1
|
Omata Y, Tachibana H, Aizaki Y, Mimura T, Sato K. Essentiality of Nfatc1 short isoform in osteoclast differentiation and its self-regulation. Sci Rep 2023; 13:18797. [PMID: 37914750 PMCID: PMC10620225 DOI: 10.1038/s41598-023-45909-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
During osteoclast differentiation, the expression of the transcription factor nuclear factor of activated T cell 1 (Nfatc1) increases in an autoproliferative manner. Nfatc1 isoforms are of three sizes, and only the short isoform increases during osteoclast differentiation. Genetic ablation of the whole Nfatc1 gene demonstrated that it is essential for osteoclastogenesis; however, the specific role of the Nfatc1 short form (Nfatc1/αA) remains unknown. In this study, we engineered Nfatc1 short form-specific knockout mice and found that these mice died in utero by day 13.5. We developed a novel osteoclast culture system in which hematopoietic stem cells were cultured, proliferated, and then differentiated into osteoclasts in vitro. Using this system, we show that the Nfatc1/αA isoform is essential for osteoclastogenesis and is responsible for the expression of various osteoclast markers, the Nfatc1 short form itself, and Nfatc1 regulators.
Collapse
Affiliation(s)
- Yasuhiro Omata
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hideyuki Tachibana
- Department of Rheumatology, Akiru Municipal Medical Center, 78-1 Hikita, Akiruno, Tokyo, 197-0834, Japan
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, 38 Moroyama, Iruma, Saitama, 350-0495, Japan
| | - Yoshimi Aizaki
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, 38 Moroyama, Iruma, Saitama, 350-0495, Japan
| | - Toshihide Mimura
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, 38 Moroyama, Iruma, Saitama, 350-0495, Japan
| | - Kojiro Sato
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
2
|
Basu-Shrivastava M, Mojsa B, Mora S, Robbins I, Bossis G, Lassot I, Desagher S. Trim39 regulates neuronal apoptosis by acting as a SUMO-targeted E3 ubiquitin-ligase for the transcription factor NFATc3. Cell Death Differ 2022; 29:2107-2122. [PMID: 35449213 PMCID: PMC9613758 DOI: 10.1038/s41418-022-01002-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 01/29/2023] Open
Abstract
NFATc3 is the predominant member of the NFAT family of transcription factors in neurons, where it plays a pro-apoptotic role. Mechanisms controlling NFAT protein stability are poorly understood. Here we identify Trim39 as an E3 ubiquitin-ligase of NFATc3. Indeed, Trim39 binds and ubiquitinates NFATc3 in vitro and in cells where it reduces NFATc3 protein level and transcriptional activity. In contrast, silencing of endogenous Trim39 decreases NFATc3 ubiquitination and increases its activity, thereby resulting in enhanced neuronal apoptosis. We also show that Trim17 inhibits Trim39-mediated ubiquitination of NFATc3 by reducing both the E3 ubiquitin-ligase activity of Trim39 and the NFATc3/Trim39 interaction. Moreover, we identify Trim39 as a new SUMO-targeted E3 ubiquitin-ligase (STUbL). Indeed, mutation of SUMOylation sites in NFATc3 or SUMO-interacting motifs in Trim39 reduces NFATc3/Trim39 interaction and Trim39-induced ubiquitination of NFATc3. In addition, Trim39 preferentially ubiquitinates SUMOylated forms of NFATc3 in vitro. As a consequence, a SUMOylation-deficient mutant of NFATc3 exhibits increased stability and pro-apoptotic activity in neurons. Taken together, these data indicate that Trim39 modulates neuronal apoptosis by acting as a STUbL for NFATc3.
