1
|
Iñiguez-Muñoz S, Llinàs-Arias P, Ensenyat-Mendez M, Bedoya-López AF, Orozco JIJ, Cortés J, Roy A, Forsberg-Nilsson K, DiNome ML, Marzese DM. Hidden secrets of the cancer genome: unlocking the impact of non-coding mutations in gene regulatory elements. Cell Mol Life Sci 2024; 81:274. [PMID: 38902506 PMCID: PMC11335195 DOI: 10.1007/s00018-024-05314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/07/2023] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
Discoveries in the field of genomics have revealed that non-coding genomic regions are not merely "junk DNA", but rather comprise critical elements involved in gene expression. These gene regulatory elements (GREs) include enhancers, insulators, silencers, and gene promoters. Notably, new evidence shows how mutations within these regions substantially influence gene expression programs, especially in the context of cancer. Advances in high-throughput sequencing technologies have accelerated the identification of somatic and germline single nucleotide mutations in non-coding genomic regions. This review provides an overview of somatic and germline non-coding single nucleotide alterations affecting transcription factor binding sites in GREs, specifically involved in cancer biology. It also summarizes the technologies available for exploring GREs and the challenges associated with studying and characterizing non-coding single nucleotide mutations. Understanding the role of GRE alterations in cancer is essential for improving diagnostic and prognostic capabilities in the precision medicine era, leading to enhanced patient-centered clinical outcomes.
Collapse
Affiliation(s)
- Sandra Iñiguez-Muñoz
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Pere Llinàs-Arias
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Miquel Ensenyat-Mendez
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Andrés F Bedoya-López
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Javier I J Orozco
- Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Javier Cortés
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, 08017, Barcelona, Spain
- Medica Scientia Innovation Research SL (MEDSIR), 08018, Barcelona, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, 28670, Madrid, Spain
| | - Ananya Roy
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Maggie L DiNome
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Diego M Marzese
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain.
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
2
|
Garcia JPT, Tayo LL. Theoretical Studies of DNA Microarray Present Potential Molecular and Cellular Interconnectivity of Signaling Pathways in Immune System Dysregulation. Genes (Basel) 2024; 15:393. [PMID: 38674328 PMCID: PMC11049615 DOI: 10.3390/genes15040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Autoimmunity is defined as the inability to regulate immunological activities in the body, especially in response to external triggers, leading to the attack of the tissues and organs of the host. Outcomes include the onset of autoimmune diseases whose effects are primarily due to dysregulated immune responses. In past years, there have been cases that show an increased susceptibility to other autoimmune disorders in patients who are already experiencing the same type of disease. Research in this field has started analyzing the potential molecular and cellular causes of this interconnectedness, bearing in mind the possibility of advancing drugs and therapies for the treatment of autoimmunity. With that, this study aimed to determine the correlation of four autoimmune diseases, which are type 1 diabetes (T1D), psoriasis (PSR), systemic sclerosis (SSc), and systemic lupus erythematosus (SLE), by identifying highly preserved co-expressed genes among datasets using WGCNA. Functional annotation was then employed to characterize these sets of genes based on their systemic relationship as a whole to elucidate the biological processes, cellular components, and molecular functions of the pathways they are involved in. Lastly, drug repurposing analysis was performed to screen candidate drugs for repositioning that could regulate the abnormal expression of genes among the diseases. A total of thirteen modules were obtained from the analysis, the majority of which were associated with transcriptional, post-transcriptional, and post-translational modification processes. Also, the evaluation based on KEGG suggested the possible role of TH17 differentiation in the simultaneous onset of the four diseases. Furthermore, clomiphene was the top drug candidate for regulating overexpressed hub genes; meanwhile, prilocaine was the top drug for regulating under-expressed hub genes. This study was geared towards utilizing transcriptomics approaches for the assessment of microarray data, which is different from the use of traditional genomic analyses. Such a research design for investigating correlations among autoimmune diseases may be the first of its kind.
