1
|
Ju HY, Youn SY, Kang J, Whang MY, Choi YJ, Han MR. Integrated analysis of spatial transcriptomics and CT phenotypes for unveiling the novel molecular characteristics of recurrent and non-recurrent high-grade serous ovarian cancer. Biomark Res 2024; 12:80. [PMID: 39135097 PMCID: PMC11318304 DOI: 10.1186/s40364-024-00632-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND High-grade serous ovarian cancer (HGSOC), which is known for its heterogeneity, high recurrence rate, and metastasis, is often diagnosed after being dispersed in several sites, with about 80% of patients experiencing recurrence. Despite a better understanding of its metastatic nature, the survival rates of patients with HGSOC remain poor. METHODS Our study utilized spatial transcriptomics (ST) to interpret the tumor microenvironment and computed tomography (CT) to examine spatial characteristics in eight patients with HGSOC divided into recurrent (R) and challenging-to-collect non-recurrent (NR) groups. RESULTS By integrating ST data with public single-cell RNA sequencing data, bulk RNA sequencing data, and CT data, we identified specific cell population enrichments and differentially expressed genes that correlate with CT phenotypes. Importantly, we elucidated that tumor necrosis factor-α signaling via NF-κB, oxidative phosphorylation, G2/M checkpoint, E2F targets, and MYC targets served as an indicator of recurrence (poor prognostic markers), and these pathways were significantly enriched in both the R group and certain CT phenotypes. In addition, we identified numerous prognostic markers indicative of nonrecurrence (good prognostic markers). Downregulated expression of PTGDS was linked to a higher number of seeding sites (≥ 3) in both internal HGSOC samples and public HGSOC TCIA and TCGA samples. Additionally, lower PTGDS expression in the tumor and stromal regions was observed in the R group than in the NR group based on our ST data. Chemotaxis-related markers (CXCL14 and NTN4) and markers associated with immune modulation (DAPL1 and RNASE1) were also found to be good prognostic markers in our ST and radiogenomics analyses. CONCLUSIONS This study demonstrates the potential of radiogenomics, combining CT and ST, for identifying diagnostic and therapeutic targets for HGSOC, marking a step towards personalized medicine.
Collapse
Affiliation(s)
- Hye-Yeon Ju
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Korea
| | - Seo Yeon Youn
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Jun Kang
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Min Yeop Whang
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Youn Jin Choi
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
| | - Mi-Ryung Han
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Korea.
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Korea.
| |
Collapse
|
2
|
Liu HY, Sun XJ, Xiu SY, Zhang XY, Wang ZQ, Gu YL, Yi CX, Liu JY, Dai YS, Yuan X, Liao HP, Liu ZM, Pang XC, Li TC. Frizzled receptors (FZDs) in Wnt signaling: potential therapeutic targets for human cancers. Acta Pharmacol Sin 2024; 45:1556-1570. [PMID: 38632318 PMCID: PMC11272778 DOI: 10.1038/s41401-024-01270-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/24/2024] [Indexed: 04/19/2024] Open
Abstract
Frizzled receptors (FZDs) are key contributors intrinsic to the Wnt signaling pathway, activation of FZDs triggering the Wnt signaling cascade is frequently observed in human tumors and intimately associated with an aggressive carcinoma phenotype. It has been shown that the abnormal expression of FZD receptors contributes to the manifestation of malignant characteristics in human tumors such as enhanced cell proliferation, metastasis, chemotherapy resistance as well as the acquisition of cancer stemness. Given the essential roles of FZD receptors in the Wnt signaling in human tumors, this review aims to consolidate the prevailing knowledge on the specific status of FZD receptors (FZD1-10) and elucidate their respective functions in tumor progression. Furthermore, we delineate the structural basis for binding of FZD and its co-receptors to Wnt, and provide a better theoretical foundation for subsequent studies on related mechanisms. Finally, we describe the existing biological classes of small molecule-based FZD inhibitors in detail in the hope that they can provide useful assistance for design and development of novel drug candidates targeted FZDs.
