1
|
Maisto M, Tenore GC. Polyphenols as a Useful Tool to Ameliorate Advanced Glycation End-product Formation: A Focus on Molecular Mechanisms of Action. FRONT BIOSCI-LANDMRK 2024; 29:424. [PMID: 39735990 DOI: 10.31083/j.fbl2912424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/04/2024] [Accepted: 10/18/2024] [Indexed: 12/31/2024]
Affiliation(s)
- Maria Maisto
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
2
|
Guo Y, Zhao J, Ma X, Cai M, Chi Y, Sun C, Liu S, Song X, Xu K. Phytochemical reduces toxicity of PM2.5: a review of research progress. Nutr Rev 2024; 82:654-663. [PMID: 37587082 DOI: 10.1093/nutrit/nuad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Studies have shown that exposure to fine particulate matter (PM2.5) affects various cells, systems, and organs in vivo and in vitro. PM2.5 adversely affects human health through mechanisms such as oxidative stress, inflammatory response, autophagy, ferroptosis, and endoplasmic reticulum stress. Phytochemicals are of interest for their broad range of physiological activities and few side effects, and, in recent years, they have been widely used to mitigate the adverse effects caused by PM2.5 exposure. In this review, the roles of various phytochemicals are summarized, including those of polyphenols, carotenoids, organic sulfur compounds, and saponin compounds, in mitigating PM2.5-induced adverse reactions through different molecular mechanisms, including anti-inflammatory and antioxidant mechanisms, inhibition of endoplasmic reticulum stress and ferroptosis, and regulation of autophagy. These are useful as a scientific basis for the prevention and treatment of disease caused by PM2.5.
Collapse
Affiliation(s)
- Yulan Guo
- School of Public Health, Jilin University, Changchun, China
| | - Jinbin Zhao
- School of Public Health, Jilin University, Changchun, China
| | - Xueer Ma
- School of Public Health, Jilin University, Changchun, China
| | - Ming Cai
- School of Public Health, Jilin University, Changchun, China
| | - Yuyang Chi
- School of Public Health, Jilin University, Changchun, China
| | - Chunmeng Sun
- School of Public Health, Jilin University, Changchun, China
| | - Shitong Liu
- School of Public Health, Jilin University, Changchun, China
| | - Xiuling Song
- School of Public Health, Jilin University, Changchun, China
| | - Kun Xu
- School of Medicine, Hunan Normal University, Changsha, China
- The Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China
| |
Collapse
|
3
|
Tota M, Łacwik J, Laska J, Sędek Ł, Gomułka K. The Role of Eosinophil-Derived Neurotoxin and Vascular Endothelial Growth Factor in the Pathogenesis of Eosinophilic Asthma. Cells 2023; 12:cells12091326. [PMID: 37174726 PMCID: PMC10177218 DOI: 10.3390/cells12091326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Asthma is a chronic complex pulmonary disease characterized by airway inflammation, remodeling, and hyperresponsiveness. Vascular endothelial growth factor (VEGF) and eosinophil-derived neurotoxin (EDN) are two significant mediators involved in the pathophysiology of asthma. In asthma, VEGF and EDN levels are elevated and correlate with disease severity and airway hyperresponsiveness. Diversity in VEGF polymorphisms results in the variability of responses to glucocorticosteroids and leukotriene antagonist treatment. Targeting VEGF and eosinophils is a promising therapeutic approach for asthma. We identified lichochalcone A, bevacizumab, azithromycin (AZT), vitamin D, diosmetin, epigallocatechin gallate, IGFBP-3, Neovastat (AE-941), endostatin, PEDF, and melatonin as putative add-on drugs in asthma with anti-VEGF properties. Further studies and clinical trials are needed to evaluate the efficacy of those drugs. AZT reduces the exacerbation rate and may be considered in adults with persistent symptomatic asthma. However, the long-term effects of AZT on community microbial resistance require further investigation. Vitamin D supplementation may enhance corticosteroid responsiveness. Herein, anti-eosinophil drugs are reviewed. Among them are, e.g., anti-IL-5 (mepolizumab, reslizumab, and benralizumab), anti-IL-13 (lebrikizumab and tralokinumab), anti-IL-4 and anti-IL-13 (dupilumab), and anti-IgE (omalizumab) drugs. EDN over peripheral blood eosinophil count is recommended to monitor the asthma control status and to assess the efficacy of anti-IL-5 therapy in asthma.
