hamdy NM, Youness RA. Decoding hepatocarcinogenesis from a noncoding RNAs perspective. J Cell Physiol 2023; 238:1982-2009. [PMID: 37450612 DOI: 10.1002/jcp.31076] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Being a leading lethal malignancy worldwide, the pathophysiology of hepatocellular carcinoma (HCC) has gained a lot of interest. Yet, underlying mechanistic basis of the liver tumorigenesis is poorly understood. The role of some coding genes and their respective translated proteins, then later on, some noncoding RNAs (ncRNAs) such as microRNAs have been extensively studied in context of HCC pathophysiology; however, the implication of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in HCC is indeed less investigated. As a subclass of the ncRNAs which has been elusive for long time ago, lncRNAs was found to be involved in plentiful cellular functions such as DNA, RNA, and proteins regulation. Hence, it is undisputed that lncRNAs dysregulation profoundly contributes to HCC via diverse etiologies. Accordingly, lncRNAs represent a hot research topic that requires prime focus in HCC. In this review, the authors discuss breakthrough discoveries involving lncRNAs and circRNAs dysregulation that have contributed to the contemporary concepts of HCC pathophysiology and how these concepts could be leveraged as potential novel diagnostic and prognostic HCC biomarkers. Further, this review article sheds light on future trends, thereby discussing the pathological roles of lncRNAs and circRNAs in HCC proliferation, migration, and epithelial-to-mesenchymal transition. Along this line of reasoning, future recommendations of how these targets could be exploited to achieve effective HCC-related drug development is highlighted.
Collapse
Affiliation(s)
- Mostafa K Abd El-Aziz
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Caroline J Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Sherif Ashraf Fahmy
- Chemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rana A Youness
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
4
|
Hou XR, Zhang ZD, Cao XL, Wang XP. Long noncoding RNAs, glucose metabolism and cancer (Review). Oncol Lett 2023; 26:340. [PMID: 37427347 PMCID: PMC10326653 DOI: 10.3892/ol.2023.13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Cancer is a serious and potentially life-threatening disease, which, despite numerous advances over several decades, remains a challenge to treat that challenging to detect at an early stage or treat during the later stages. Long noncoding RNAs are >200 nucleotides long and do not possess protein-coding capacity, instead regulating cellular processes, such as proliferation, differentiation, maturation, apoptosis, metastasis, and sugar metabolism. Several studies have shown the role of lncRNAs and glucose metabolism in regulating several key glycolytic enzymes and the activity of multiple functional signaling pathways during tumor progression. Thus, it is possible to further learn about the effects of lncRNA and glycolytic metabolism on tumor diagnosis, treatment, and prognosis through a thorough investigation of the lncRNA expression profiles and glycolytic metabolism in tumors. This may provide a novel strategy for improving the management of several types of cancer.
Collapse
Affiliation(s)
- Xin-Rui Hou
- Graduate School, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Zhen-Dong Zhang
- Graduate School, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Xiao-Lan Cao
- Graduate School, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Xiao-Ping Wang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| |
Collapse
|
5
|
Rao G, Peng X, Tian Y, Fu X, Zhang Y. Circular RNAs in hepatocellular carcinoma: biogenesis, function, and pathology. Front Genet 2023; 14:1106665. [PMID: 37485335 PMCID: PMC10361733 DOI: 10.3389/fgene.2023.1106665] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Both genetic and environmental factors through a multitude of underlying molecular mechanisms participate in the pathogenesis of HCC. Recently, numerous studies have shown that circular RNAs (circRNAs), an emerging class of non-coding RNAs characterized by the presence of covalent bonds linking 3' and 5' ends, play an important role in the initiation and progression of cancers, including HCC. In this review, we outline the current status of the field of circRNAs, with an emphasis on the functions and mechanisms of circRNAs in HCC and its microenvironment. We also summarize and discuss recent advances of circRNAs as biomarkers and therapeutic targets. These efforts are anticipated to throw new insights into future perspectives about circRNAs in basic, translational and clinical research, eventually advancing the diagnosis, prevention and treatment of HCC.
Collapse
Affiliation(s)
- Guocheng Rao
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Xi Peng
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Deng M, Yuan H, Peng H, Liu S, Xiao X, Wang Z, Zhang G, Xiao H. LINC00461 Knockdown Enhances the Effect of Ixazomib in Multiple Myeloma Cells. Curr Cancer Drug Targets 2023; 23:643-652. [PMID: 36927430 DOI: 10.2174/1568009623666230316152713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/23/2022] [Accepted: 01/11/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND LINC00461 has been implicated to be involved in several types of cancer while its roles in multiple myeloma remain unclear. Our study aims to investigate the roles of LINC00461 in multiple myeloma and explore its effects on ixazomib therapy. METHODS LINC00461 and small nuclear ribonucleoprotein polypeptide (SNRP) B2 knockdown stable cell lines were constructed. Cell viability assays including MTT, cell number counting, and colony formation were performed. RNA-pull down and immunoblotting assays were conducted to determine the intramolecular interactions. qRT-PCR and western blotting were conducted to determine the levels of target genes. Kaplan-Meier analysis was used to evaluate overall survival rates. RESULTS Knockdown of LINC00461 or SNRPB2 enhanced ixazomib's cytotoxicity, as well as affected its regulatory effects on cell apoptosis and cell cycle distribution. Further results showed that LINC00461 knockdown reduced the expression levels of SNRPB2 by their interactions. Additionally, a positive correlation between LINC00461 and SNRPB2 was found in patients with multiple myeloma. Low expression of SNRPB2 was associated with a high survival rate in patients with multiple myeloma. CONCLUSION Knockdown of LINC00461 enhanced the therapeutic effects of ixazomib against multiple myeloma in part by the regulation of SNRPB2.
Collapse
Affiliation(s)
- Mingyang Deng
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Huan Yuan
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Hongling Peng
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Sufang Liu
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xiang Xiao
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhihua Wang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Guangsen Zhang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Han Xiao
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
7
|
Hashemi M, Mirzaei S, Zandieh MA, Rezaei S, Amirabbas Kakavand, Dehghanpour A, Esmaeili N, Ghahremanzade A, Saebfar H, Heidari H, Salimimoghadam S, Taheriazam A, Entezari M, Ahn KS. Long non-coding RNAs (lncRNAs) in hepatocellular carcinoma progression: Biological functions and new therapeutic targets. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:207-228. [PMID: 36584761 DOI: 10.1016/j.pbiomolbio.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Liver is an important organ in body that performs vital functions such as detoxification. Liver is susceptible to development of cancers, and hepatocellular carcinoma (HCC) is among them. 75-85% of liver cancer cases are related to HCC. Therefore, much attention has been directed towards understanding factors mediating HCC progression. LncRNAs are epigenetic factors with more than 200 nucleotides in length located in both nucleus and cytoplasm and they are promising candidates in cancer therapy. Directing studies towards understanding function of lncRNAs in HCC is of importance. LncRNAs regulate cell cycle progression and growth of HCC cells, and they can also induce/inhibit apoptosis in tumor cells. LncRNAs affect invasion and metastasis in HCC mainly by epithelial-mesenchymal transition (EMT) mechanism. Revealing the association between lncRNAs and downstream signaling pathways in HCC is discussed in the current manuscript. Infectious diseases can affect lncRNA expression in mediating HCC development and then, altered expression level of lncRNA is associated with drug resistance and radio-resistance. Biomarker application of lncRNAs and their role in prognosis and diagnosis of HCC are also discussed to pave the way for treatment of HCC patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sahar Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Hajar Heidari
- Department of Biomedical Sciences, School of Public Health University at Albany State University of New York, Albany, NY, 12208, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Chen H, Wei L, Luo M, Wang X, Zhu C, Huang H, Liu X, Lu H, Zhong Y. LINC00324 suppresses apoptosis and autophagy in nasopharyngeal carcinoma through upregulation of PAD4 and activation of the PI3K/AKT signaling pathway. Cell Biol Toxicol 2022; 38:995-1011. [PMID: 34322788 DOI: 10.1007/s10565-021-09632-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/13/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) has high incidence in Southern China and is derived from the mucosal epithelium of the nasopharynx. Accumulating evidence has revealed that peptidyl arginine deiminase 4 (PAD4) exerts carcinogenic effect on certain cancers. We designed this study to probe the specific role that PAD4 plays in NPC and its molecular mechanism. METHODS PAD4 expression in NPC cells was detected by RT-qPCR analysis. MTT, colony formation, flow cytometry, TUNEL staining, and LC3-II punctuation experiments were done to probe into the biological functions of PAD4 on NPC cellular behaviors in vitro. Subsequently, the upstream regulatory mechanism of PAD4 was investigated by luciferase reporter, RNA pull-down, and RIP assays. The impact of PAD4 on NPC tumor growth in mice was assessed by in vivo xenograft tumor assay. RESULTS PAD4 was upregulated in NPC cells. PAD4 knockdown suppressed proliferative ability and promoted apoptosis and autophagy in NPC cells. Additionally, PAD4 expression was negatively regulated by microRNA 3164 (miR-3164). LINC00324 positively upregulated PAD4 expression by interacting with miR-3164 and recruiting HuR protein. The LINC00324/miR-3164/PAD4 axis modulated the PI3K/AKT pathway in NPC cells. Moreover, PAD4 upregulation countervailed the influences of LINC00324 deficiency on NPC cell proliferation, apoptosis, and autophagy and on NPC tumor growth in mice. CONCLUSION LINC00324 promoted NPC malignancy by upregulation of PAD4 to activate the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Hao Chen
- Department of Radiation Oncology, People's Hospital of Guangxi Zhuang Autonomous Region, No. 6 Taoyuan Road, Nanning, 530021, Guangxi, China
| | - Lining Wei
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Min Luo
- Department of Oncology, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi, China
| | - Xiaochen Wang
- Department of Oncology, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi, China
| | - Chaohua Zhu
- Department of Radiation Oncology, People's Hospital of Guangxi Zhuang Autonomous Region, No. 6 Taoyuan Road, Nanning, 530021, Guangxi, China
| | - Huixian Huang
- Department of Radiation Oncology, People's Hospital of Guangxi Zhuang Autonomous Region, No. 6 Taoyuan Road, Nanning, 530021, Guangxi, China
| | - Xu Liu
- Department of Radiation Oncology, People's Hospital of Guangxi Zhuang Autonomous Region, No. 6 Taoyuan Road, Nanning, 530021, Guangxi, China
| | - Heming Lu
- Department of Radiation Oncology, People's Hospital of Guangxi Zhuang Autonomous Region, No. 6 Taoyuan Road, Nanning, 530021, Guangxi, China.
| | - Yahua Zhong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430000, Hubei, China.
| |
Collapse
|
9
|
Tumor-Suppressive and Oncogenic Roles of microRNA-149-5p in Human Cancers. Int J Mol Sci 2022; 23:ijms231810823. [PMID: 36142734 PMCID: PMC9501226 DOI: 10.3390/ijms231810823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022] Open
Abstract
Malignant tumors are always a critical threat to human health, with complex pathogenesis, numerous causative factors, and poor prognosis. The features of cancers, such as gene mutations, epigenetic alterations, and the activation and inhibition of signaling pathways in the organism, play important roles in tumorigenesis and prognosis. MicroRNA (miRNA) enables the control of various molecular mechanisms and plays a variety of roles in human cancers, such as radiation sensitivity and tumor immunity, through the regulation of target genes. MiR-149-5p participates in the process and is closely related to lipogenesis, the migration of vascular endothelial cells, and the expression of stem-cell-related proteins. In recent years, its role in cancer has dramatically increased. In this review, we summarize the regular physiological roles of miRNAs, specifically miR-149-5p, in the organism and discuss the tumor-suppressive or oncogenic roles of miR-149-5p in different human cancers with respect to signaling pathways involved in regulation. Possible clinical applications of miR-149-5p in future targeted therapies and prognosis improvement in oncology are suggested.