Collapse
Affiliation(s)
- Hui-Yu Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiao-Jiao Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Si-Yu Xiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiang-Yu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhi-Qi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yan-Lun Gu
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Chu-Xiao Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jun-Yan Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Yu-Song Dai
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xia Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hua-Peng Liao
- Yizhang County People's Hospital, Chenzhou, 424200, China
| | - Zhen-Ming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Xiao-Cong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China.
| | - Tian-Cheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China.
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100034, China.
| |
Collapse
|
3
|
Li C, Sun C, Li Y, Dong L, Wang X, Li R, Su J, Cao Q, Xin S. Therapeutic and prognostic effect of disulfidptosis-related genes in lung adenocarcinoma. Heliyon 2024; 10:e33764. [PMID: 39050421 PMCID: PMC11267016 DOI: 10.1016/j.heliyon.2024.e33764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Disulfidptosis, a new form of cell death, may be induced by disulfide stress associated with cystine disulfide buildup, which can promote cell toxicity, leading to cell death. Nevertheless, the role of direct prognosis and the mechanism underlying the regulation of disulfidptosis-related genes (DRGs) in lung adenocarcinoma (LUAD) are still unknown. This study aimed to investigate the role of DRGs in LUAD prognosis and diagnosis through multiomics analysis. First, copy number variations (CNVs) and mutations in the 10 genes were assessed. Considering that five differentially expressed genes (DEGs) were associated with disulfidptosis, a novel DRG score that can be utilized to anticipate LUAD prognosis was developed. Next, the generated receiver operating characteristic (ROC) and survival curves demonstrated that the model had an excellent predictive quality in LUAD in both the training and validation cohorts. Meanwhile, substantial functional disparities between the high DRG group and the low DRG group were observed, and the second gap mitosis (G2M) checkpoint, E2 promoter-binding factor (E2F) targets, and myelocytomatosis (MYC) target activities were consistently higher in the high DRG group than in the low DRG group. Additionally, the T-cell dysfunction score and tumor inflammation signature (Merck18) were negatively correlated with DRGs, whereas myeloid-derived suppressor cells (MDSCs) were positively correlated with DRGs. Moreover, DRGs were negatively linked to most of the immunological checkpoints. Meanwhile, samples of low DRGs benefited more from immune checkpoint blockade (ICB). The correlation analysis between DRGs and clinical characteristics revealed increasing malignancy with increasing DRG scores. Drug sensitization experiment results indicated that sensitivity to cisplatin, vincristine, docetaxel, and gemcitabine was higher in the high DRG group than in the low DRG group. The function of model genes in LUAD was also verified using immunohistochemistry, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blotting, 5-ethynyl-2'-deoxyuridine (EDU), and clonogenic formation.
Collapse
Affiliation(s)
- Changshuan Li
- Department of Thoracic and Cardiovascular Surgery, The Third People's Hospital of Luoyang, No.560, Chanjian Avenue, Chan River Hui District, Luoyang 471002, China
| | - Chao Sun
- Department of Thoracic and Cardiovascular Surgery, The Third People's Hospital of Luoyang, No.560, Chanjian Avenue, Chan River Hui District, Luoyang 471002, China
| | - Yakun Li
- Department of Respiratory and Critical Care Medicine, The Third People's Hospital of Luoyang, No.560, Chanjian Avenue, Chan River Hui District, Luoyang 471002, China
| | - Lin Dong
- Department of Oncology, The Third People's Hospital of Luoyang, No.560, Chanjian Avenue, Chan River Hui District, Luoyang 471002, China
| | - Xian Wang
- Department of Thoracic Surgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang 471000, China
| | - Ruixin Li
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang 471000, China
| | - Junjie Su
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang 471000, China
| | - Qiong Cao
- Department of Pathology, The Third Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| | - Shiyong Xin
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang 471000, China
| |
Collapse
|
4
|
Zhu Y, Jiang M, Gu Z, Shang H, Tang C, Guo T. Elucidating the role of liver enzymes as markers and regulators in ovarian cancer: a synergistic approach using Mendelian randomization, single-cell analysis, and clinical evidence. Hum Genomics 2024; 18:71. [PMID: 38915066 PMCID: PMC11197171 DOI: 10.1186/s40246-024-00642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024] Open