Collapse
Affiliation(s)
- Maciej Tota
- Student Scientific Group of Adult Allergology, Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Julia Łacwik
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Julia Laska
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
4
|
Salyha N, Oliynyk I. Hypoxia modeling techniques: A review. Heliyon 2023; 9:e13238. [PMID: 36718422 PMCID: PMC9877323 DOI: 10.1016/j.heliyon.2023.e13238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/08/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Hypoxia is the main cause and effect of a large number of diseases, including the most recent one facing the world, the coronavirus disease (COVID-19). Hypoxia is divided into short-term, long-term, and periodic, it can be the result of diseases, climate change, or living and traveling in the high mountain regions of the world. Since each type of hypoxia can be a cause and a consequence of various physiological changes, the methods for modeling these hypoxias are also different. There are many techniques for modeling hypoxia under experimental conditions. The most common animal for modeling hypoxia is a rat. Hypoxia models (hypoxia simulations) in rats are a tool to study the effect of various conditions on the oxygen supply of the body. These models can provide a necessary information to understand hypoxia and also provide effective treatment, highlighting the importance of various reactions of the body to hypoxia. The main parameters when choosing a model should be reproducibility and the goal that the scientist wants to achieve. Hypoxia in rats can be reproduced both ways exogenously and endogenously. The reason for writing this review was the aim to systematize the models of rats available in the literature in order to facilitate their selection by scientists. The relative strengths and limitations of each model need to be identified and understood in order to evaluate the information obtained from these models and extrapolate these results to humans to develop the necessary generalizations. Despite these problems, animal models have been and remain vital to understanding the mechanisms involved in the development and progression of hypoxia. The eligibility criteria for the selected studies was a comprehensive review of the methods and results obtained from the studies. This made it possible to make generalizations and give recommendations on the application of these methods. The review will assist scientists in choosing an appropriate hypoxia simulation method, as well as assist in interpreting the results obtained with these methods.
Collapse
Affiliation(s)
- Nataliya Salyha
- Institute of Animal Biology NAAS, Lviv, Ukraine,Corresponding author
| | | |
Collapse
|
5
|
Therapeutic Effects of Green Tea Polyphenol (‒)-Epigallocatechin-3-Gallate (EGCG) in Relation to Molecular Pathways Controlling Inflammation, Oxidative Stress, and Apoptosis. Int J Mol Sci 2022; 24:ijms24010340. [PMID: 36613784 PMCID: PMC9820274 DOI: 10.3390/ijms24010340] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
(‒)-Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea. Thanks to multiple interactions with cell surface receptors, intracellular signaling pathways, and nuclear transcription factors, EGCG possesses a wide variety of anti-inflammatory, antioxidant, antifibrotic, anti-remodelation, and tissue-protective properties which may be useful in the treatment of various diseases, particularly in cancer, and neurological, cardiovascular, respiratory, and metabolic disorders. This article reviews current information on the biological effects of EGCG in the above-mentioned disorders in relation to molecular pathways controlling inflammation, oxidative stress, and cell apoptosis.