Collapse
|
10
|
Zhang Q, Zhong C, Shen J, Chen S, Jia Y, Duan S. Emerging role of LINC00461 in cancer. Biomed Pharmacother 2022; 152:113239. [PMID: 35679722 DOI: 10.1016/j.biopha.2022.113239] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022] Open
Abstract
LINC00461 is located in the intergenic region between the protein-coding genes MEF2C and TMEM161B. LINC00461 upregulation was associated with the risk of 13 tumors and was strongly associated with clinicopathologic features and poor prognosis in 11 tumors. LINC00461 is involved in resistance to four anticancer drugs, including sunitinib for renal cell carcinoma, cisplatin for head and neck squamous cell carcinoma and rectal cancer, temozolomide for glioma, and docetaxel for breast cancer. LINC00461 can sponge 18 miRNAs to form a complex ceRNA network that regulates the expression of a large number of downstream genes. LINC00461 is involved in the MAPK/ERK signaling pathway and PI3K/AKT signaling pathway, thereby promoting tumorigenesis. Notably, knockdown of LINC00461 in exosomes antagonizes tumor cell proliferation in multiple myeloma. This article summarizes the diagnostic, prognostic, and therapeutic value of LINC00461 in various tumors, and systematically describes the ceRNA network and signaling pathways associated with LINC00461, providing potential directions for future LINC00461 research.
Collapse
Affiliation(s)
- Qiudan Zhang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, China; Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chenming Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jinze Shen
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, China
| | - Sang Chen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yunhua Jia
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, China.
| | - Shiwei Duan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
11
|
Abstract
The tumor microenvironment (TME) is a well-recognized system that plays an essential role in tumor initiation, development, and progression. Intense intercellular communication between tumor cells and other cells (especially macrophages) occurs in the TME and is mediated by cell-to-cell contact and/or soluble messengers. Emerging evidence indicates that noncoding RNAs (ncRNAs) are critical regulators of the relationship between cells within the TME. In this review, we provide an update on the regulation of ncRNAs (primarily micro RNAs [miRNAs], long ncRNAs [lncRNAs], and circular RNAs [circRNAs]) in the crosstalk between macrophages and tumor cells in hepatocellular carcinoma (HCC). These ncRNAs are derived from macrophages or tumor cells and act as oncogenes or tumor suppressors, contributing to tumor progression not only by regulating the physiological and pathological processes of tumor cells but also by controlling macrophage infiltration, activation, polarization, and function. Herein, we also explore the options available for clinical therapeutic strategies targeting crosstalk-related ncRNAs to treat HCC. A better understanding of the relationship between macrophages and tumor cells mediated by ncRNAs will uncover new diagnostic biomarkers and pharmacological targets in cancer.
Collapse
|
12
|
Mesenchymal Stem Cells Inhibit the Effects of Dexamethasone in Multiple Myeloma Cells. Stem Cells Int 2022; 2022:4855517. [PMID: 35419059 PMCID: PMC9001108 DOI: 10.1155/2022/4855517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/06/2022] [Accepted: 02/28/2022] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stem cells (MSCs) participate in the occurrence and development of multiple myeloma. This study is aimed at exploring whether the presence of MSCs affects dexamethasone's antitumor effects against multiple myeloma. Multiple myeloma cells (OPM-2 and RPMI8226 cells) were cocultured with MSCs with or without dexamethasone. Cell viability was determined by using cell number count, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and colony formation assay, respectively. Cell cycle distribution and cell apoptosis were evaluated by using flow cytometry. The mRNA and protein expressions of target genes were checked by using qRT-PCR and western blotting, respectively. It was found that cell viability of multiple myeloma cells increased in the presence of MSCs. Besides, the presence of MSCs suppressed cell apoptosis induced by dexamethasone via the regulation of BCL-2 (B cell lymphoma 2). The presence of MSCs also affected the effects of dexamethasone on cell cycle distribution. Similarly, LINC00461 overexpression suppressed the inhibition of cell proliferation, suppressed the induction of cell apoptosis, and affected the effects on cell cycle distribution induced by dexamethasone insult. However, LINC00461 knockdown enhanced the inhibitory effects on cell proliferation and the induction of cell apoptosis induced by dexamethasone. In summary, MSCs inhibited the effects of dexamethasone on multiple myeloma and its regulatory effects were associated with LINC00461.
Collapse
|
13
|
Mahmoudi A, Moadab F, Safdarian E, Navashenaq JG, Rezaee M, Gheibihayat SM. MicroRNAs and Efferocytosis: Implications for Diagnosis and Therapy. Mini Rev Med Chem 2022; 22:2641-2660. [PMID: 35362375 DOI: 10.2174/1389557522666220330150937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/24/2021] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
About 10-100 billion cells are generated in the human body in a day, and accordingly, 10-100 billion cells predominantly die for maintaining homeostasis. Dead cells generated by apoptosis are also rapidly engulfed by macrophages (Mθs) to be degraded. In case of the inefficient engulfment of apoptotic cells (ACs) via Mθs, they experience secondary necrosis and thus release intracellular materials, which display damage-associated molecular patterns (DAMPs) and result in diseases. Over the last decades, researchers have also reflected on the significant contribution of microRNAs (miRNAs) to autoimmune diseases through the regulation of Mθs functions. Moreover, miRNAs have shown intricate involvement with completely adjusting basic Mθs functions, such as phagocytosis, inflammation, efferocytosis, tumor promotion, and tissue repair. In this review, the mechanism of efferocytosis containing "Find-Me", "Eat-Me", and "Digest-Me" signals is summarized and the biogenesis of miRNAs is briefly described. Finally, the role of miRNAs in efferocytosis is discussed. It is concluded that miRNAs represent promising treatments and diagnostic targets in impaired phagocytic clearance, which leads to different diseases.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of medical biotechnology and nanotechnology, faculty of medicine, Mashhad University of Medical science, Iran
| | - Fatemeh Moadab
- Medical student, Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Esmat Safdarian
- Legal Medicine Research Center, Legal Medicine Organization, Tehran Iran
| | | | - Mehdi Rezaee
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran;
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
14
|
Gao F, Wang X, Fan T, Luo Z, Ma M, Hu G, Li Y, Liang Y, Lin X, Xu B. LncRNA LINC00461 exacerbates myocardial ischemia-reperfusion injury via microRNA-185-3p/Myd88. Mol Med 2022; 28:33. [PMID: 35272621 PMCID: PMC8908691 DOI: 10.1186/s10020-022-00452-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Long non-coding RNAs (lncRNAs) play critically in the pathogenesis of myocardial ischemia-reperfusion (I/R) injury. Thus, it was proposed to investigate the mechanism of LINC00461 in the disease through mediating microRNA-185-3p (miR-185-3p)/myeloid differentiation primary response gene 88 (Myd88) axis. METHODS miR-185-3p, LINC00461 and Myd88 expression in mice with I/R injury was measured. Mice with I/R injury were injected with the gene expression-modified vectors, after which cardiac function, hemodynamics, myocardial enzyme, oxidative stress, and cardiomyocyte apoptosis were analyzed. RESULTS I/R mice showed LINC00461 and Myd88 up-regulation and miR-185-3p down-regulation. Down-regulating LINC00461 or up-regulating miR-185-3p recovered cardiac function, reduced myocardial enzyme levels, and attenuated oxidative stress and cardiomyocyte apoptosis in mice with I/R. miR-185-3p overexpression rescued the promoting effect of LINC00461 upregulation on myocardial injury in I/R mice. CONCLUSION LINC00461 knockdown attenuates myocardial I/R injury via elevating miR-185-3p expression to suppress Myd88 expression.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cardiology, Economic Development District, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, Anhui, China
| | - Xiaochen Wang
- Department of Cardiology, Economic Development District, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, Anhui, China
| | - Tingting Fan
- Department of Cardiology, Economic Development District, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, Anhui, China
| | - Zhidan Luo
- Department of Geriatrics, Chongqing People's Hospital, Chongqing, 400013, China
| | - Mengqing Ma
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China
| | - Guangquan Hu
- Department of Cardiology, Economic Development District, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, Anhui, China
| | - Yue Li
- Department of Cardiology, Economic Development District, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, Anhui, China
| | - Yi Liang
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Xianhe Lin
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China.
| | - Banglong Xu
- Department of Cardiology, Economic Development District, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, Anhui, China
| |
Collapse
|
15
|
Hu L, Zhou M, Xue L, Zhang J. Circular RNA hsa_circ_0011385 contributes to cervical cancer progression through sequestering miR-149-5p and increasing PRDX6 expression. Reprod Biol 2022; 22:100619. [PMID: 35240453 DOI: 10.1016/j.repbio.2022.100619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/22/2022] [Accepted: 02/12/2022] [Indexed: 12/24/2022]
Abstract
Cervical cancer (CC) is a common tumor in the female reproductive tract. Circular RNA hsa_circ_0011385 has been reported to be up-regulated in CC tissues. Nevertheless, the role and regulatory mechanism of hsa_circ_0011385 in CC are still being further verified. The levels of hsa_circ_0011385, microRNA (miR)- 149-5p, and peroxiredoxin 6 (PRDX6) mRNA in CC samples and cell lines were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Loss-of-function experiments were performed to survey the impacts of hsa_circ_0011385 inhibition on CC cell proliferation, colony formation, cycle progression, apoptosis, metastasis, invasion, and angiogenesis. Protein levels were detected by western blotting. The relationship between hsa_circ_0011385 or PRDX6 and miR-149-5p was verified by dual-luciferase reporter, RNA immunoprecipitation (RIP), and/or RNA pull-down assays. The tumorigenesis role of hsa_circ_0011385 in CC was confirmed by xenograft assay. We observed that hsa_circ_0011385 and PRDX6 were up-regulated while miR-149-5p was down-regulated in CC samples and cell lines. CC patients with high hsa_circ_0011385 expression possessed a shorter overall survival. Hsa_circ_0011385 knockdown reduced tumor growth in vivo and facilitated apoptosis, cell cycle arrest, impeded proliferation, metastasis, invasion, and angiogenesis of CC cells in vitro. Hsa_circ_0011385 could mediate PRDX6 expression through binding to miR-149-5p. MiR-149-5p silencing reversed hsa_circ_0011385 knockdown-mediated effects on CC cell angiogenesis and malignancy. PRDX6 overexpression overturned the inhibitory effects of miR-149-5p overexpression on angiogenesis and malignant behaviors of CC cells. In conclusion, hsa_circ_0011385 accelerated angiogenesis and malignant behaviors of CC cells by regulating the miR-149-5p/PRDX6 axis, manifesting that hsa_circ_0011385 might be a therapeutic target for CC.