Abstract
OBJECTIVE To investigate the association between liver enzymes and ovarian cancer (OC), and to validate their potential as biomarkers and their mechanisms in OC. Methods Genome-wide association studies for OC and levels of enzymes such as Alkaline phosphatase (ALP), Aspartate aminotransferase (AST), Alanine aminotransferase, and gamma-glutamyltransferase were analyzed. Univariate and multivariate Mendelian randomization (MR), complemented by the Steiger test, identified enzymes with a potential causal relationship to OC. Single-cell transcriptomics from the GSE130000 dataset pinpointed pivotal cellular clusters, enabling further examination of enzyme-encoding gene expression. Transcription factors (TFs) governing these genes were predicted to construct TF-mRNA networks. Additionally, liver enzyme levels were retrospectively analyzed in healthy individuals and OC patients, alongside the evaluation of correlations with cancer antigen 125 (CA125) and Human Epididymis Protein 4 (HE4). RESULTS A total of 283 single nucleotide polymorphisms (SNPs) and 209 SNPs related to ALP and AST, respectively. Using the inverse-variance weighted method, univariate MR (UVMR) analysis revealed that ALP (P = 0.050, OR = 0.938) and AST (P = 0.017, OR = 0.906) were inversely associated with OC risk, suggesting their roles as protective factors. Multivariate MR (MVMR) confirmed the causal effect of ALP (P = 0.005, OR = 0.938) on OC without reverse causality. Key cellular clusters including T cells, ovarian cells, endothelial cells, macrophages, cancer-associated fibroblasts (CAFs), and epithelial cells were identified, with epithelial cells showing high expression of genes encoding AST and ALP. Notably, TFs such as TCE4 were implicated in the regulation of GOT2 and ALPL genes. OC patient samples exhibited decreased ALP levels in both blood and tumor tissues, with a negative correlation between ALP and CA125 levels observed. CONCLUSION This study has established a causal link between AST and ALP with OC, identifying them as protective factors. The increased expression of the genes encoding these enzymes in epithelial cells provides a theoretical basis for developing novel disease markers and targeted therapies for OC.
Collapse
Affiliation(s)
- Yinxing Zhu
- Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Taizhou, 225300, China
- Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
| | - Min Jiang
- Department of Rehabilitation, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
- Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
| | - Zihan Gu
- Nanjing University of Finance & Economics, Nanjing, 210023, China
- Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
| | - Hongyu Shang
- Taizhou Polytechnic College, Taizhou, 225300, China
- Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
| | - Caiyin Tang
- Department of Imaging, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
- Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China.
| | - Ting Guo
- Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Taizhou, 225300, China.
- Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China.
| |
Collapse
|
5
|
Chen K, Cheng X, Xue S, Chen J, Zhang X, Qi Y, Chen R, Zhang Y, Wang H, Li W, Cheng G, Huang Y, Xiong Y, Chen L, Mu C, Gu M. Albumin conjugation promotes arsenic trioxide transport through alkaline phosphatase-associated transcytosis in MUC4 wildtype pancreatic cancer cells. Int J Biol Macromol 2024; 257:128756. [PMID: 38092098 DOI: 10.1016/j.ijbiomac.2023.128756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Pancreatic cancer (PC) has a poor prognosis due to chemotherapy resistance and unfavorable drug transportation. Albumin conjugates are commonly used as drug carriers to overcome these obstacles. However, membrane-bound glycoprotein mucin 4 (MUC4) has emerged as a promising biomarker among the genetic mutations affecting albumin conjugates therapeutic window. Human serum albumin-conjugated arsenic trioxide (HSA-ATO) has shown potential in treating solid tumors but is limited in PC therapy due to unclear targets and mechanisms. This study investigated the transport mechanisms and therapeutic efficacy of HSA-ATO in PC cells with different MUC4 mutation statuses. Results revealed improved penetration of ATO into PC tumors through conjugated with HSA. However, MUC4 mutation significantly affected treatment sensitivity and HSA-ATO uptake both in vitro and in vivo. Mutant MUC4 cells exhibited over ten times higher IC50 for HSA-ATO and approximately half the uptake compared to wildtype cells. Further research demonstrated that ALPL activation by HSA-ATO enhanced transcytosis in wildtype MUC4 PC cells but not in mutant MUC4 cells, leading to impaired uptake and weaker antitumor effects. Reprogramming the transport process holds potential for enhancing albumin conjugate efficacy in PC patients with different MUC4 mutation statuses, paving the way for stratified treatment using these delivery vehicles.