Collapse
Affiliation(s)
- Jon Patrick T. Garcia
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
- School of Graduate Studies, Mapúa University, Manila 1002, Philippines
| | - Lemmuel L. Tayo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
- Department of Biology, School of Medicine and Health Sciences, Mapúa University, Makati 1200, Philippines
| |
Collapse
|
3
|
Meng H, Nan M, Li Y, Ding Y, Yin Y, Zhang M. Application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer. Front Endocrinol (Lausanne) 2023; 14:1148412. [PMID: 37020597 PMCID: PMC10067930 DOI: 10.3389/fendo.2023.1148412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Colon cancer is the fourth leading cause of cancer death worldwide, and its progression is accompanied by a complex array of genetic variations. CRISPR/Cas9 can identify new drug-resistant or sensitive mutations in colon cancer, and can use gene editing technology to develop new therapeutic targets and provide personalized treatments, thereby significantly improving the treatment of colon cancer patients. CRISPR/Cas9 systems are driving advances in biotechnology. RNA-directed Cas enzymes have accelerated the pace of basic research and led to clinical breakthroughs. This article reviews the rapid development of CRISPR/Cas in colon cancer, from gene editing to transcription regulation, gene knockout, genome-wide CRISPR tools, therapeutic targets, stem cell genomics, immunotherapy, metabolism-related genes and inflammatory bowel disease. In addition, the limitations and future development of CRISPR/Cas9 in colon cancer studies are reviewed. In conclusion, this article reviews the application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer.
Collapse
Affiliation(s)
- Hui Meng
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Mingzhi Zhang, ; Hui Meng,
| | - Manman Nan
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yizhen Li
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Ding
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhui Yin
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Mingzhi Zhang, ; Hui Meng,
| |
Collapse
|
4
|
Morova T, Ding Y, Huang CCF, Sar F, Schwarz T, Giambartolomei C, Baca S, Grishin D, Hach F, Gusev A, Freedman M, Pasaniuc B, Lack N. Optimized high-throughput screening of non-coding variants identified from genome-wide association studies. Nucleic Acids Res 2022; 51:e18. [PMID: 36546757 PMCID: PMC9943666 DOI: 10.1093/nar/gkac1198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/19/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
The vast majority of disease-associated single nucleotide polymorphisms (SNP) identified from genome-wide association studies (GWAS) are localized in non-coding regions. A significant fraction of these variants impact transcription factors binding to enhancer elements and alter gene expression. To functionally interrogate the activity of such variants we developed snpSTARRseq, a high-throughput experimental method that can interrogate the functional impact of hundreds to thousands of non-coding variants on enhancer activity. snpSTARRseq dramatically improves signal-to-noise by utilizing a novel sequencing and bioinformatic approach that increases both insert size and the number of variants tested per loci. Using this strategy, we interrogated known prostate cancer (PCa) risk-associated loci and demonstrated that 35% of them harbor SNPs that significantly altered enhancer activity. Combining these results with chromosomal looping data we could identify interacting genes and provide a mechanism of action for 20 PCa GWAS risk regions. When benchmarked to orthogonal methods, snpSTARRseq showed a strong correlation with in vivo experimental allelic-imbalance studies whereas there was no correlation with predictive in silico approaches. Overall, snpSTARRseq provides an integrated experimental and computational framework to functionally test non-coding genetic variants.
Collapse
Affiliation(s)
- Tunc Morova
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Yi Ding
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Funda Sar
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Tommer Schwarz
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Claudia Giambartolomei
- Central RNA Lab, Istituto Italiano di Tecnologia, Genova 16163, Italy,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sylvan C Baca
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Dennis Grishin
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Faraz Hach
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada,Department of Urologic Science, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Alexander Gusev
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02215, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Matthew L Freedman
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02215, USA,The Center for Cancer Genome Discovery, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Bogdan Pasaniuc
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA,Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nathan A Lack
- To whom correspondence should be addressed. Tel: +1 604 875 4411;
| |
Collapse
|
5
|
Liu Q, Guo L, Lou Z, Xiang X, Shao J. Super-enhancers and novel therapeutic targets in colorectal cancer. Cell Death Dis 2022; 13:228. [PMID: 35277481 PMCID: PMC8917125 DOI: 10.1038/s41419-022-04673-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 12/24/2022]
Abstract
Transcription factors, cofactors, chromatin regulators, and transcription apparatuses interact with transcriptional regulatory elements, including promoters, enhancers, and super-enhancers (SEs), to coordinately regulate the transcription of target genes and thereby control cell behaviors. Among these transcriptional regulatory components and related elements, SEs often play a central role in determining cell identity and tumor initiation and progression. Therefore, oncogenic SEs, which are generated within cancer cells in oncogenes and other genes important in tumor pathogenesis, have emerged as attractive targets for novel cancer therapeutic strategies in recent years. Herein, we review the identification, formation and activation modes, and regulatory mechanisms for downstream genes and pathways of oncogenic SEs. We also review the therapeutic strategies and compounds targeting oncogenic SEs in colorectal cancer and other malignancies.