Collapse
Affiliation(s)
- Lijuan Hu
- Department of Gynecologic Oncology, Shaanxi Provincial Cancer Hospital, Xi'an 710061, China
| | - Min Zhou
- Department of Gynecologic Oncology, Shaanxi Provincial Cancer Hospital, Xi'an 710061, China
| | - Lei Xue
- Department of Gastrointestinal Oncology, Shaanxi Provincial Cancer Hospital, Xi'an 710061, China
| | - Jing Zhang
- Department of Gynecologic Oncology, Shaanxi Provincial Cancer Hospital, Xi'an 710061, China.
| |
Collapse
|
16
|
Wu AC, Yang WB, Chang KY, Lee JS, Liou JP, Su RY, Cheng SM, Hwang DY, Kikkawa U, Hsu TI, Wang CY, Chang WC, Chen PY, Chuang JY. HDAC6 involves in regulating the lncRNA-microRNA-mRNA network to promote the proliferation of glioblastoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:47. [PMID: 35109908 PMCID: PMC8809020 DOI: 10.1186/s13046-022-02257-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Abstract
Background Glioblastoma (GBM) is the most aggressive and lethal brain tumor. Although the histone deacetylase (HDAC)/transcription factor axis promotes growth in GBM, whether HDACs including HDAC6 are involved in modulating long non-coding RNAs (lncRNAs) to affect GBM malignancy remains obscure. Methods Integrative analysis of microarray and RNA-seq was performed to identify lncRNAs governed by HDAC6. Half-life measurement and RNA-protein pull-down assay combined with isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis were conducted to identify RNA modulators. The effect of LINC00461 on GBM malignancy was evaluated using animal models and cell proliferation-related assays. Functional analysis of the LINC00461 downstream networks was performed comprehensively using ingenuity pathway analysis and public databases. Results We identified a lncRNA, LINC00461, which was substantially increased in stem-like/treatment-resistant GBM cells. LINC00461 was inversely correlated with the survival of mice-bearing GBM and it was stabilized by the interaction between HDAC6 and RNA-binding proteins (RBPs) such as carbon catabolite repression—negative on TATA-less (CCR4-NOT) core exoribonuclease subunit 6 and fused in sarcoma. Targeting LINC00461 using azaindolylsulfonamide, an HDAC6 inhibitor, decreased cell-division-related proteins via the lncRNA-microRNA (miRNA)-mRNA networks and caused cell-cycle arrest, thereby suppressing proliferation in parental and drug-resistant GBM cells and prolonging the survival of mice-bearing GBM. Conclusions This study sheds light on the role of LINC00461 in GBM malignancy and provides a novel therapeutic strategy for targeting the HDAC6/RBP/LINC00461 axis and its downstream effectors in patients with GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02257-w.
Collapse
Affiliation(s)
- An-Chih Wu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Bin Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan
| | - Kwang-Yu Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Jung-Shun Lee
- Department of Neurosurgery, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ruei-Yuan Su
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Siao Muk Cheng
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Daw-Yang Hwang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Ushio Kikkawa
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsung-I Hsu
- The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chih-Yang Wang
- The Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pin-Yuan Chen
- Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Chang Gung University, 222 Mai-jin Road, Keelung, 20401, Taiwan.
| | - Jian-Ying Chuang
- The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan. .,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
17
|
Rao S, Tian L, Cao H, Baranova A, Zhang F. Involvement of the long intergenic non-coding RNA LINC00461 in schizophrenia. BMC Psychiatry 2022; 22:59. [PMID: 35081922 PMCID: PMC8790831 DOI: 10.1186/s12888-022-03718-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE LINC00461 is a highly conserved intergenic non-protein coding RNA that was implicated in schizophrenia at the genome-wide level. We aim to explore potential mechanisms underlying the involvement of LINC00461 in schizophrenia. METHODS We performed a meta-analysis to investigate the association of LINC00461 rs410216 with schizophrenia, and evaluate the effects of the rs410216 on hippocampal volume and function using the functional magnetic resonance imaging (fMRI) analysis. We utilized the GTEx dataset to profile the expression distribution of LINC00461 across different brain regions, and to investigate the potential impact of the risk SNPs on the expression of LINC00461 and other nearby genes. We compared blood expression levels of LINC00461 between schizophrenia patients and controls. RESULTS Here we show that single-nucleotide polymorphisms (SNPs) located in regulatory elements spanning the LINC00461 region are significantly associated with schizophrenia (index SNP rs410216, Pmeta = 1.43E-05); subjects carrying the risk allele of rs410216 showed decreased hippocampal volume. However, no significant association of the rs410216 variant with hippocampal activation was observed. Moreover, the expression level of LINC00461 mRNA was significantly lower in first-onset schizophrenia patients, and the risk allele also predicts a lower transcriptional level of LINC00461 in the hippocampus. CONCLUSION Together, these convergent lines of evidence implicate inadequate LINC00461 expression in the hippocampus in the development of schizophrenia, providing novel insight into the genetic architecture and biological etiology of schizophrenia.
Collapse
Affiliation(s)
- Shuquan Rao
- grid.461843.cState Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Lin Tian
- grid.89957.3a0000 0000 9255 8984Department of Psychiatry, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Hongbao Cao
- grid.22448.380000 0004 1936 8032School of Systems Biology, George Mason University (GMU), Fairfax, VA USA
| | - Ancha Baranova
- grid.22448.380000 0004 1936 8032School of Systems Biology, George Mason University (GMU), Fairfax, VA USA ,grid.415876.9Research Centre for Medical Genetics, Moscow, 115478 Russia
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
18
|
Sun Y, Li W, Li X, Zheng H, Qiu Y, Yang H. Oncogenic role of karyopherin α2 (KPNA2) in human tumors: A pan-cancer analysis. Comput Biol Med 2021; 139:104955. [PMID: 34735944 DOI: 10.1016/j.compbiomed.2021.104955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/29/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND KPNA2, a nuclear export protein that plays an important role in tumorigenesis, is an emerging hotspot target in oncology. Despite increasing supporting evidence of its importance, no pan-cancer analysis, across multiple databases, is available for in-depth data mining of the gene. METHODS Tumor data from both The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were explored to investigate the potential oncogenic roles of KPNA2. Diverse analytical methods were used to gain a full-scale understanding of KPNA2: gene expression, survival situations, genetic mutations, DNA methylation, sites of protein phosphorylation, immunocyte infiltration, and correlative cellular pathways. RESULTS KPNA2 is highly expressed in many cancers, and different correlations exist between KPNA2 expression and prognosis of cancer patients. cBioPortal reported that a nonsense mutation of R285* was considered to be the primary tumorigenic genetic alteration to KPNA2 and was found in cases of LUSC, STAD, and CESC. Enhanced phosphorylation of S62 was found in several cancers and the level of infiltration of cancer-associated fibroblasts was found to be linearly correlated with KPNA2 expression levels in ACC, BRCA, MESO, TGCT, THCA, and THYM. Correlations between KPNA2 DNA methylation and the pathogenesis of various tumors in TCGA were further identified. KEGG and GO enrichment analysis identified cell cycle, microtubule binding, and tubulin binding functions for KPNA2. CONCLUSION This is the first pan-cancer analysis focusing on KPNA2. It provides a comprehensive understanding about the role of KPNA2 in tumorigenesis and highlights the potential targeted role of KPNA2 for cancer study.
Collapse
Affiliation(s)
- Yiming Sun
- Department of General Surgery, The Affiliated Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Wenjing Li
- Department of the Stem Cell and Regenerative Medicine, The Affiliated Southwest Hospital of Army Medical University, China
| | - Xiaolong Li
- Department of General Surgery, The Affiliated Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Hong Zheng
- Amy Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, The Affiliated Xinqiao Hospital of Army Medical University, Chongqing, China.
| | - Hua Yang
- Department of General Surgery, The Affiliated Xinqiao Hospital of Army Medical University, Chongqing, China.
| |
Collapse
|
19
|
Ren FJ, Yao Y, Cai XY, Cai YT, Su Q, Fang GY. MiR-149-5p: An Important miRNA Regulated by Competing Endogenous RNAs in Diverse Human Cancers. Front Oncol 2021; 11:743077. [PMID: 34722295 PMCID: PMC8554335 DOI: 10.3389/fonc.2021.743077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) consist of a large family of small, non-coding RNAs with the ability to result in gene silencing post-transcriptionally. With recent advances in research technology over the past several years, the physiological and pathological potentials of miRNAs have been gradually uncovered. MiR-149-5p, a conserved miRNA, was found to regulate physiological processes, such as inflammatory response, adipogenesis and cell proliferation. Notably, increasing studies indicate miR-149-5p may act as an important regulator in solid tumors, especially cancers in reproductive system and digestive system. It has been acknowledged that miR-149-5p can function as an oncogene or tumor suppressor in different cancers, which is achieved by controlling a variety of genes expression and adjusting downstream signaling pathway. Moreover, the levels of miR-149-5p are influenced by several newly discovered long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). However, there is blank about systematic function and mechanism of miR-149-5p in human cancers. In this review, we firstly summarize the present comprehension of miR-149-5p at the molecular level, its vital role in tumor initiation and progression, as well as its potential roles in monitoring diverse reproductive and digestive malignancies.
Collapse
Affiliation(s)
- Fu-jia Ren
- Department of Pharmacy, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-yu Cai
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-ting Cai
- Department of Pharmacy, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Qian Su
- Department of Pharmacy, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Guo-ying Fang
- Department of Pharmacy, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| |
Collapse
|
20
|
Chen YT, Xiang D, Zhao XY, Chu XY. Upregulation of lncRNA NIFK-AS1 in hepatocellular carcinoma by m 6A methylation promotes disease progression and sorafenib resistance. Hum Cell 2021; 34:1800-1811. [PMID: 34374933 DOI: 10.1007/s13577-021-00587-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/31/2021] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (LncRNAs) have recently emerged as vital regulators in the development and progression of hepatocellular carcinoma (HCC), providing new opportunities as novel therapeutic targets. Here we identified the lncRNA NIFK-AS1 as being highly expressed in HCC tissues and cells and showed this up-regulation resulted from METTL3-dependent m6A methylation. Functionally, knockdown of NIFK-AS1 inhibited the proliferation, colony formation, migration, and invasion of HCC cells. Moreover, these effects were elicited though AKT1 and we uncovered a ceRNA network involving an NIFK-AS1/miR-637/AKT1 axis with downstream effects on HCC progression involving regulation of MMP-7 and MMP-9 expression. From the clinical perspective, we showed that knockdown of NIFK-AS1 sensitized HCC cells to sorafenib through the up-regulation of the drug transporters OATP1B1 and OATP1B3. Clinical investigations showed HCC patients with low NIFK-AS1 expression benefited from sorafenib therapy and this phenomenon was reproduced in patient-derived tumor xenograft models (PDX) comparing HCC with low and high expression of NIFK-AS1. Taken together, these results suggest an essential role for NIFK-AS1 in HCC progression and promote NIFK-AS1 as a new therapeutic target and predictor of sorafenib benefit in HCC patients.