Collapse
Affiliation(s)
- Meenakshi Basu-Shrivastava
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Barbara Mojsa
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- Centre for Gene Regulation and Expression, School of Life Science, University of Dundee, Dundee, UK
| | - Stéphan Mora
- IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Ian Robbins
- IGMM, Univ Montpellier, CNRS, Montpellier, France
| | | | - Iréna Lassot
- IGMM, Univ Montpellier, CNRS, Montpellier, France
| | | |
Collapse
|
3
|
PIAS1 Alleviates Hepatic Ischemia-Reperfusion Injury in Mice through a Mechanism Involving NFATc1 SUMOylation. DISEASE MARKERS 2022; 2022:4988539. [PMID: 36092961 PMCID: PMC9452975 DOI: 10.1155/2022/4988539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 06/14/2022] [Indexed: 11/18/2022]
Abstract
Recently, attentions have come to the alleviatory effect of protein inhibitor of activated STAT1 (PIAS1) in hepatic ischemia-reperfusion injury (HIRI), but the underlying molecular mechanistic actions remain largely unknown, which were illustrated in the present study. Microarray-based analysis predicted a possible regulatory mechanism involving the PIAS1/NFATc1/HDAC1/IRF-1/p38 MAPK signaling axis in HIRI. Then, growth dynamics of hypoxia/reoxygenation- (H/R-) exposed hepatocytes and liver injury of HIRI-like mice were delineated after the alteration of the PIAS1 expression. We validated that PIAS1 downregulation occurred in H/R-exposed hepatocytes and HIRI-like mice, while the expression of NFATc1, HDAC1, and IRF-1 and phosphorylation levels of p38 were increased. PIAS1 inactivated p38 MAPK signaling by inhibiting HDAC1-mediated IRF-1 through NFATc1 SUMOylation, thereby repressing the inflammatory response and apoptosis of hepatocytes in vitro, and alleviated liver injury in vivo. Collectively, the NFATc1/HDAC1/IRF-1/p38 MAPK signaling axis is highlighted as a promising therapeutic target for potentiating hepatoprotective effects of PIAS1 against HIRI.
Collapse
|
4
|
Nie Y, Nirujogi TS, Ranjan R, Reader BF, Chung S, Ballinger MN, Englert JA, Christman JW, Karpurapu M. PolyADP-Ribosylation of NFATc3 and NF-κB Transcription Factors Modulate Macrophage Inflammatory Gene Expression in LPS-Induced Acute Lung Injury. J Innate Immun 2020; 13:83-93. [PMID: 33045713 DOI: 10.1159/000510269] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
Pulmonary macrophages play a critical role in the recognition of pathogens, initiation of host defense via inflammation, clearance of pathogens from the airways, and resolution of inflammation. Recently, we have shown a pivotal role for the nuclear factor of activated T-cell cytoplasmic member 3 (NFATc3) transcription factor in modulating pulmonary macrophage function in LPS-induced acute lung injury (ALI) pathogenesis. Although the NFATc proteins are activated primarily by calcineurin-dependent dephosphorylation, here we show that LPS induces posttranslational modification of NFATc3 by polyADP-ribose polymerase 1 (PARP-1)-mediated polyADP-ribosylation. ADP-ribosylated NFATc3 showed increased binding to iNOS and TNFα promoter DNA, thereby increasing downstream gene expression. Inhibitors of PARP-1 decreased LPS-induced NFATc3 ribosylation, target gene promoter binding, and gene expression. LPS increased NFAT luciferase reporter activity in lung macrophages and lung tissue that was inhibited by pretreatment with PARP-1 inhibitors. More importantly, pretreatment of mice with the PARP-1 inhibitor olaparib markedly decreased LPS-induced cytokines, protein extravasation in bronchoalveolar fluid, lung wet-to-dry ratios, and myeloperoxidase activity. Furthermore, PARP-1 inhibitors decreased NF-кB luciferase reporter activity and LPS-induced ALI in NF-кB reporter mice. Thus, our study demonstrates that inhibiting NFATc3 and NF-кB polyADP-ribosylation with PARP-1 inhibitors prevented LPS-induced ALI pathogenesis.
Collapse
Affiliation(s)
- Yunjuan Nie
- Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Teja Srinivas Nirujogi
- Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,East Liverpool City Hospital, East Liverpool, Ohio, USA
| | - Ravi Ranjan
- Genomics Resource Laboratory, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Brenda F Reader
- Comprehensive Transplant Center, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Sangwoon Chung
- Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Megan N Ballinger
- Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Joshua A Englert
- Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - John W Christman
- Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Manjula Karpurapu
- Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA,
| |
Collapse
|