Collapse
Affiliation(s)
- Qian Liu
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijuan Guo
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyuan Lou
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueping Xiang
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jimin Shao
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Chen J, Apizi A, Wang L, Wu G, Zhu Z, Yao H, Chen G, Shi X, Shi B, Tai Q, Shen C, Zhou G, Wu L, He S. TCGA database analysis of the tumor mutation burden and its clinical significance in colon cancer. J Gastrointest Oncol 2021; 12:2244-2259. [PMID: 34790389 DOI: 10.21037/jgo-21-661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background Colon cancer is one of the most common malignant tumors, with high rates of incidence and death. The tumor mutational burden (TMB), which is characterized by microsatellite instability, has been becoming a powerful predictor which can show tumor behavior and response to immunotherapy. Methods In this study, we analyzed 437 mutation data of colon cancer samples obtained from The Cancer Genome Atlas (TCGA) and divided patients into low- and high-TMB groups according to the TMB value. Then we identified differentially-expressed genes (DEGs), conducted immune cell infiltration and survival analyses between groups. Results The higher TMB of the patients with colon cancer predicts a poorer prognosis. Functional analysis was performed to assess the prognostic value of the top 30 core genes. The CIBER-SORT algorithm was used to investigate the correlation between the immune cells and TMB subtypes. An immune prognosis model was constructed to screen out immune genes related to prognosis, and the tumor immunity assessment resource (TIMER) was then used to determine the correlation between gene expression and the abundance of tumor-infiltrating immune cell subsets in colon cancer. We observed that APC, TP53, TTN, KRAS, MUC16, SYNE1, PIK3CA have higher somatic mutations. DEGs enrichment analysis showed that they are involved in the regulation of neuroactive ligand-receptor interaction, the Cyclic adenosine monophosphate (cAMP) signaling pathway, the calcium signaling pathway, and pantothenate and Coenzyme A (CoA) biosynthesis. The difference in the abundance of various white blood cell subtypes showed that Cluster of Differentiation 8 (CD8) T cells (P=0.008), activated CD4 memory T cells (P=0.019), M1 macrophages (P=0.002), follicular helper T cells (P=0.034), activated Natural killer (NK cell) cells (P=0.017) increased remarkably, while M0 macrophages significantly reduced (P=0.025). The two immune model genes showed that secretin (SCT) was negatively correlated with survival, while Guanylate cyclase activator 2A (GUCA2A) was positively correlated. Conclusions This study conducted a systematically comprehensive analysis of the prediction and clinical significance of TMB in colon cancer in identification, monitoring, and prognosis of colon cancer, and providing reference information for immunotherapy.
Collapse
Affiliation(s)
- Junjie Chen
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Anwaier Apizi
- Department of Gastrointestinal Tumors, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lin Wang
- Department of Gastrointestinal Tumors, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Guanting Wu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zheng Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huihui Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guoliang Chen
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinyu Shi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bo Shi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingliang Tai
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenglong Shen
- Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Changshu, China
| | - Guoqiang Zhou
- Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Changshu, China
| | - Lingzhi Wu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Songbing He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Ignatieva EV, Matrosova EA. Disease-associated genetic variants in the regulatory regions of human genes: mechanisms of action on transcription and genomic resources for dissecting these mechanisms. Vavilovskii Zhurnal Genet Selektsii 2021; 25:18-29. [PMID: 34541447 PMCID: PMC8408020 DOI: 10.18699/vj21.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 11/21/2022] Open
Abstract
Whole genome and whole exome sequencing technologies play a very important role in the studies of the genetic aspects of the pathogenesis of various diseases. The ample use of genome-wide and exome-wide association study
methodology (GWAS and EWAS) made it possible to identify a large number of genetic variants associated with diseases.