Collapse
Affiliation(s)
- Kaidi Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China
| | - Xiao Cheng
- Huzhou Institute for Food and Drug Control, Huzhou 313000, PR China
| | - Shuai Xue
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China
| | - Junyan Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China
| | - Xu Zhang
- Zhejiang Heze Pharmaceutical Technology Co., Ltd., Hangzhou 310018, Zhejiang, PR China
| | - Yuwei Qi
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China
| | - Rong Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China
| | - Yan Zhang
- Department of Pharmacy, Hangzhou Red Cross Hospital, Hangzhou 310003, Zhejiang, PR China
| | - Hangjie Wang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China
| | - Wei Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China
| | - Guilin Cheng
- Department of Pharmacy, Hangzhou Red Cross Hospital, Hangzhou 310003, Zhejiang, PR China
| | - Ye Huang
- Department of Pharmacy, Zhejiang Provincial Dermatology Hospital, Huzhou 313200, Zhejiang, PR China
| | - Yang Xiong
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China; Department of Pharmacy, Hangzhou Red Cross Hospital, Hangzhou 310003, Zhejiang, PR China
| | - Liping Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, PR China; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Chaofeng Mu
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China.
| | - Mancang Gu
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China.
| |
Collapse
|
6
|
Yi M, Feng Z, He H, Dinulescu D, Xu B. Evaluating Alkaline Phosphatase-Instructed Self-Assembly of d-Peptides for Selectively Inhibiting Ovarian Cancer Cells. J Med Chem 2023; 66:10027-10035. [PMID: 37459116 PMCID: PMC10614160 DOI: 10.1021/acs.jmedchem.3c00949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Cancer is a major public health concern requiring novel treatment approaches. Enzyme-instructed self-assembly (EISA) provides a unique approach for selectively inhibiting cancer cells. However, the structure and activity correlation of EISA remains to be explored. This study investigates new EISA substrates of alkaline phosphatase (ALP) to hinder ovarian cancer cells. Analogues 2-8 were synthesized by modifying the amino acid residues of a potent EISA substrate 1 that effectively inhibits the growth of OVSAHO, a high-grade serous ovarian cancer (HGSOC) cell line. The efficacy of 2-8 against OVSAHO was assessed, along with the combination of substrate 1 with clinically used drugs. The results reveal that substrate 1 displays the highest cytotoxicity against OVSAHO cells, with an IC50 of around 8 μM. However, there was limited synergism observed between substrate 1 and the tested clinically used drugs. These findings indicate that EISA likely operates through a distinct mechanism that necessitates further elucidation.