Collapse
Affiliation(s)
- Yi-Tian Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Zhongshan East Road 305, Nanjing, 210002, Jiangsu, China
| | - Dan Xiang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Zhongshan East Road 305, Nanjing, 210002, Jiangsu, China
| | - Xiao-Yue Zhao
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Zhongshan East Road 305, Nanjing, 210002, Jiangsu, China
| | - Xiao-Yuan Chu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Zhongshan East Road 305, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
21
|
Zhou Y, Li K, Dai T, Wang H, Hua Z, Bian W, Wang H, Chen F, Ai X. Long non-coding RNA HCP5 functions as a sponge of miR-29b-3p and promotes cell growth and metastasis in hepatocellular carcinoma through upregulating DNMT3A. Aging (Albany NY) 2021; 13:16267-16286. [PMID: 34148029 PMCID: PMC8266334 DOI: 10.18632/aging.203155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/21/2021] [Indexed: 12/30/2022]
Abstract
Multiple studies have revealed that long non-coding RNA (lncRNAs) served as regulatory factors in modulating tumorigenesis of hepatocellular carcinoma (HCC). In the present study, we demonstrated that lncRNA HCP5 was overexpressed in HCC tissues and cell lines, and these findings were obvious even in metastatic and recurrent cases. Knockdown of HCP5 significantly alleviated cell growth, metastasis, and invasion both in vitro and in vivo through promoting apoptosis and by inactivating the epithelial-mesenchymal transition (EMT) progress. Moreover, miR-29b-3p has been identified as a negatively regulatory target gene of HCP5, and served as a tumor suppressor of HCC to prevent cell proliferation, migration, and invasion. Subsequently, DNMT3A was identified as a downstream regulatory factor of miR-29b-3p, and acted as a participated element of HCC progression by activating AKT phosphorylation. Taken together, our study elucidated for the first time that HCP5 plays a crucial role in HCC via the HCP5/miR-29b-3p/DNMT3A/AKT axis and our findings demonstrated a novel diagnostic and therapeutic strategy with potentiality to treat HCC.
Collapse
Affiliation(s)
- Yongping Zhou
- Department of Hepatobiliary Surgery, Wuxi Second Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Kuan Li
- Department of Hepatobiliary Surgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| | - Tu Dai
- Department of Hepatobiliary Surgery, Wuxi Second Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Hong Wang
- Department of Hepatobiliary Surgery, Wuxi Second Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Zhiyuan Hua
- Department of Hepatobiliary Surgery, Wuxi Second Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Wuyang Bian
- Department of Hepatobiliary Surgery, Wuxi Second Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Hao Wang
- Department of Hepatobiliary Surgery, Wuxi Second Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Fangming Chen
- Department of Imaging, Wuxi Second Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Xiaoming Ai
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
22
|
Ghafouri-Fard S, Gholipour M, Hussen BM, Taheri M. The Impact of Long Non-Coding RNAs in the Pathogenesis of Hepatocellular Carcinoma. Front Oncol 2021; 11:649107. [PMID: 33968749 PMCID: PMC8097102 DOI: 10.3389/fonc.2021.649107] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is among the utmost deadly human malignancies. This type of cancer has been associated with several environmental, viral, and lifestyle risk factors. Among the epigenetic factors which contribute in the pathogenesis of HCC is dysregulation of long non-coding RNAs (lncRNAs). These transcripts modulate expression of several tumor suppressor genes and oncogenes and alter the activity of cancer-related signaling axes. Several lncRNAs such as NEAT1, MALAT1, ANRIL, and SNHG1 have been up-regulated in HCC samples. On the other hand, a number of so-called tumor suppressor lncRNAs namely CASS2 and MEG3 are down-regulated in HCC. The interaction between lncRNAs and miRNAs regulate expression of a number of mRNA coding genes which are involved in the pathogenesis of HCC. H19/miR-15b/CDC42, H19/miR-326/TWIST1, NEAT1/miR-485/STAT3, MALAT1/miR-124-3p/Slug, MALAT1/miR-195/EGFR, MALAT1/miR-22/SNAI1, and ANRIL/miR-144/PBX3 axes are among functional axes in the pathobiology of HCC. Some genetic polymorphisms within non-coding regions of the genome have been associated with risk of HCC in certain populations. In the current paper, we describe the recent finding about the impact of lncRNAs in HCC.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
The Role of lncRNAs in the Pathobiology and Clinical Behavior of Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13081976. [PMID: 33923983 PMCID: PMC8074217 DOI: 10.3390/cancers13081976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Multiple myeloma (MM), the second most common hematological neoplasm, is still considered an incurable disease. Long non-coding RNAs (lncRNAs), genes that do not encode proteins, participate in numerous biological processes, but their deregulation, like that of coding genes, can contribute to carcinogenesis. Increasing evidence points to the relevant role of lncRNAs in the development of human tumors, such that they emerge as attractive biomarkers and therapeutic targets for cancer treatment, including MM. Here we review the oncogenic or tumor-suppressor functions of lncRNAs in MM and provide an overview of novel therapeutic approaches based on lncRNAs that will help to improve the management of these patients. Abstract MM is a hematological neoplasm that is still considered an incurable disease. Besides established genetic alterations, recent studies have shown that MM pathogenesis is also characterized by epigenetic aberrations, such as the gain of de novo active chromatin marks in promoter and enhancer regions and extensive DNA hypomethylation of intergenic regions, highlighting the relevance of these non-coding genomic regions. A recent study described how long non-coding RNAs (lncRNAs) correspond to 82% of the MM transcriptome and an increasing number of studies have demonstrated the importance of deregulation of lncRNAs in MM. In this review we focus on the deregulated lncRNAs in MM, including their biological or functional mechanisms, their role as biomarkers to improve the prognosis and monitoring of MM patients, and their participation in drug resistance. Furthermore, we also discuss the evidence supporting the role of lncRNAs as therapeutic targets through different novel RNA-based strategies.
Collapse
|
24
|
Chen T, Wang X, Li C, Zhang H, Liu Y, Han D, Li Y, Li Z, Luo D, Zhang N, Zheng M, Chen B, Wang L, Zhao W, Yang Q. CircHIF1A regulated by FUS accelerates triple-negative breast cancer progression by modulating NFIB expression and translocation. Oncogene 2021; 40:2756-2771. [PMID: 33714984 DOI: 10.1038/s41388-021-01739-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 01/31/2023]
Abstract
Emerging evidence has demonstrated that circular RNAs (circRNAs) play critical roles in the development and progression of human cancer. However, the biological functions and underlying mechanisms of circRNAs in triple-negative breast cancer (TNBC) remain to be investigated. In our present study, we found that the novel circRNA circHIF1A was significantly overexpressed in breast cancer tissues and that it was associated with metastasis, poor prognosis, and the TNBC subtype. Gain- and loss-of-function experiments were conducted to investigate the biological roles of circHIF1A in TNBC. Overexpression of circHIF1A significantly promoted TNBC growth and metastasis in vitro and in vivo, while knockdown of circHIF1A exerted the opposite effects. Mechanistically, circHIF1A modulated the expression and translocation of NFIB through posttranscriptional and posttranslational modifications, resulting in the activation of the AKT/STAT3 signaling pathway and inhibition of P21. The RNA binding protein FUS could regulate the biogenesis of circHIF1A by interacting with the flanking intron, and FUS was transcriptionally regulated by NFIB, thus forming the circHIF1A/NFIB/FUS positive feedback loop. Moreover, circHIF1A could be packaged into exosomes and was upregulated in the plasma of breast cancer patients. Our findings indicated that circHIF1A played a critical role in the growth and metastasis of TNBC via a positive feedback loop and that circHIF1A could be a promising biomarker for breast cancer diagnosis and a potential therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- Tong Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaolong Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chen Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hanwen Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ying Liu
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dianwen Han
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zheng Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dan Luo
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ning Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Meizhu Zheng
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Bing Chen
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China. .,Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, China. .,Research Institute of Breast Cancer, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
25
|
Temiz E, Koyuncu İ, Sahin E. CCT3 suppression prompts apoptotic machinery through oxidative stress and energy deprivation in breast and prostate cancers. Free Radic Biol Med 2021; 165:88-99. [PMID: 33508424 DOI: 10.1016/j.freeradbiomed.2021.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/20/2022]
Abstract
Mediated by chaperon proteins, protein misfolding plays a crucial role in cancer pathogenesis. Chaperonin Containing TCP1 Subunit 3 (CCT3) is one of eight subunits forming eukaryotic chaperons that catalyzes correct folding of the proteins employed in cell division, proliferation, and apoptosis pathway. Moreover, CCT3 expression increases responsively with carcinogenesis. However, how CCT3 drives the cancerous process has not been documented. Here we probed the mechanistic and functional interactions between CCT3 and apoptotic pathways and cell stressors. First, we profiled CCT3 expression levels of different 16 cell lines and found that CCT3 expression levels of CRL-2329 and PC3 were significantly increased. Then, we suppressed CCT3 levels in CRL-2329 and PC3 lines by miR-24-3p, miR-128-3p, and miR-149-5p mimics, and measured apoptotic response of the cell lines to the knockdown of CCT3 by acridine orange/ethidium bromide and Annexin V/PI staining, cell-cycle and mitochondria membrane potential (MMP) analyses, intracellular reactive oxygen species (ROS) measurement and analysis of expression levels of the apoptotic genes. After having suppressed CCT3, the cell cycle was arrested in the G0/G1 phase, MMP was impaired, and the intracellular ROS level was increased. These signs of apoptotic flux were corroborated by morphological images, statistically enhanced expression levels of the apoptotic pathway modulators and intracellular free amino acids profile. The free amino acid profile, which is heavily implicated in energy metabolism and cell division, is fluctuated in the progress of canceration. Strikingly, suppressed CCT3 shifted intracellular levels of glutamine, beta-alanine, glycine, serin, asparagine and sarcosine, which are employed in energy metabolism. Consequently, miRNA-mediated CCT3 suppression spur apoptosis by unbalancing the homeostasis in intracellular ROS and the profile of free amino acids in energy metabolism. Taken together, we anticipate that miRNA-mediated CCT3 suppression might provide a "dual therapeutic strategy" through conventional cellular toxicity as well as energy withdrawal.