This information is accumulated in the databases like GWAS central, GWAS catalog, OMIM, ClinVar, etc. Most of the variants identified by the GWAS technique are located in the noncoding regions of the human genome. According to the
ENCODE project, the fraction of regions in the human genome potentially involved in transcriptional control is many times
greater than the fraction of coding regions. Thus, genetic variation in noncoding regions of the genome can increase the
susceptibility to diseases by disrupting various regulatory elements (promoters, enhancers, silencers, insulator regions,
etc.). However, identification of the mechanisms of influence of pathogenic genetic variants on the diseases risk is difficult
due to a wide variety of regulatory elements. The present review focuses on the molecular genetic mechanisms by which
pathogenic genetic variants affect gene expression. At the same time, attention is concentrated on the transcriptional level
of regulation as an initial step in the expression of any gene. A triggering event mediating the effect of a pathogenic genetic
variant on the level of gene expression can be, for example, a change in the functional activity of transcription factor binding sites (TFBSs) or DNA methylation change, which, in turn, affects the functional activity of promoters or enhancers. Dissecting the regulatory roles of polymorphic loci have been impossible without close integration of modern experimental
approaches with computer analysis of a growing wealth of genetic and biological data obtained using omics technologies.
The review provides a brief description of a number of the most well-known public genomic information resources containing data obtained using omics technologies, including (1) resources that accumulate data on the chromatin states and the
regions of transcription factor binding derived from ChIP-seq experiments; (2) resources containing data on genomic loci,
for which allele-specific transcription factor binding was revealed based on ChIP-seq technology; (3) resources containing
in silico predicted data on the potential impact of genetic variants on the transcription factor binding sites
Collapse
Affiliation(s)
- E V Ignatieva
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - E A Matrosova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
8
|
Super-enhancer in prostate cancer: transcriptional disorders and therapeutic targets. NPJ Precis Oncol 2020; 4:31. [PMID: 33299103 PMCID: PMC7677538 DOI: 10.1038/s41698-020-00137-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Abnormal activity of oncogenic and tumor-suppressor signaling pathways contributes to cancer and cancer risk in humans. Transcriptional dysregulation of these pathways is commonly associated with tumorigenesis and the development of cancer. Genetic and epigenetic alterations may mediate dysregulated transcriptional activity. One of the most important epigenetic alternations is the non-coding regulatory element, which includes both enhancers and super-enhancers (SEs). SEs, characterized as large clusters of enhancers with aberrant high levels of transcription factor binding, have been considered as key drivers of gene expression in controlling and maintaining cancer cell identity. In cancer cells, oncogenes acquire SEs and the cancer phenotype relies on these abnormal transcription programs driven by SEs, which leads to cancer cells often becoming addicted to the SEs-related transcription programs, including prostate cancer. Here, we summarize recent findings of SEs and SEs-related gene regulation in prostate cancer and review the potential pharmacological inhibitors in basic research and clinical trials.
Collapse
|
9
|
Yamagata K, Nakayamada S, Tanaka Y. Critical roles of super-enhancers in the pathogenesis of autoimmune diseases. Inflamm Regen 2020; 40:16. [PMID: 32922569 PMCID: PMC7398324 DOI: 10.1186/s41232-020-00124-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
The super-enhancer (SE) is a cluster of enhancers involved in cell differentiation via enhanced gene expression that determines cell identity. Meanwhile, genome-wide association studies (GWASs) have reported the presence of gene clusters containing single nucleotide polymorphisms (SNPs) susceptible to various diseases. According to cell types, these disease-susceptible SNPs are frequently detected in activated SE domains. However, the roles of SEs in the pathogenesis of various diseases remain unclear. This review first presents various functions of enhancer RNAs (eRNAs) transcribed from SEs. Next, it describes how SNPs and eRNAs are involved in the pathology of each autoimmune disease, with a focus on typical diseases such as rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis. This review aims to describe the roles of SEs in the pathogenesis of autoimmune diseases through multiple interactions of these factors, as well as a future outlook on this issue.