Collapse
|
6
|
Tanaka KI, Nakaguchi S, Shiota S, Nakada Y, Oyama K, Sakakibara O, Shimoda M, Sugimoto A, Ichitani M, Takihara T, Kinugasa H, Kawahara M. Preventive Effect of Epigallocatechin Gallate, the Main Component of Green Tea, on Acute Lung Injury Caused by Air Pollutants. Biomolecules 2022; 12:biom12091196. [PMID: 36139034 PMCID: PMC9496336 DOI: 10.3390/biom12091196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Reducing the health hazards caused by air pollution is a global challenge and is included in the Sustainable Development Goals. Air pollutants, such as PM2.5, induce respiratory and cardiovascular disorders by causing various inflammatory responses via oxidative stress. Catechins and polyphenols, which are components of green tea, have various protective effects, owing to their antioxidant ability. The main catechin in green tea, epigallocatechin gallate (EGCG), is potentially effective against respiratory diseases, such as idiopathic pulmonary fibrosis and asthma, but its effectiveness against air-pollution-dependent lung injury has not yet been investigated. In this study, we examined the effect of EGCG on urban aerosol-induced acute lung injury in mice. Urban aerosol treatment caused increases in inflammatory cell counts, protein levels, and inflammatory cytokine expression in the lungs of ICR mice, but pretreatment with EGCG markedly suppressed these responses. Analyses of oxidative stress revealed that urban aerosol exposure enhanced reactive oxygen species (ROS) production and the formation of ROS-activated neutrophil extracellular traps (NETs) in the lungs of mice. However, ROS production and NETs formation were markedly suppressed by pretreating the mice with EGCG. Gallocatechin gallate (GCG), a heat-epimerized form of EGCG, also markedly suppressed urban aerosol-dependent inflammatory responses and ROS production in vivo and in vitro. These findings suggest that EGCG and GCG prevent acute lung injury caused by urban aerosols through their inhibitory effects on ROS production. Thus, we believe that foods and medications containing EGCG or GCG may be candidates to prevent the onset and progression of acute lung injury caused by air pollutants.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
- Correspondence: ; Tel./Fax: +81-42-468-9335
| | - Shunsuke Nakaguchi
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Sachie Shiota
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Yuka Nakada
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Kaho Oyama
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Okina Sakakibara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Mikako Shimoda
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Akio Sugimoto
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara 421-0516, Japan
| | - Masaki Ichitani
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara 421-0516, Japan
| | - Takanobu Takihara
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara 421-0516, Japan
| | - Hitoshi Kinugasa
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara 421-0516, Japan
| | - Masahiro Kawahara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| |
Collapse
|
7
|
Zhang J, Chen X, Li H, Liu W, Liu X, Song Y, Cong X. Selenium-enriched soybean peptides pretreatment attenuates lung injury in mice induced by fine particulate matters (PM2.5) through inhibition of TLR4/NF-κB/IκBα signaling pathway and inflammasome generation. Food Funct 2022; 13:9459-9469. [PMID: 35979800 DOI: 10.1039/d2fo01585d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to identify and prepare peptides from selenium (Se)-enriched soybeans and determine whether dietary Se-enriched soybean peptides (Se-SPep) could inhibit lung injury in mice induced by fine particulate matter 2.5 (PM2.5). BALB/c mice were randomly divided into six groups. The mice in the prevention groups were pretreated with 378 mg kg-1 of Se-SPep, soybean peptides (SPep), and Se-enriched soybean protein (Se-SPro), respectively, for four weeks. The mice in the PM2.5 exposure group received concentrated PM2.5 (15 μg per day mice) for 1 h daily from the third week for two weeks. The results showed that the leukocyte and cytokine (IL-1β, IL-6, TNF-α) levels in the bronchoalveolar lavage fluid (BALF) of the PM2.5 exposure group were higher than those in the control group. Se-SPep pretreatment decreased the IL-1β, IL-6, and TNF-α levels compared with the PM2.5 exposure group. Additionally, Se-SPep pretreatment inhibited TLR4/NF-κB/IκBα and NLRP3/ASC/caspase-1 protein expression in the lungs. In conclusion, Se-SPep pretreatment may protect the lungs of the mice against PM2.5-induced inflammation, suggesting that Se-SPep represents a potential preventative agent to inhibit PM2.5-induced lung injury.
Collapse
Affiliation(s)
- Jian Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Xinwei Chen
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Wanlu Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Yao Song
- Handan Institute of Innovation, Peking University, Handan 056000, China
| | - Xin Cong
- Enshi Se-Run Health Tech Development Co. Ltd., Enshi 445000, China
| |
Collapse
|
8
|
Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG): A Time for a New Player in the Treatment of Respiratory Diseases? Antioxidants (Basel) 2022; 11:antiox11081566. [PMID: 36009285 PMCID: PMC9405266 DOI: 10.3390/antiox11081566] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022] Open
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is a major polyphenol of green tea that possesses a wide variety of actions. EGCG acts as a strong antioxidant which effectively scavenges reactive oxygen species (ROS), inhibits pro-oxidant enzymes including NADPH oxidase, activates antioxidant systems including superoxide dismutase, catalase, or glutathione, and reduces abundant production of nitric oxide metabolites by inducible nitric oxide synthase. ECGC also exerts potent anti-inflammatory, anti-fibrotic, pro-apoptotic, anti-tumorous, and metabolic effects via modulation of a variety of intracellular signaling cascades. Based on this knowledge, the use of EGCG could be of benefit in respiratory diseases with acute or chronic inflammatory, oxidative, and fibrotizing processes in their pathogenesis. This article reviews current information on the biological effects of EGCG in those respiratory diseases or animal models in which EGCG has been administered, i.e., acute respiratory distress syndrome, respiratory infections, COVID-19, bronchial asthma, chronic obstructive pulmonary disease, lung fibrosis, silicosis, lung cancer, pulmonary hypertension, and lung embolism, and critically discusses effectiveness of EGCG administration in these respiratory disorders. For this review, articles in English language from the PubMed database were used.