Collapse
Affiliation(s)
- Ebru Temiz
- Program of Medical Promotion and Marketing, Health Services Vocational School, Harran University, Sanliurfa, Turkey; Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - İsmail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Emel Sahin
- Department of Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey.
| |
Collapse
|
26
|
Wang Y, Yin L. LINC00461 Promoted Endometrial Carcinoma Growth and Migration by Targeting MicroRNA-219-5p/Cyclooxygenase-2 Signaling Axis. Cell Transplant 2021; 30:963689721989616. [PMID: 33573388 PMCID: PMC7885031 DOI: 10.1177/0963689721989616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Endometrial carcinoma (EC) ranks as the most common female genital cancer in developed countries. Lately, more and more long noncoding RNAs (lncRNAs) have been identified as vital regulators in numerous physiological and pathological processes, including EC. However, the expression pattern and precise functions of different lncRNAs in EC remain unclear. In this study, we reported LINC00461 was upregulated in EC patient tissues and cell lines. In addition, LINC00461 knockdown could remarkably suppress cell proliferation, cell cycle progression, cell migration, and promote cell apoptosis in EC cells. We discovered LINC00461 could sponge microRNA-219-5p (miR-219-5p) and suppress its expression, thereby upregulating expression level of miR-219-5p’s target, cyclooxygenase-2 (COX-2). In vivo animal models, LINC00461 knockdown inhibited tumor growth by increasing miR-219-5p level and reducing COX-2 expression, thus confirming LINC00461 functions as an oncogene in EC. In this study, a novel regulatory role of LINC00461/miR-219-5p/COX-2 axis was systematically investigated in context of EC, with the aim to provide promising intervention targets for EC therapy from bench to clinic.
Collapse
Affiliation(s)
- Yu Wang
- Department of Obstetrics & Gynecology, 85024Shengjing Hospital of China Medical University, Liaoning Province, PR China
| | - Lili Yin
- Department of Obstetrics & Gynecology, 85024Shengjing Hospital of China Medical University, Liaoning Province, PR China
| |
Collapse
|
27
|
Guan Y, Guan A, Chen L, Gong A. LINC00461 facilitates HNSCC development and reduces chemosensitivity by impairing miR-195-mediated inhibition of HOXA10. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:74-86. [PMID: 33869744 PMCID: PMC8027536 DOI: 10.1016/j.omto.2021.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/13/2021] [Indexed: 12/15/2022]
Abstract
Homeobox A10 (HOXA10) has been regarded to serve as an oncogene in head and neck squamous cell carcinoma (HNSCC). This study was intended to explore the interaction among the long intergenic noncoding RNA 00461 (LINC00461), microRNA (miR)-195, and HOXA10, and to investigate its role in epithelial-mesenchymal transition (EMT) and chemoresistance in HNSCC. The effects of LINC00461, miR-195, and HOXA10 on the EMT and chemoresistance of HNSCC cells were analyzed by comprehensive analysis of gain- and loss-of-function techniques. The intimate relationships among LINC00461, miR-195, and HOXA10 were investigated by several procedures such as RNA-binding protein immunoprecipitation, RNA pull-down, and dual-luciferase reporter assays. A xenotransplantation tumor model in nude mice was established for the assessment of the tumorigenic ability of the cells in vivo. Our findings indicated that LINC00461 was highly expressed in HNSCC and its overexpression induced EMT and precipitated the chemoresistance of HNSCC cells to cisplatin. The LINC00461 could bind to miR-195 while miR-195 targeted HOXA10 independently. Moreover, LINC00461 impaired miR-195-mediated inhibition of HOXA10 to induce EMT and increase the chemoresistance in HNSCC. Tumor weight and volume were reduced by lentivirus-mediated elevation of miR-195 by inhibition of HOXA10, which could be annulled by LINC00461 overexpression. LINC00461 downregulates the expression of miR-195 to subsequently upregulate the expression of HOXA10, thereby promoting EMT and enhancing chemoresistance in HNSCC.
Collapse
Affiliation(s)
- Yifang Guan
- Department of Stomatology, Linyi People's Hospital, Linyi 276000, Shandong, P.R. China
| | - Aizhong Guan
- Department of Stomatology, Linyi People's Hospital, Linyi 276000, Shandong, P.R. China
| | - Long Chen
- Department of Stomatology, Linyi People's Hospital, Linyi 276000, Shandong, P.R. China
| | - Aimei Gong
- Department of Stomatology, Linyi People's Hospital, Linyi 276000, Shandong, P.R. China
| |
Collapse
|
28
|
Deng Q, Ma L, Chen T, Yang Y, Ma Y, Ma L. NF-κB 1-induced LINC00665 regulates inflammation and apoptosis of neurons caused by spinal cord injury by targeting miR-34a-5p. Neurol Res 2021; 43:418-427. [PMID: 33435858 DOI: 10.1080/01616412.2020.1866373] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Spinal cord injury (SCI) has high disability rate and low cure rate, which frustrates the patients and brings a heavy burden to their families. This study aimed to explore whether NF-κB1 could induce the expression of LINC00665 and form a feedback loop with miR-34a-5p to regulate inflammation and apoptosis of neurons. Results: Basso, Beattie, and Bresnahan (BBB) scoring was decreased, damage for spinal cord tissue was aggravated and neuron number was decreased in SCI rats. The levels of TNF-α, IL-1β and IL-6 in serum and the expression of LINC00665 and NF-κB1 in spinal cord tissues were all increased in SCI rats. After LPS induction, PC12 cell viability was decreased. The expression of LINC00665 and NF-κB1 in LPS-induced PC12 cells was increased, which was partially reversed by BAY11-7082 (NF-κB inhibitor). Inhibition of LINC00665 improved cell viability, suppressed apoptosis and inflammation and down-regulated the NF-κB1 expression in LPS-induced PC12 cells. Furthermore, miR-34a-5p expression was decreased in LPS-induced PC12 cells, which could be promoted by inhibition of LINC00665. miR-34a-5p inhibitor restrained the effect of inhibition of LINC00665 on NF-κB1 expression in LPS-induced PC12 cells. Conclusion: inhibition of LINC00665 improved cell viability, suppressed apoptosis and inflammation in LPS-induced PC12 cells, and the NF-κB1/LINC00665/miR-34a-5ploop might be a useful therapeutic target in SCI treatment.
Collapse
Affiliation(s)
- Qilong Deng
- Rehabilitation Medical Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Rehabilitation Medical Center, Luqiao Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang, China
| | - Lili Ma
- Rehabilitation Medical Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Rehabilitation Medical Center, Luqiao Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang, China
| | - Ting Chen
- Rehabilitation Medical Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Rehabilitation Medical Center, Luqiao Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang, China
| | - Yu Yang
- Rehabilitation Medical Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Rehabilitation Medical Center, Luqiao Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang, China
| | - Yuetao Ma
- Rehabilitation Medical Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Rehabilitation Medical Center, Luqiao Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang, China
| | - Lizhong Ma
- Rehabilitation Medical Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Rehabilitation Medical Center, Luqiao Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang, China
| |
Collapse
|
29
|
Wei H, Li L, Zhang H, Xu F, Chen L, Che G, Wang Y. Circ-FOXM1 knockdown suppresses non-small cell lung cancer development by regulating the miR-149-5p/ATG5 axis. Cell Cycle 2021; 20:166-178. [PMID: 33413028 DOI: 10.1080/15384101.2020.1867780] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Circular RNAs (circRNAs) have been reported to be related to the development of human cancers. However, the function of circ-FOXM1 in non-small cell lung cancer (NSCLC) was largely unknown. Here, we revealed the role and functional mechanism of circ-FOXM1 in NSCLC progression. The relative expression of circ-FOXM1, microRNA-149-5p (miR-149-5p), and autophagy-related 5 (ATG5) was determined by quantitative real-time polymerase chain reaction (RT-qPCR). Cell Counting Kit-8 (CCK-8), flow cytometry, and transwell assay were employed to assess cell viability, apoptosis, and migration, respectively. The relative protein expression was detected by western blot. Furthermore, mouse xenograft was carried out to analyze the effect of circ-FOXM1 on tumor growth in vivo. In addition, the interaction between miR-149-5p and circ-FOXM1 or ATG5 was predicted by Starbase3.0 and confirmed by the dual-luciferase reporter assay and RNA pull-down assay. Circ-FOXM1 and ATG5 levels were upregulated, while the miR-149-5p level was downregulated in NSCLC tissues and cells. Circ-FOXM1 knockdown suppressed NSCLC cell viability, migration, and autophagy, and induced cell apoptosis. Interestingly, circ-FOXM1 targeted miR-149-5p to upregulate the ATG5 level. Moreover, circ-FOXM1 exerted function through repressing miR-149-5p expression, and miR-149-5p exerted function via inhibiting ATG5 expression. Our results suggested that circ-FOXM1 knockdown attenuated the development of NSCLC through modulating the miR-149-5p/ATG5 axis, providing a theoretical basis for the therapy of NSCLC.