Collapse
Affiliation(s)
- Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Zhaoqianqi Feng
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Daniela Dinulescu
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| |
Collapse
|
7
|
Dai L, Wang X, Bai T, Liu J, Chen B, Li T, Yang W. Identification of a novel cellular senescence-related signature for the prediction of prognosis and immunotherapy response in colon cancer. Front Genet 2022; 13:961554. [PMID: 35991564 PMCID: PMC9386482 DOI: 10.3389/fgene.2022.961554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
The study was conducted to construct a cellular senescence-related risk score signature to predict prognosis and immunotherapy response in colon cancer. Colon cancer data were acquired from the Gene Expression Omnibus and The Cancer Genome Atlas databases. And cellular senescence-related genes were obtained from the CellAge database. The colon cancer data were classified into different clusters based on cellular senescence-related gene expression. Next, prognostic differential genes among clusters were identified with survival analysis. A cellular senescence-related risk score signature was developed by performing the LASSO regression analysis. Finally, PCA analysis, t-SNE analysis, Kaplan-Meier survival analysis, ROC analysis, univariate Cox regression analysis, multivariate Cox regression analysis, C-index analysis, meta-analysis, immune infiltration analysis, and IPS score analysis were used to evaluate the significance of the risk signature for predicting prognosis and immunotherapy response in colon cancer. The colon cancer data were classified into three clusters. The patients in cluster A and cluster B had longer survival. A cellular senescence-related risk score signature was developed. Patients in the low-risk score group showed a better prognosis. The risk score signature could predict colon cancer patients’ prognosis independently of other clinical characteristics. The risk score signature predicted the prognosis of colon cancer patients more accurately than other signatures. Patients in the low-risk score group showed a better response to immunotherapy. The opposite was true for the high-risk score group. In conclusion, the cellular senescence-related risk score signature could be used for the prediction of prognosis and immunotherapy response in colon cancer.
Collapse
|
8
|
Zhu S, Bao H, Zhang MC, Liu H, Wang Y, Lin C, Zhao X, Liu SL. KAZN as a diagnostic marker in ovarian cancer: a comprehensive analysis based on microarray, mRNA-sequencing, and methylation data. BMC Cancer 2022; 22:662. [PMID: 35710397 PMCID: PMC9204993 DOI: 10.1186/s12885-022-09747-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Background Ovarian cancer (OC) is among the deadliest malignancies in women and the lack of appropriate markers for early diagnosis leads to poor prognosis in most cases. Previous studies have shown that KAZN is involved in multiple biological processes during development, such as cell proliferation, differentiation, and apoptosis, so defects or aberrant expression of KAZN might cause queer cell behaviors such as malignancy. Here we evaluated the KAZN expression and methylation levels for possible use as an early diagnosis marker for OC. Methods We used data from Gene Expression Omnibus (GEO) microarrays, The Cancer Genome Atlas (TCGA), and Clinical Proteomic Tumor Analysis Consortium (CPTAC) to investigate the correlations between KAZN expression and clinical characteristics of OC by comparing methylation levels of normal and OC samples. The relationships among differentially methylated sites in the KAZN gene, corresponding KAZN mRNA expression levels and prognosis were analyzed. Results KAZN was up-regulated in ovarian epithelial tumors and the expression of KAZN was correlated with the patients’ survival time. KAZN CpG site cg17657618 was positively correlated with the expression of mRNA and the methylation levels were significantly differential between the group of stage “I and II” and the group of stage “III and IV”. This study also presents a new method to classify tumor and normal tissue in OC using DNA methylation pattern in the KAZN gene body region. Conclusions KAZN was involved in ovarian cancer pathogenesis. Our results demonstrate a new direction for ovarian cancer research and provide a potential diagnostic biomarker as well as a novel therapeutic target for clinical application. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09747-2.
Collapse
Affiliation(s)
- Songling Zhu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Hongxia Bao
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Meng-Chun Zhang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Huidi Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yao Wang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Caiji Lin
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Xingjuan Zhao
- Physical Examination Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shu-Lin Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China. .,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China. .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China. .,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada.