Collapse
|
9
|
Yang N, Li X. Epigallocatechin gallate relieves asthmatic symptoms in mice by suppressing HIF-1α/VEGFA-mediated M2 skewing of macrophages. Biochem Pharmacol 2022; 202:115112. [DOI: 10.1016/j.bcp.2022.115112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023]
|
10
|
Qin Y, Zhang H, Jiang B, Chen J, Zhang T. Food bioactives lowering risks of chronic diseases induced by fine particulate air pollution: a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:7811-7836. [PMID: 35317688 DOI: 10.1080/10408398.2022.2051162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Airborne particulate matter (PM) exerts huge negative impacts on human health worldwide, not only targeting the respiratory system but more importantly inducing and aggravating associated chronic diseases like asthma, lung cancer, atherosclerosis, diabetes mellitus and Alzheimer diseases. Food-derived bioactive compounds like vitamins, dietary polyphenols, omega-3 polyunsaturated fatty acids and sulforaphane are feasible alternative therapeutic approaches against PM-mediated potential health damages, drawing great attention in recent years. In this review, the association between PM exposure and risks of developing chronic diseases, and the detailed mechanisms underlying the detrimental effects of PM will be discussed. Subsequently, principal food-derived bioactive compounds, with emphasize on the preventative or protective effects against PM, along with potential mechanisms will be elucidated. This comprehensive review will discuss and present current research findings to reveal the nutritional intervention as a preventative or therapeutic strategy against ambient air pollution, thereby lowering the risk of developing chronic diseases.
Collapse
Affiliation(s)
- Yang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Hua Zhang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Zhang Z, Zhang X, Bi K, He Y, Yan W, Yang CS, Zhang J. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19. Trends Food Sci Technol 2021; 114:11-24. [PMID: 34054222 PMCID: PMC8146271 DOI: 10.1016/j.tifs.2021.05.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 02/08/2023]
Abstract
Background The world is in the midst of the COVID-19 pandemic. In this comprehensive review, we discuss the potential protective effects of (−)-epigallocatechin-3-gallate (EGCG), a major constituent of green tea, against COVID-19. Scope and approach Information from literature of clinical symptoms and molecular pathology of COVID-19 as well as relevant publications in which EGCG shows potential protective activities against COVID-19 is integrated and evaluated. Key findings and conclusions EGCG, via activating Nrf2, can suppress ACE2 (a cellular receptor for SARS-CoV-2) and TMPRSS2, which mediate cell entry of the virus. Through inhibition of SARS-CoV-2 main protease, EGCG may inhibit viral reproduction. EGCG via its broad antioxidant activity may protect against SARS-CoV-2 evoked mitochondrial ROS (which promote SARS-CoV-2 replication) and against ROS burst inflicted by neutrophil extracellular traps. By suppressing ER-resident GRP78 activity and expression, EGCG can potentially inhibit SARS-CoV-2 life cycle. EGCG also shows protective effects against 1) cytokine storm-associated acute lung injury/acute respiratory distress syndrome, 2) thrombosis via suppressing tissue factors and activating platelets, 3) sepsis by inactivating redox-sensitive HMGB1, and 4) lung fibrosis through augmenting Nrf2 and suppressing NF-κB. These activities remain to be further substantiated in animals and humans. The possible concerted actions of EGCG suggest the importance of further studies on the prevention and treatment of COVID-19 in humans. These results also call for epidemiological studies on potential preventive effects of green tea drinking on COVID-19.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Musculoskeletal Tumor, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Keyi Bi
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Yufeng He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Wangjun Yan