Collapse
Affiliation(s)
- Haitao Wei
- Department of Thoracic Surgery, West China Hospital, Sichuan University , Chengdu, Sichuan, China.,Department of Thoracic Surgery, Huaihe Hospital of Henan University , Kaifeng, Henan, China
| | - Li Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University , Chengdu, Sichuan, China.,School of Nursing and Health, Henan University , Kaifeng, Henan, China
| | - Haifeng Zhang
- Department of Thoracic Surgery, Huaihe Hospital of Henan University , Kaifeng, Henan, China
| | - Feng Xu
- Department of Respiratory, Huaihe Hospital, Henan University , Kaifeng, Henan, China
| | - Longqi Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University , Chengdu, Sichuan, China
| | - Guowei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University , Chengdu, Sichuan, China
| | - Yun Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University , Chengdu, Sichuan, China
| |
Collapse
|
30
|
Zhao P, Cheng J, Li B, Nie D, Li C, Gui S, Wang H, Zhang Y. Up-regulation of the expressions of MiR-149-5p and MiR-99a-3p in exosome inhibits the progress of pituitary adenomas. Cell Biol Toxicol 2021; 37:633-651. [PMID: 33400021 DOI: 10.1007/s10565-020-09570-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 11/04/2020] [Indexed: 10/22/2022]
Abstract
This study explored the function of microRNAs (miRNAs) in invasive pituitary adenomas (IPA), and developed a microRNA-exosome strategy for the disease treatment. Differentially expressed miRNAs and tumor-associated markers in IPA, non-invasive pituitary adenoma (NIPA), and rat pituitary adenoma cells were identified by bioinformatics analysis and qRT-PCR. Then, the cells were treated by miR-149-5p and miR-99a-3p mimics or inhibitors, or incubated with modified exosome with overexpressed or silenced miRNAs. The cell behaviors were analyzed by molecular experiments. Xenograft assays were constructed by injection of pituitary adenoma cells and exosome into NU/NU nude mice. Tumor size, weight, and expressions of markers related to miRNAs and angiogenesis were determined. Target genes for miR-99a-3p and miR-149 were predicted and verified by bioinformatics analysis and molecular experiments. Twenty differentially expressed miRNAs were identified, among which miR-99a-3p and miR-149 were inhibited in both pituitary adenoma cells and tissues significantly. Expressions of E-cadherin and p53 were down-regulated, while those of MMP-2, MMP-9, N-cadherin, Vimentin, and VEGF were up-regulated in pituitary adenoma cells and tissues, especially in IPA. Further experiments revealed that overexpressed miR-149 and miR-99a-3p inhibited the growth and metastasis of pituitary adenoma cells and tube formation of endothelial cells. MiR-149 and miR-99a-3p overexpressed by exosome showed similar suppressive effects on cell viability, metastasis, tube formation ability, in vivo tumor growth, and expressions of angiogenesis-related markers. Further analysis showed that NOVA1, DTL, and RAB27B were targeted by miR-99a-3p. This study found that overexpressed miR-149-5p and miR-99a-3p induced by exosome could suppress the progression of IPA. 1. MiR-149-5p and miR-99a-3p affect the expression of EMT- and ECM-related markers and tumor-related genes in rat pituitary adenoma cells treated with exosomes. 2. Exosome inhibited the tumor growth. 3. Overexpressed miR-149-5p and miR-99a-3p induced by exosome.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| | - Jianhua Cheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Bin Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ding Nie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Chuzhong Li
- Department of Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Hongyun Wang
- Department of Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yazhuo Zhang
- Department of Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Zhou H, Li L, Wang Y, Wang D. Long non-coding RNA SNHG6 promotes tumorigenesis in melanoma cells via the microRNA-101-3p/RAP2B axis. Oncol Lett 2020; 20:323. [PMID: 33123239 PMCID: PMC7583849 DOI: 10.3892/ol.2020.12186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
Numerous studies have reported that the long non-coding RNA (lncRNA) small nucleolar RNA host gene 6 (SNHG6; ENSG00000245910) participates in the development of malignant tumors. However, the underlying mechanism of SNHG6 in the development of melanoma remains unknown. Thus, the present study aimed to investigate the biological role of SNHG6 in the progression of melanoma. SNHG6 expression in melanoma tissues and cells was assessed using a bioinformatics approach and reverse transcription-quantitative PCR analysis. Cell viability was determined using the Cell Counting Kit-8 and colony formation assays. The correlation between microRNA (miR)-101-3p, SNHG6 and RAP2B expression levels was assessed using Pearson's correlation analysis. Bioinformatic analysis and luciferase reporter assay were utilized to confirm the interaction between miR-101-3p and SNHG6 or RAP2B. The Transwell assay was conducted to examine the migratory and invasive activities of melanoma cells. In the present study, SNHG6 expression was upregulated in melanoma tissues and cell lines, and SNHG6 silencing suppressed melanoma cell viability, migration and invasion. SNHG6 was directly bound to miR-101-3p, which interacted with RAP2B. In addition, miR-101-3p expression was negatively correlated with SNHG6 or RAP2B expression. miR-101-3p silencing partially abrogated the suppressive effect of SNHG6-knockdown on RAP2B expression. Moreover, the data demonstrated that RAP2B overexpression reversed the inhibitory effects on melanoma cell proliferation, migration and invasion induced by SNHG6 silencing. In conclusion, the present study identified that SNHG6 accelerated melanoma progression via regulating the miR-101-3p/RAP2B axis. Thus, the SNHG6/miR-101-3p/RAP2B signaling pathway may be a novel therapeutic target for melanoma.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Plastic Surgery and Burn, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| | - Lingqiao Li
- Department of Plastic Surgery and Burn, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| | - Yingqian Wang
- Department of Plastic Surgery and Burn, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| | - Dewei Wang
- Department of Plastic Surgery and Burn, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
32
|
Wang Z, Lu Y, Sheng B, Ding Y, Cheng X. Long-noncoding RNA LINC00461 promotes proliferation and invasion of nonsmall cell lung cancer cells via targeting miR-518a-3p/WDR1 pathway. J Recept Signal Transduct Res 2020; 42:80-87. [PMID: 33233986 DOI: 10.1080/10799893.2020.1850786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Long noncoding RNAs (lncRNAs) are a class of RNAs participating in many biological processes such as imprinting, alternative splicing and RNA decay. Recently, lncRNAs have drawn a great deal of attention for their critical role in cancer progression. LINC00461, a newly identified lncRNA, has been reported to be significantly overexpressed in breast cancer and markedly expedited breast cancer progression. However, the specific role of LINC00461 in nonsmall cell lung cancer (NSCLC) remains unknown. In this study, we for the first time showed the biological functions of LINC00461 in NSCLC. Our results demonstrated that LINC00461 was significantly up-regulated in NSCLC tissues and cell lines. Furthermore, knockdown of LINC00461 inhibited NSCLC cell proliferation and invasion in vitro as well as suppressed tumor growth and metastasis in vivo. We also performed luciferase reporter assays and found that LINC00461 functioned as a sponge for miR-518a-3p and WDR1 was a target of miR-518a-3p. Taken together, we suggested an essential role of LINC00461/miR-518a-3p/WDR1 axis in NSCLC, which could be used as a potential therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Zuopei Wang
- Department of Thoracic Surgery, Shanghai Pudong New area People's Hospital, Shanghai, China
| | - Yi Lu
- Department of Thoracic Surgery, Shanghai Pudong New area People's Hospital, Shanghai, China
| | - Bo Sheng
- Department of Thoracic Surgery, Shanghai Pudong New area People's Hospital, Shanghai, China
| | - Yi Ding
- Department of Thoracic Surgery, Shanghai Pudong New area People's Hospital, Shanghai, China
| | - Xiaoke Cheng
- Department of Scientific Research, Shanghai Pudong New area People's Hospital, Shanghai, China
| |
Collapse
|
33
|
Li L, He Y, He XJ, Bi MR, Qi YH, Zhu WW. Down-regulation of long noncoding RNA LINC00472 alleviates sepsis-induced acute hepatic injury by regulating miR-373-3p/TRIM8 axis. Exp Mol Pathol 2020; 117:104562. [PMID: 33129786 DOI: 10.1016/j.yexmp.2020.104562] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/02/2020] [Accepted: 10/25/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The long noncoding RNAs (lncRNAs) have been confirmed to be involved in sepsis-induced organ injury. Here, we first investigated the functional role and the underlying mechanism of lncRNA LINC00472 in sepsis-induced acute hepatic injury (AHI). METHODS Human liver THLE-3 cells were treated with lipopolysaccharide (LPS) to mimic sepsis-induced AHI in vitro; intraperitoneal injection of LPS in rats were used as an in vivo model of AHI induced by sepsis. The expressions of LINC00472, miR-373-3p, and TRIM8 mRNA were detected by qRT-PCR. The effects of LINC00472 and miR-373-3p on the viability of THLE-3 cells were assessed by CCK-8 assay. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were performed to determine the binding relationship between LINC00472 and miR-373-3p as well as between miR-373-3p and TRIM8. The expressions of apoptosis-related proteins and TRIM8 were detected by Western blot; the levels of ALT, AST, TNF-α, IL-6, and IL-10 in the serum of rats were measured using ELSA assay. RESULTS LINC00472 and TRIM8 were significantly upregulated in liver tissues and THLE-3 cells in sepsis-induced AHI models, while miR-373-3p was downregulated. Silencing of LINC00472 promoted cell viability and suppressed cell apoptosis in LPS-treated THLE-3 cells, whereas upregulation of LINC00472 had the opposite effect. Moreover, LINC00472 served as a sponge for miR-373-3p and negatively regulated its expression. miR-373-3p mimics could promote THLE-3 cell viability and suppress cell apoptosis. Additionally, TRIM8 was a direct target of miR-373-3p, which was downregulated in LINC00472-silenced cells and upregulated by the miR-373-3p inhibitor. Further, the co-transfection of miR-373-3p inhibitor reversed the effects of LINC00472 knockdown on cell viability and apoptosis. Downregulation of LINC00472 in rats restored the levels of ALT, AST, IL-6, IL-10, and TNF-α. CONCLUSION Downregulation of LINC00472 ameliorates sepsis-induced AHI by regulating the miR-373-3p/TRIM8 axis.
Collapse
Affiliation(s)
- Lei Li
- Department of Pediatrics, Jinan Maternity and Child Care Hospital, Jinan 250001, China
| | - Yan He
- Department of Pediatrics, Jinan Maternity and Child Care Hospital, Jinan 250001, China
| | - Xue-Jia He
- Department of Pediatrics, Jinan Maternity and Child Care Hospital, Jinan 250001, China
| | - Mei-Rong Bi
- Department of Pediatrics, Jinan Central Hospital, Jinan 250021, China
| | - Yan-Hong Qi
- Department of Pediatrics, Shandong Provincial West Hospital, Jinan 250021, China.
| | - Wei-Wei Zhu
- Department of Pediatrics, Jinan Central Hospital, Jinan 250021, China.
| |
Collapse
|
34
|
Wang N, Zhou P, Chen Y, Qu H, Lu K, Xia J. MicroRNA-149: A review of its role in digestive system cancers. Pathol Res Pract 2020; 216:153266. [PMID: 33197838 DOI: 10.1016/j.prp.2020.153266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/18/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a group of highly conserved, short (18-25 nucleotide long) non-coding RNAs which play important functional roles in cellular differentiation, biological development, pathogenesis and disease susceptibility and have been linked to both tumorigenesis and the malignant progression of various cancers. miRNAs primarily exert their function through the negative regulation of their target gene's transcription via the specific recognition of their 3' untranslated region. A single miRNA can regulate multiple target genes and most miRNAs are controlled by several factors. Recent studies have shown that microRNA-149 (miR-149) plays a pivotal role in the pathogenesis of digestive system cancers and may act as a potential diagnostic marker and therapeutic target. In this review, we summarize and discuss the most recent reports describing miR-149 in digestive system cancers, including its single nucleotide polymorphisms, expression levels, target genes, drug sensitivity and clinical significance.
Collapse
Affiliation(s)
- Ning Wang
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China
| | - Peng Zhou
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China
| | - Yigang Chen
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China
| | - Huiheng Qu
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China
| | - Keyu Lu
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China
| | - Jiazeng Xia
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China.
| |
Collapse
|
35
|
CircRNA hsa_circRNA_0001776 inhibits proliferation and promotes apoptosis in endometrial cancer via downregulating LRIG2 by sponging miR-182. Cancer Cell Int 2020; 20:412. [PMID: 32863771 PMCID: PMC7450557 DOI: 10.1186/s12935-020-01437-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
Background Endometrial cancer (EC) is a common malignancy of the female reproductive system. Circular RNAs (circRNAs) were demonstrated to exert critical roles in cancers, including EC. This study aimed to investigate the effects of hsa_circRNA_0001776 (circ_0001776) on EC. Methods Real-time quantitative PCR (RT-qPCR) was used to measure circ_0001776, microRNA-182 (miR-182) and leucine-rich repeats and immunoglobulin-like domains 2 (LRIG2) expression. The diagnostic and prognostic values of circ_0001776 were identified by receiver operating characteristic (ROC) curve analysis and survival analysis, respectively. RNase R digestion was used to characterize circ_0001776, and the localization of circ_0001776 was evaluated by cell fractionation assay. Then, cell counting kit-8 (CCK-8), colony formation, and flow cytometry analysis were used to detect cell proliferation and apoptosis, respectively. The real-time glycolytic rate (ECAR) and lactate production were measured by extracellular flux analysis and a lactate assay kit, respectively. Bioinformatics analysis and dual-luciferase reporter assay were used to determine the interaction among circ_0001776, miR-182 and LRIG2. The protein expression of LRIG2 was determined by western blot. Moreover, circ_0001776 overexpression vector was used to upregulate circ_0001776 expression in an animal tumor model. Results Circ_0001776 and LRIG2 were downregulated, while miR-182 was upregulated in EC tissues and cells. Low expression of circ_0001776 was correlated with the 5-year survival rate of EC patients. Upregulated circ_0001776 markedly attenuated cell proliferation and glycolysis, and enhanced cell apoptosis. Besides, circ_0001776 sponged miR-182 to regulate LRIG2 expression. Circ_0001776 could suppress EC progression by miR-182/LRIG2 axis. Furthermore, we also found that circ_0001776 significantly inhibited tumor growth in vivo. Conclusion Our results confirmed that circ_0001776 inhibited EC tumorigenesis and progression via miR-182/LRIG2 axis, providing a potential therapeutic target for EC.