| |
Collapse
|
9
|
Basiri M, Pahlavanneshan S. Evaluation of Placental Alkaline Phosphatase Expression as A Potential Target of Solid Tumors Immunotherapy by Using Gene and Protein Expression Repositories. CELL JOURNAL 2021; 23:717-721. [PMID: 34939766 PMCID: PMC8665984 DOI: 10.22074/cellj.2021.7299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/24/2020] [Indexed: 12/17/2022]
Abstract
Placental alkaline phosphatase (PLAP) is a membrane enzyme mainly expressed in the placenta. PLAP is shown to
be expressed in ovarian cancer (OV), however, there is little known about its expression in other cancers. Using gene
and protein expression deposited data, we surveyed PLAP expression across malignant and normal human tissues to
explore the potential of PLAP as an immunotherapy target. We detected more than two-fold increased PLAP expression
in multiple solid tumors including ovarian cancer, testicular germ cell tumors (TGCT), and uterine corpus endometrial
carcinoma (UCEC) compared with matched normal tissues. We also showed association of PLAP expression with high
mortality pancreatic adenocarcinoma (PAAD). Altogether, our results suggest that PLAP can be a promising target for
immunotherapy of multiple cancers, especially OV, TGCT, and UCEC.
Collapse
Affiliation(s)
- Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Saghar Pahlavanneshan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Weighted Gene Coexpression Network Analysis to Construct Competitive Endogenous RNA Network in Chromogenic Renal Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5589101. [PMID: 34222474 PMCID: PMC8213485 DOI: 10.1155/2021/5589101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/24/2021] [Indexed: 12/02/2022]
Abstract
Aim This study is aimed at constructing the competing endogenous RNA (ceRNA) network in chromophobe renal cell carcinoma (ChRCC). Methods Clinical and RNA sequence profiles of patients with ChRCC, including messenger RNAs (mRNAs), microRNAs (miRNAs), and long noncoding RNAs (lncRNAs), were obtained from The Cancer Genome Atlas (TCGA) database. “edgeR” and “clusterProfiler” packages were utilized to obtain the expression matrices of differential RNAs (DERNAs) and to conduct gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Weighted gene coexpression network analysis (WGCNA) was performed to screen the highly related RNAs, and miRcode, StarBase, miRTarBase, miRDB, and TargetScan datasets were used to predict the connections between them. Univariate and multivariate Cox proportional hazards regressions were performed in turn to elucidate prognosis-related mRNAs in order to construct the ceRNA regulatory network. Results A total of 1628 DElncRNAs, 104 DEmiRNAs, and 2619 DEmRNAs were identified. WGCNA showed significant correlation in 1534 DElncRNAs, 98 DEmiRNAs, and 2543 DEmRNAs, which were related to ChRCC. Fourteen DEmiRNAs, 113 DElncRNAs, and 43 DEmRNAs were screened. Nine mRNAs (ALPL, ARHGAP29, CADM2, KIT, KLRD1, MYBL1, PSD3, SFRP1, and SLC7A11) significantly contributed to the overall survival (OS) of patients with ChRCC (P < 0.05). Furthermore, two mRNAs (CADM2 and SFRP1) appeared to be independent risk factors for ChRCC. Conclusion The findings revealed the molecular mechanism of ChRCC and potential therapeutic targets for the disease.