- Department of Musculoskeletal Tumor, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854-8020, USA
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
12
|
Nishioku T, Kubo T, Kamada T, Okamoto K, Tsukuba T, Uto T, Shoyama Y. (-)-Epigallocatechin-3-gallate inhibits RANKL-induced osteoclastogenesis via downregulation of NFATc1 and suppression of HO-1-HMGB1-RAGE pathway. Biomed Res 2020; 41:269-277. [PMID: 33268671 DOI: 10.2220/biomedres.41.269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Osteoporosis disturbs the balance of bone metabolism, and excessive bone resorption causes a decrease in bone density, thus increasing the risk of fracture. (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant catechin contained in green tea. EGCG has a variety of pharmacological activities. Recently, it was reported that EGCG inhibits osteoclast differentiation, but the details of the mechanism underlying the EGCG-mediated suppression of osteoclastogenesis are unknown. In this study, we investigated the effects of EGCG on several signaling pathways in osteoclastogenesis. EGCG suppressed the expression of the nuclear factor of activated T cells cytoplasmic-1 (NFATc1), the master regulator of osteoclastogenesis. EGCG decreased the expression of cathepsin K, c-Src, and ATP6V0d2 and suppressed bone resorption. We also found that EGCG upregulated heme oxygenase-1 (HO-1) and suppressed the extracellular release of high-mobility group box 1 (HMGB1). In addition, EGCG decreased the expression of the receptor for advanced glycation end products (RAGE), which is the receptor of HMGB1, in osteoclastogenesis. In summary, our study showed that EGCG could inhibit osteoclast differentiation through the downregulation of NFATc1 and the suppression of the HO-1-HMGB1-RAGE pathway. EGCG might have the potential to be a lead compound that suppresses bone resorption in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Tsuyoshi Nishioku
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Toshiki Kubo
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Tsukushi Kamada
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Takayuki Tsukuba
- Division of Oral Pharmacology, Nagasaki University Graduate School of Biomedical Sciences
| | - Takuhiro Uto
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Yukihiro Shoyama
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| |
Collapse
|
13
|
Zhong M, Peng J, Xiang L, Yang X, Wang X, Zhu Y. Epigallocatechin Gallate (EGCG) Improves Anti-Angiogenic State, Cell Viability, and Hypoxia-Induced Endothelial Dysfunction by Downregulating High Mobility Group Box 1 (HMGB1) in Preeclampsia. Med Sci Monit 2020; 26:e926924. [PMID: 33056943 PMCID: PMC7574359 DOI: 10.12659/msm.926924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Preeclampsia (PE) is a serious complication of pregnancy with no effective therapy. This study assessed whether epigallocatechin gallate (EGCG) could reduce the production of anti-angiogenic factors, improve cell viability, and suppress endothelial dysfunction in vitro via regulating high mobility group box 1 (HMGB1) in preeclampsia. Material/Methods Human umbilical vein endothelial cells (HUVECs) grown in conditioned medium from hypoxic JEG-3 cells were used to investigate the effects of EGCG on anti-angiogenic state, cell viability, and markers of endothelial dysfunction. To confirm that EGCG exerted its effects via HMGB1, we also examined the impact of EGCG on anti-angiogenic state, cell viability, and endothelial dysfunction following HMGB1 treatment in vitro. Results EGCG inhibited HMGB1 expression in hypoxic trophoblast cells in a dose-dependent manner. In addition, EGCG relieved anti-angiogenic state and endothelial dysfunction in hypoxic trophoblast cells by downregulating HMGB1. Moreover, EGCG dose-dependently promoted cell proliferation by downregulating HMGB1. Conclusions Taken together, our data show the protective role of EGCG in preeclampsia and revealed EGCG-mediated effects on the production of anti-angiogenic factors, cell viability, and endothelial dysfunction through downregulating HMGB1. These observations suggest that EGCG is a novel therapeutic candidate for preeclampsia.