Collapse
|
36
|
Wu Z, Wei ZH, Chen SH. LncUBE2R2-AS1 acts as a microRNA sponge of miR-302b to promote HCC progression via activation EGFR-PI3K-AKT signaling pathway. Cell Cycle 2020; 19:2426-2435. [PMID: 32835579 DOI: 10.1080/15384101.2020.1795991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a main cause of cancer-related deaths globally. Long non-coding RNAs (lncRNAs) play important roles in diverse cancers. LncRNA-UBE2R2-AS1 has been reported to promote apoptosis in glioma cell. However, the expressions, functions, and mechanisms of action of UBE2R2-AS1 in HCC are still unclear. UBE2R2-AS1 is increased in HCC tissues and cell lines. Increased expression of UBE2R2-AS1 is associated with large tumor size, multiple tumor number, advanced TNM stage, and poor survival of HCC patients. Functional experiments showed that knockdown UBE2R2-AS1 inhibited HCC growth and metastasis through in vitro and in vivo experiments. Regarding the mechanism, UBE2R2-AS1/miR-302b/EGFR established the ceRNA network involved in the modulation of cell progression of HCC cells via activation of PI3K-AKT signaling pathway. Overall, UBE2R2-AS1 may exhibit an oncogenic function in HCC via acting as a sponge for miR-302b to up-regulate EGFR, and may serve as a potential therapeutic target and a prognostic biomarker for HCC patients.
Collapse
Affiliation(s)
- Zhe Wu
- Department of Hepatology Surgery, 900 Hospital of the Joint Logistics Team , Fuzhou, Fujian, China
| | - Zhi-Hong Wei
- Department of Hepatology Surgery, 900 Hospital of the Joint Logistics Team , Fuzhou, Fujian, China
| | - Shao-Hua Chen
- Department of Hepatology Surgery, 900 Hospital of the Joint Logistics Team , Fuzhou, Fujian, China
| |
Collapse
|
37
|
Peng Y, Wu W, Shang Z, Li W, Chen S. Inhibition of lncRNA LINC00461/miR-216a/aquaporin 4 pathway suppresses cell proliferation, migration, invasion, and chemoresistance in glioma. Open Life Sci 2020; 15:532-543. [PMID: 33817241 PMCID: PMC7874638 DOI: 10.1515/biol-2020-0048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/25/2020] [Accepted: 05/03/2020] [Indexed: 12/25/2022] Open
Abstract
Long noncoding RNA (lncRNA) LINC00461 (LINC00461) is reported to be related to glioma progression. However, the mechanism of LINC00461 in glioma remains unclear. Expression of LINC00461, miRNA (miR)-216a, and aquaporin 4 (AQP4) was detected using real-time quantitative PCR (RT-qPCR) and western blotting. Proliferation, temozolomide (TMZ) resistance, migration, and invasion were assessed by MTT, colony formation, and transwell assays, respectively. The target binding among miR-216a, LINC00461, and AQP4 was confirmed by the luciferase reporter assay. The tumor growth was monitored in the xenograft experiment. LINC00461 was upregulated, and miR-216a was downregulated in glioma tissues and cells, and LINC00461 upregulation was correlated with large tumor size, higher WHO grade and recurrence, and poor overall survival. LINC00461 knockdown suppressed cell viability, abilities of cell cloning and migration and invasion, and TMZ resistance in glioma. Mechanically, LINC00461 was confirmed to sponge miR-216a to affect AQP4 expression. Rescue assays verified that miR-216a downregulation or AQP4 upregulation abrogated the inhibitory effect of LINC00461 knockdown on cell proliferation, migration, invasion, and TMZ resistance in vitro. Moreover, LINC00461 downregulation blocked the glioma tumor growth in vivo. In conclusion, LINC00461 knockdown inhibits glioma cell proliferation, migration, invasion, and TMZ resistance through miR-216a/AQP4 axis, suggesting LINC00461 as an oncogene in glioma progression.
Collapse
Affiliation(s)
- Yanguo Peng
- Department of neurosurgery, The Affiliated Mindong Hospital of Fujian Medical University, No. 89 Heshan Road, Fuan 355000, Fujian, China
| | - Wangchun Wu
- Department of neurosurgery, The Affiliated Mindong Hospital of Fujian Medical University, No. 89 Heshan Road, Fuan 355000, Fujian, China
| | - Zhanfang Shang
- Department of neurosurgery, The Affiliated Mindong Hospital of Fujian Medical University, No. 89 Heshan Road, Fuan 355000, Fujian, China
| | - Wei Li
- Department of neurosurgery, The Affiliated Mindong Hospital of Fujian Medical University, No. 89 Heshan Road, Fuan 355000, Fujian, China
| | - Shuiyu Chen
- Department of neurosurgery, The Affiliated Mindong Hospital of Fujian Medical University, No. 89 Heshan Road, Fuan 355000, Fujian, China
| |
Collapse
|
38
|
Zhang C, Wang J, Zhang J, Qu H, Tang X. LINC00461 Overexpression Can Induce Docetaxel Resistance in Breast Cancer by Interacting with miR-411-5p. Onco Targets Ther 2020; 13:5551-5562. [PMID: 32606770 PMCID: PMC7297459 DOI: 10.2147/ott.s247776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/14/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose Breast cancer (BC) is the most common malignant cancer in women worldwide. Recently, long non-coding RNAs (LncRNAs) have been reported to have essential roles in BC tumorigenesis. Patients and Methods Tumor and adjacent non-tumor tissue samples were collected from patients with BC (n = 168) for comparison of LncRNA and miRNA expression levels. Patient clinical, demographic, and molecular data were analyzed by univariate and multivariate methods to identify factors associated with patient survival, and a nomogram was generated using significant risk/protective factors. Further, analyses of LINC00461 and miR-411-5p expression and function were conducted in BC and normal breast epithelial cell lines, by quantitative RT-PCR, cell proliferation, wound-healing, RNA pull-down, RNA immunoprecipitation, and luciferase assays. Docetaxel (DTX)-resistant BC cell lines were also generated and used to assess the roles of LINC00461 and miR-411-5p in drug resistance. Results LINC00461 was up-regulated in BC tissues relative to adjacent non-tumor samples, and expression of LINC00461 was correlated with poor patient prognosis. LINC00461 knockdown could inhibit proliferation of BC cells in vitro. Further, LINC00461 expression was higher in DTX-resistant than in non-resistant BC cell lines. Our data support a role for LINC00461 as a competitive endogenous RNA sponge involved in regulation of miR-411-5p expression in BC. miR-411-5p was down-regulated in both BC tissues and cell lines, with levels negatively correlated with those of LINC00461. Moreover, miR-411-5p was down-regulated in DTX-resistant BC cell lines compared with non-resistant cell lines. Conclusion In conclusion, LINC00461 promotes proliferation, migration, and DTX-resistance in BC by acting as a sponge for miR-411-5p. This process represents a potential therapeutic target for patients with BC.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Thoracic Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China
| | - Jizhao Wang
- Department of Thoracic Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China
| | - Jiawei Zhang
- Department of Thoracic Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China
| | - Hangying Qu
- Department of Thoracic Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China
| | - Xiaojiang Tang
- Department of Breast Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China
| |
Collapse
|
39
|
Zhang Q, Jin X, Shi W, Chen X, Pang W, Yu X, Yang L. A long non-coding RNA LINC00461-dependent mechanism underlying breast cancer invasion and migration via the miR-144-3p/KPNA2 axis. Cancer Cell Int 2020; 20:137. [PMID: 32355466 PMCID: PMC7184707 DOI: 10.1186/s12935-020-01221-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background The purpose of this study was to explore the regulatory mechanism of the long non-coding RNA (lncRNA) LINC00461 underlying the breast cancer invasion and migration via the miR-144-3p/KPNA2 axis. Methods Bioinformatics methods were applied to screen differentially expressed mRNAs, miRNAs and lncRNAs for construction of a competing endogenous RNA (ceRNA) network. LINC00461, KPNA2 and miR-144-3p were identified, and KPNA2 was predicted to be a target of miR-144-3p and significantly correlated with breast cancer prognosis. To make the findings more convincible, we used qRT-PCR to detect the expression levels of LINC00461 and miR-144-3p in breast cancer cells, and conducted western blot to determine KPNA2 protein level. Then, RIP was performed to assess the combination between miR-144-3p and LINC00461 or KPNA2, and dual-luciferase reporter assay was used to validate the targeted relationship between miR-144-3p and KPNA2. Furthermore, Transwell was employed for the examination of cell invasion and migration in breast cancer. Results LINC00461 was predicted to regulate KPNA2 through sponging miR-144-3p as revealed by the ceRNA network. Besides, LINC00461 and KPNA2 were found to be remarkably highly-expressed in breast cancer cells, while miR-144-3p was poorly-expressed. Silencing LINC00461 could promote miR-144-3p expression, thus inhibiting cell invasion and migration. In addition, KPNA2 was confirmed to be a direct target of miR-144-3p. Silencing miR-144-3p or overexpressing KPNA2 could reverse the inhibitory effect of LINC00461 silencing on cell invasion and migration in breast cancer. Conclusion LINC00461 promoted the expression of KPNA2 by competitively binding to miR-144-3p, thereby promoting the invasion and migration of breast cancer cells.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Breast Central, Taizhou Municipal Hospital, No.138 Zhongshan Road, Taizhou, 318000 Zhejiang China
| | - Xiaoyan Jin
- Department of Breast Central, Taizhou Municipal Hospital, No.138 Zhongshan Road, Taizhou, 318000 Zhejiang China
| | - Wenbiao Shi
- Department of Breast Central, Taizhou Municipal Hospital, No.138 Zhongshan Road, Taizhou, 318000 Zhejiang China
| | - Xin Chen
- Department of Breast Central, Taizhou Municipal Hospital, No.138 Zhongshan Road, Taizhou, 318000 Zhejiang China
| | - Wenyang Pang
- Department of Breast Central, Taizhou Municipal Hospital, No.138 Zhongshan Road, Taizhou, 318000 Zhejiang China
| | - Xiaodong Yu
- Department of Breast Central, Taizhou Municipal Hospital, No.138 Zhongshan Road, Taizhou, 318000 Zhejiang China
| | - Linjun Yang
- Department of Breast Central, Taizhou Municipal Hospital, No.138 Zhongshan Road, Taizhou, 318000 Zhejiang China
| |
Collapse
|
40
|
Chen W, Yu Z, Huang W, Yang Y, Wang F, Huang H. LncRNA LINC00665 Promotes Prostate Cancer Progression via miR-1224-5p/SND1 Axis. Onco Targets Ther 2020; 13:2527-2535. [PMID: 32273723 PMCID: PMC7105362 DOI: 10.2147/ott.s241578] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background Increasing researches have revealed a critical role of long noncoding RNAs (lncRNAs) in tumor progression. LINC00665 is a poorly investigated lncRNA. In this research, we sought to determine the potential role of LINC00665 in prostate cancer (PC) progression. Methods LINC00665 expression was analyzed by bioinformatics method and qRT-PCR. Proliferation was determined via CCK8 and colony formation assays. Transwell assay was conducted to analyze migration and invasion. Xenograft assay was used to test the roles of LINC00665 in vivo. Luciferase reporter assay, pulldown assay and RIP assay were utilized to confirm the interaction between LINC00665 and miR-1224-5p. Results LINC00665 expression was increased in PC samples in contrast to control tissues, according to bioinformatics analysis and qRT-PCR validation. LINC00665 high expression was related to a poor prognosis. LINC00665 knockdown markedly attenuated growth and metastasis of PC cells and impaired tumor propagation in vivo. Mechanistic investigation revealed that LINC00665 was the sponge for miR-1224-5p. By inhibiting miR-1224-5p level, LINC00665 dramatically promoted the expression of SND1 in PC cells. Ectopic expression of SND1 significantly rescued the effects of LINC00665 silencing. Conclusion LINC00665 is a novel oncogenic gene in PC by targeting miR-1224-5p/SND1 pathway and may be a therapeutic target.