Collapse
Affiliation(s)
- Kaoru Yamagata
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, 807-8555 Japan
| | - Shingo Nakayamada
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, 807-8555 Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, 807-8555 Japan
| |
Collapse
|
10
|
Zheng C, Liu M, Fan H. Targeting complexes of super-enhancers is a promising strategy for cancer therapy. Oncol Lett 2020; 20:2557-2566. [PMID: 32782573 PMCID: PMC7400756 DOI: 10.3892/ol.2020.11855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/27/2020] [Indexed: 12/16/2022] Open
Abstract
The hyperactivation and overexpression of critical oncogenes is a common occurrence in multiple types of malignant tumors. Recently, the abnormal activation mechanism of an oncogene by a super-enhancer (SE) has attracted significant attention. A series of changes (insertion, deletion, translocation and rearrangement) in the genome occurring in cancer cells may generate new SEs, leading to the overexpression of SE-driven oncogenes. SEs are composed of typical enhancers densely loaded with mediator complexes, transcription factors, and chromatin regulators, and drive the overexpression of oncogenes associated with cellular identity and disease. Cyclin-dependent kinase 7 (CDK7) and bromodomain protein 4 (BRD4) are critical mediator complexes associated with SE-mediated transcription. Clinical trials have shown that emerging small-molecule inhibitors (CDK7 and BRD4 inhibitor), targeting the SE exert a notable effect on cancer treatment. Increasing evidences has illustrated that the SE and its associated complexes play a critical role in the development of various types of cancer. The present review discusses the composition, function and regulation of SEs and their contribution to oncogenic transcription. In addition, creative therapeutic approaches that target SE, their advantages and disadvantages, as well as the problems with their clinical application are discussed. It was found that targeting SE may be used in conventional treatment and establish more access for patients with cancer.
Collapse
Affiliation(s)
- Chuqian Zheng
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Min Liu
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210018, P.R. China
| | - Hong Fan
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
11
|
Tan Y, Li Y, Tang F. Oncogenic seRNA functional activation: a novel mechanism of tumorigenesis. Mol Cancer 2020; 19:74. [PMID: 32278350 PMCID: PMC7149907 DOI: 10.1186/s12943-020-01195-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
seRNA is a noncoding RNA (ncRNA) transcribed from active super-enhancer (SE), through which SE exerts biological functions and participates in various physiological and pathological processes. seRNA recruits cofactor, RNA polymerase II and mediator to constitute and stabilize chromatin loop SE and promoter region, which regulates target genes transcription. In tumorigenesis, DNA insertion, deletion, translocation, focal amplification and carcinogen factor mediate oncogenic SE generation, meanwhile, oncogenic SE transcribes into tumor-related seRNA, termed as oncogenic seRNA. Oncogenic seRNA participates in tumorigenesis through activating various signal-pathways. The recent reports showed that oncogenic seRNA implicates in a widespread range of cytopathological processes in cancer progression including cell proliferation, apoptosis, autophagy, epithelial-mesenchymal transition, extracellular matrix stiffness and angiogenesis. In this article, we comprehensively summarized seRNA’s characteristics and functions, and emphatically introduced inducible formation of oncogenic seRNA and its functional mechanisms. Lastly, some research strategies on oncogenic seRNA were introduced, and the perspectives on cancer therapy that targets oncogenic seRNA were also discussed.
Collapse
Affiliation(s)
- Yuan Tan
- Department of Clinical Laboratory and Hunan Key Laboratory of Oncotarget gene, Hunan Cancer Hospital & The affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yuejin Li
- Department of Clinical Laboratory and Hunan Key Laboratory of Oncotarget gene, Hunan Cancer Hospital & The affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Faqing Tang
- Department of Clinical Laboratory and Hunan Key Laboratory of Oncotarget gene, Hunan Cancer Hospital & The affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|