Collapse
|
11
|
Zhang F, Yu X, Lin Z, Wang X, Gao T, Teng D, Teng W. Using Tumor-Infiltrating Immune Cells and a ceRNA Network Model to Construct a Prognostic Analysis Model of Thyroid Carcinoma. Front Oncol 2021; 11:658165. [PMID: 34141614 PMCID: PMC8204697 DOI: 10.3389/fonc.2021.658165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Thyroid carcinoma is a solid malignant tumor that has had a fast-growing incidence in recent years. Our research used thyroid carcinoma gene expression profiling from TCGA (The Cancer Genome Atlas) database to identify differentially expressed ceRNAs. Using the gene expression profiling from 502 carcinoma thyroid tissues and 58 normal thyroid tissues from the TCGA database, we established the thyroid carcinoma-specific competitive endogenous RNA (ceRNA) network and found nine overall survival (OS)-associated genes (PRDM1, TGFBR3, E2F1, FGF1, ADAM12, ALPL, RET, AL928654.2, AC128688.2). We quantified the proportions of immune cells using the algorithm “CIBERSORT”, found three OS-associated immune cells (memory B cells, M0 macrophages, and activated dendritic cells), and established a thyroid carcinoma-specific immune cell network based on that. The good reliabilities AUC (area under the curve) of 10-year survival (0.955, 0.944, respectively) were accessed from the nomograms of genes and immune cells. Subsequently, by conducting co-expression analyses, we found a potential regulation network among ceRNAs and immune cells. Besides, we found that ALPL (alkaline phosphatase) and hsa-miR-204-5p were significantly correlated and that ALPL was related to activated dendritic cells. We took advantage of multi-dimensional databases to verify our discovery. Besides, immunohistochemistry (IHC) assays were conducted to detect the expression of a dendritic cell marker (CD11c) and ALPL in thyroid carcinoma (TC) and paracancerous tissues. In summary, our study found a potential mechanism in which hsa-miR-204-5p regulated ALPL in activated dendritic cells, which may allow them to play a critical role in thyroid carcinoma. These findings provide potential prognostic biomarkers and therapeutic targets for thyroid carcinoma.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Xiaohui Yu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Zheyu Lin
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Xichang Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Tiantian Gao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Di Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Lou Z, Lin W, Zhao H, Jiao X, Wang C, Zhao H, Liu L, Liu Y, Xie Q, Huang X, Huang H, Zhao L. Alkaline phosphatase downregulation promotes lung adenocarcinoma metastasis via the c-Myc/RhoA axis. Cancer Cell Int 2021; 21:217. [PMID: 33858415 PMCID: PMC8050923 DOI: 10.1186/s12935-021-01919-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) metastasis significantly reduces patient survival; hence inhibiting the metastatic ability of lung cancer cells will greatly prolong patient survival. Alkaline phosphatase (ALPL), a homodimeric cell surface phosphohydrolase, is reported to play a controversial role in prostate cancer and ovarian cancer cell migration; however, the function of ALPL in LUAD and the related mechanisms remain unclear. METHODS TCGA database was used to analysis the expression of ALPL, and further verification was performed in a cohort of 36 LUAD samples by qPCR and western blot. Soft-agar assay, transwell assay and lung metastasis assay were employed to detect the function of ALPL in LUAD progression. The qPCR, luciferase promoter reporter assay and western blot were used to clarify the molecular mechanisms of ALPL in promoting metastasis in LUAD. RESULTS ALPL was downregulated in LUAD, and the disease-free survival rate of patients with low ALPL was significantly reduced. Further studies showed that overexpression of ALPL in LUAD cell lines did not significantly affect cell proliferation, but it did significantly attenuate lung metastasis in a mouse model. ALPL downregulation in LUAD led to a decrease in the amount of phosphorylated (p)-ERK. Because p-ERK promotes the classical c-Myc degradation pathway, the decrease in p-ERK led to the accumulation of c-Myc and therefore to an increase in RhoA transcription, which enhanced LUAD cell metastasis. CONCLUSION ALPL specially inhibits the metastasis of LUAD cells by affecting the p-ERK/c-Myc/RhoA axis, providing a theoretical basis for the targeted therapy of clinical LUAD.
Collapse
Affiliation(s)
- Zhefeng Lou
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Weiwei Lin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Huirong Zhao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xueli Jiao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Cong Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - He Zhao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lu Liu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yu Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qipeng Xie
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Lingling Zhao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
13
|
Koni M, Pinnarò V, Brizzi MF. The Wnt Signalling Pathway: A Tailored Target in Cancer. Int J Mol Sci 2020; 21:E7697. [PMID: 33080952 PMCID: PMC7589708 DOI: 10.3390/ijms21207697] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the greatest public health challenges. According to the World Health Organization (WHO), 9.6 million cancer deaths have been reported in 2018. The most common cancers include lung, breast, colorectal, prostate, skin (non-melanoma) and stomach cancer. The unbalance of physiological signalling pathways due to the acquisition of mutations in tumour cells is considered the most common cancer driver. The Wingless-related integration site (Wnt)/β-catenin pathway is crucial for tissue development and homeostasis in all animal species and its dysregulation is one of the most relevant events linked to cancer development and dissemination. The canonical and the non-canonical Wnt/β-catenin pathways are known to control both physiological and pathological processes, including cancer. Herein, the impact of the Wnt/β-catenin cascade in driving cancers from different origin has been examined. Finally, based on the impact of Extracellular Vesicles (EVs) on tumour growth, invasion and chemoresistance, and their role as tumour diagnostic and prognostic tools, an overview of the current knowledge linking EVs to the Wnt/β-catenin pathway is also discussed.