Collapse
Affiliation(s)
- Wei Chen
- Department of Urology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Zhixian Yu
- Department of Urology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Weiping Huang
- Department of Urology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Yu Yang
- Department of Urology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Feng Wang
- Department of Urology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Hang Huang
- Department of Urology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| |
Collapse
|
41
|
Qu W, Huang W, Yang F, Ju H, Zhu G. Long noncoding RNA LINC00461 mediates cisplatin resistance of rectal cancer via miR-593-5p/CCND1 axis. Biomed Pharmacother 2020; 124:109740. [PMID: 31972361 DOI: 10.1016/j.biopha.2019.109740] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 12/28/2022] Open
Abstract
On account of the acquired drug resistance, the potency of cisplatin-based chemotherapy is far from satisfactory in rectal cancer. Increasing evidence has highlighted the crucial function of aberrantly expressed lncRNAs on the cisplatin resistance in multiple cancers. This research was the first attempt to decipher the underlying function and mechanism of long intergenic non-protein coding RNA 461 (LINC00461) in rectal cancer and also its relation to cisplatin resistance of rectal cancer. Data from this study revealed that LINC00461 expression was upregulated in rectal cancer cells. LINC00461 depletion restrained rectal cancer progression and sensitized rectal cancer cells to cisplatin. Molecular mechanism assays testified that LINC00461 bound with miR-593-5p. Besides, miR-593-5p upregulation improved the sensitivity of rectal cancer cells to cisplatin. Additionally, cyclin D1 (CCND1) was manifested to be a downstream target of miR-593-5p. Furthermore, CCND1 upregulation could reverse the effect of LINC00461 downregulation on rectal cancer progression and cisplatin resistance of rectal cancer. To sum up, LINC00461 mediates cisplatin resistance of rectal cancer by targeting miR-593-5p/CCND1 axis, shedding new light on the treatment of rectal cancer.
Collapse
Affiliation(s)
- Wei Qu
- Department of Gastroenterology, Rizhao People's Hospital, Rizhao, 276800, Shandong, China
| | - Wenzhong Huang
- Department of Endoscopy, Xiamen Hospital of Traditional Chinese Medicine, China
| | - Fang Yang
- Department of Neurology, Rizhao People's Hospital, Rizhao, 276800, Shangdong, China
| | - Hui Ju
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, China
| | - Guanghui Zhu
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
42
|
Yu H, Ma J, Chen J, Yang Y, Liang J, Liang Y. LncRNA LINC00461 Promotes Colorectal Cancer Progression via miRNA-323b-3p/NFIB Axis. Onco Targets Ther 2019; 12:11119-11129. [PMID: 31908480 PMCID: PMC6925558 DOI: 10.2147/ott.s228798] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Background LncRNA LINC00461 has been reported to play crucial regulatory roles in a variety of biological processes, including cell migration, cell invasion and cancer progression. However, its biological role in colorectal cancer (CRC) is completely unknown. The aim of our study was to explore the function of LINC00461 on CRC cells and the underlying mechanism. Materials and methods CRC tumor tissues and cell lines derived from hospital and corporation. The expression level of LINC00461 in CRC tissues and cell lines were analyzed by quantitative real-time PCR (qRT-PCR). The effect of LINC00461 on cell proliferation, colony formation, migration and invasion were detected by CCK-8 assay, colony formation and transwell assay, respectively. In addition, cell apoptosis was analyzed by flow cytometry, and the role of LINC00461 on tumor growth was investigated by tumor xenografts in nude mice. The targets of LINC00461 were predicted by starBase v3.0 and confirmed by a dual-luciferase reporter system. The expression level of transcription factors of nuclear factor I B (NFIB), p21 and CDK2 was determined by Western blot or qRT-PCR. The NFIB expression levels in CRC tissues and mice tumors were analyzed by immunofluorescence assay (IHC). Results We found that the expression of LINC00461 was significantly overexpressed in CRC tissues and different cell lines, and the high level of LINC00461 expression was associated with poor overall survival. Downregulation of LINC00461 expression significantly suppressed the proliferation, migration and invasion of CRC cells and promoted cell apoptosis. We also found that LINC00461 could directly interact with miR-323b-3p. In addition, LINC00461 significantly increased the expression NFIB and CDK2, but, p21 was inhibited. Finally, we found that the growth of tumors in nude mice was suppressed upon LINC00461 deletion. Conclusion We demonstrated that LINC00461 may play an oncogenic role in CRC cells through NFIB signaling pathway by targeting miR-323b-3p. Our report showed that LINC00461 may be a prognostic biomarker and candidate therapeutic target for CRC.
Collapse
Affiliation(s)
- Hairong Yu
- Functional Experiment Center, Chengde Medical College, Chengde 067000, People's Republic of China
| | - Jianguo Ma
- Department of Urology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Jianshuang Chen
- Functional Experiment Center, Chengde Medical College, Chengde 067000, People's Republic of China
| | - Yang Yang
- Functional Experiment Center, Chengde Medical College, Chengde 067000, People's Republic of China
| | - Jianjing Liang
- Medical Department of Hebei University, Hebei University, Baoding, Hebei, People's Republic of China
| | - Yulong Liang
- Department of General Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| |
Collapse
|
43
|
Yao X, You G, Zhou C, Zhang D. LncRNA ASB16-AS1 Promotes Growth And Invasion Of Hepatocellular Carcinoma Through Regulating miR-1827/FZD4 Axis And Activating Wnt/β-Catenin Pathway. Cancer Manag Res 2019; 11:9371-9378. [PMID: 31807066 PMCID: PMC6847996 DOI: 10.2147/cmar.s220434] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/11/2019] [Indexed: 01/10/2023] Open
Abstract
Background To date, although several long noncoding RNAs (lncRNAs) are reported to regulate hepatocellular carcinoma (HCC) development, their relationship still remains elusive. ASB16-AS1 is a poorly researched novel lncRNA. We aimed to investigate its function in HCC progression. Methods qRT-PCR and in situ hybridization (ISH) were used to analyze ASB16-AS1 expression in HCC tissues. CCK8, Edu incorporation and colony formation were used to determine cell proliferation. Transwell assay was used to examine migration and invasion. Luciferase reporter assay was used to analyze the interactions among ASB16-AS1, miR-1827 and FZD4. Results Bioinformatics analysis identified ASB16-AS1 was overexpressed in HCC tissues, which was further validated by qRT-PCR and in situ hybridization (ISH). Besides, ASB16-AS1 was demonstrated to be a potential indicator for HCC prognosis. Functional studies showed ASB16-AS1 knockdown attenuated proliferation, migration and invasion of HCC cells. Mechanistically, ASB16-AS1 directly interacted with miR-1827 and promoted FZD4 expression by sponging miR-1827. Overexpressed FZD4 eventually activated Wnt/β-catenin pathway and contributed to HCC progression. Conclusion Our work is the first to identify ASB16-AS1 as an oncogene that enhances HCC progression by modulating miR-1827/FZD4/Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Xiaoxiao Yao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Guangqiang You
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Chen Zhou
- Personnel Department, The First Affiliated Hospital of Jilin University, Changchun 130000, People's Republic of China
| | - Dan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|
44
|
miR-149-5p protects against high glucose-induced pancreatic beta cell apoptosis via targeting the BH3-only protein BIM. Exp Mol Pathol 2019; 110:104279. [PMID: 31260649 DOI: 10.1016/j.yexmp.2019.104279] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022]
Abstract
Diabetes mellitus (DM) is characterized by the elevated blood glucose levels and is regarded as one of the most threatening diseases worldwide. The dysfunction of pancreatic beta cells is a key contributor for the pathophysiology of DM. There is growing evidence showing the role of microRNAs (miRNAs) in the regulation of pancreatic beta cell functions. In the present study, we determined the expression of miR-149-5p in pancreatic beta cells under high-glucose (HG) stimulation and explored the underlying mechanism of miR-149-5p-mediated functions of pancreatic beta cells. The results showed the down-regulation of miR-149-5p in the pancreatic beta cell line (MIN6 cells) under HG stimulation. Overexpression of miR-149-5p protected against HG-induced cell apoptosis and impairment of insulin secretion, and attenuated HG-induced an increase in reactive oxygen species (ROS) production in MIN6 cells; while inhibition of miR-149-5p suppressed cell viability, induced cell apoptosis, inhibited insulin secretion and enhanced ROS production in MIN6 cells. Further mechanistic studies revealed that miR-149-5p targeted the BH3-only protein BIM 3' untranslated region and suppressed BIM expression in MIN6 cells. The rescue experimental assays showed that enforced expression of BIM attenuated the miR-149-5p-mediated effects in HG-stimulated pancreatic beta cells. In conclusion, the present study for the first time elucidated the biological functions of miR-149-5p in regulating pancreatic beta cell functions. The data from the present study provided evidence showing that miR-149-5p protected against HG-induced pancreatic beta cell apoptosis partly via suppressing BIM expression. The therapeutic potential of miR-149-5p in the treatment of DM still requires further detailed investigations.
Collapse
|