Collapse
Affiliation(s)
- Min Zhong
- Department of Obstetrics, People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong, China (mainland)
| | - Julan Peng
- Department of Obstetrics, People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong, China (mainland)
| | - Lanhua Xiang
- Department of Obstetrics, People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong, China (mainland)
| | - Xinhuang Yang
- Department of Obstetrics, People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong, China (mainland)
| | - Xianghua Wang
- Department of Obstetrics, People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong, China (mainland)
| | - Yanbin Zhu
- Department of Obstetrics, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China (mainland)
| |
Collapse
|
14
|
Kianian F, Kadkhodaee M, Sadeghipour HR, Karimian SM, Seifi B. An overview of high-mobility group box 1, a potent pro-inflammatory cytokine in asthma. J Basic Clin Physiol Pharmacol 2020; 31:jbcpp-2019-0363. [PMID: 32651983 DOI: 10.1515/jbcpp-2019-0363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
High-mobility group box 1 (HMGB1), also called amphoterin, HMG1 and p30, is a highly conserved protein between different species that has various functions in nucleus such as stabilization of nucleosome formation, facilitation of deoxyribonucleic acid (DNA) bending and increasing the DNA transcription, replication and repair. It has also been indicated that HMGB1 acts as a potent pro-inflammatory cytokine with increasing concentrations in acute and chronic inflammatory diseases. Asthma is a common chronic respiratory disease associated with high morbidity and mortality rates. One central characteristic in its pathogenesis is airway inflammation. Considering the inflammatory role of HMGB1 and importance of inflammation in asthma pathogenesis, a better understanding of this protein is vital. This review describes the structure, cell surface receptors, signaling pathways and intracellular and extracellular functions of HMGB1, but also focuses on its inflammatory role in asthma. Moreover, this manuscript reviews experimental and clinical studies that investigated the pathologic role of HMGB1.
Collapse
Affiliation(s)
- Farzaneh Kianian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Kadkhodaee
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Sadeghipour
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Morteza Karimian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behjat Seifi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Périz M, Pérez-Cano FJ, Rodríguez-Lagunas MJ, Cambras T, Pastor-Soplin S, Best I, Castell M, Massot-Cladera M. Development and Characterization of an Allergic Asthma Rat Model for Interventional Studies. Int J Mol Sci 2020; 21:E3841. [PMID: 32481675 PMCID: PMC7312681 DOI: 10.3390/ijms21113841] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Allergic asthma is one of the most common chronic diseases of the airways, however it still remains underdiagnosed and hence undertreated. Therefore, an allergic asthma rat model would be useful to be applied in future therapeutic strategy studies. The aim of the present study was to develop an objective model of allergic asthma in atopic rats that allows the induction and quantification of anaphylactic shock with quantitative variables. Female Brown Norway rats were intraperitoneally sensitized with ovalbumin (OVA), alum and Bordetella pertussis toxin and boosted a week later with OVA in alum. At day 28, all rats received an intranasal challenge with OVA. Anaphylactic response was accurately assessed by changes in motor activity and body temperature. Leukotriene concentration was determined in the bronchoalveolar lavage fluid (BALF), and total and IgE anti-OVA antibodies were quantified in blood and BALF samples. The asthmatic animals' motility and body temperature were reduced after the shock for at least 20 h. The asthmatic animals developed anti-OVA IgE antibodies both in BALF and in serum. These results show an effective and relatively rapid model of allergic asthma in female Brown Norway rats that allows the quantification of the anaphylactic response.
Collapse
Affiliation(s)
- Marta Périz
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (F.J.P.-C.); (M.J.R.-L.); (T.C.); (M.M.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (F.J.P.-C.); (M.J.R.-L.); (T.C.); (M.M.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Maria J. Rodríguez-Lagunas
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (F.J.P.-C.); (M.J.R.-L.); (T.C.); (M.M.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Trinitat Cambras
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (F.J.P.-C.); (M.J.R.-L.); (T.C.); (M.M.-C.)
| | - Santiago Pastor-Soplin
- Programa Cacao, Ingeniería Agroforestal, Facultad de Ciencias Ambientales, Universidad Científica del Sur, 15842 Lima, Peru; (S.P.-S.); (I.B.)
| | - Iván Best
- Programa Cacao, Ingeniería Agroforestal, Facultad de Ciencias Ambientales, Universidad Científica del Sur, 15842 Lima, Peru; (S.P.-S.); (I.B.)
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutracéuticos, Universidad San Ignacio de Loyola, 15024 Lima, Peru
| | - Margarida Castell
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (F.J.P.-C.); (M.J.R.-L.); (T.C.); (M.M.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Malén Massot-Cladera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (F.J.P.-C.); (M.J.R.-L.); (T.C.); (M.M.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|