Collapse
Affiliation(s)
| | | | - Maria Felice Brizzi
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy; (M.K.); (V.P.)
| |
Collapse
|
14
|
Kotrbová A, Ovesná P, Gybel' T, Radaszkiewicz T, Bednaříková M, Hausnerová J, Jandáková E, Minář L, Crha I, Weinberger V, Záveský L, Bryja V, Pospíchalová V. WNT signaling inducing activity in ascites predicts poor outcome in ovarian cancer. Am J Cancer Res 2020; 10:537-552. [PMID: 31903136 PMCID: PMC6929979 DOI: 10.7150/thno.37423] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
High grade serous carcinoma of the ovary, fallopian tube, and peritoneum (HGSC) is the deadliest gynecological disease which results in a five-year survival rate of 30% or less. HGSC is characterized by the early and rapid development of metastases accompanied by a high frequency of ascites i.e. the pathological accumulation of fluid in peritoneum. Ascites constitute a complex tumor microenvironment and contribute to disease progression by largely unknown mechanisms. Methods: Malignant ascites obtained from HGSC patients who had undergone cytoreductive surgery were tested for their ability to induce WNT signaling in the Kuramochi cell line, a novel and clinically relevant in vitro model of HGSC. Next, cancer spheroids (the main form of metastatic cancer cells in ascites) were evaluated with respect to WNT signaling. Kuramochi cells were used to determine the role of individual WNT signaling branches in the adoption of metastatic stem cell-like behavior by HGSC cells. Furthermore, we analyzed genomic and transcriptomic data on WNT/Planar Cell Polarity (PCP) components retrieved from public cancer databases and corroborated with primary patient samples and validated antibodies on the protein level. Results: We have shown that ascites are capable of inducing WNT signaling in primary HGSC cells and HGSC cell line, Kuramochi. Importantly, patients whose ascites cannot activate WNT pathway present with less aggressive disease and a considerably better outcome including overall survival (OS). Functionally, the activation of non-canonical WNT/PCP signaling by WNT5A (and not canonical WNT/β-catenin signaling by WNT3A) promoted the metastatic stem-cell (metSC) like behavior (i.e. self-renewal, migration, and invasion) of HGSC cells. The pharmacological inhibition of casein kinase 1 (CK1) as well as genetic ablation (dishevelled 3 knock out) of the pathway blocked the WNT5A-induced effect. Additionally, WNT/PCP pathway components were differentially expressed between healthy and tumor tissue as well as between the primary tumor and metastases. Additionally, ascites which activated WNT/PCP signaling contained the typical WNT/PCP ligand WNT5A and interestingly, patients with high levels of WNT5A protein in their ascites exhibited poor progression-free survival (PFS) and OS in comparison to patients with low or undetectable ascitic WNT5A. Together, our results suggest the existence of a positive feedback loop between tumor cells producing WNT ligands and ascites that distribute WNT activity to cancer cells in the peritoneum, in order to promote their pro-metastatic features and drive HGSC progression. Conclusions: Our results highlight the role of WNT/PCP signaling in ovarian cancerogenesis, indicate a possible therapeutic potential of CK1 inhibitors for HGSC, and strongly suggest that the detection of WNT pathway inducing activity ascites (or WNT5A levels in ascites as a surrogate marker) could be a novel prognostic tool for HGSC patients.
Collapse
|