1
|
Liu X, Meng J, Liao X, Liu Y, Zhou Q, Xu Z, Yin S, Cao Q, Su G, He S, Li W, Wang X, Wang G, Li D, Yang P, Hou S. A de novo missense mutation in MPP2 confers an increased risk of Vogt-Koyanagi-Harada disease as shown by trio-based whole-exome sequencing. Cell Mol Immunol 2023; 20:1379-1392. [PMID: 37828081 PMCID: PMC10616125 DOI: 10.1038/s41423-023-01088-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
Vogt-Koyanagi-Harada (VKH) disease is a leading cause of blindness in young and middle-aged people. However, the etiology of VKH disease remains unclear. Here, we performed the first trio-based whole-exome sequencing study, which enrolled 25 VKH patients and 50 controls, followed by a study of 2081 VKH patients from a Han Chinese population to uncover detrimental mutations. A total of 15 de novo mutations in VKH patients were identified, with one of the most important being the membrane palmitoylated protein 2 (MPP2) p.K315N (MPP2-N315) mutation. The MPP2-N315 mutation was highly deleterious according to bioinformatic predictions. Additionally, this mutation appears rare, being absent from the 1000 Genome Project and Genome Aggregation Database, and it is highly conserved in 10 species, including humans and mice. Subsequent studies showed that pathological phenotypes and retinal vascular leakage were aggravated in MPP2-N315 mutation knock-in or MPP2-N315 adeno-associated virus-treated mice with experimental autoimmune uveitis (EAU). In vitro, we used clustered regularly interspaced short palindromic repeats (CRISPR‒Cas9) gene editing technology to delete intrinsic MPP2 before overexpressing wild-type MPP2 or MPP2-N315. Levels of cytokines, such as IL-1β, IL-17E, and vascular endothelial growth factor A, were increased, and barrier function was destroyed in the MPP2-N315 mutant ARPE19 cells. Mechanistically, the MPP2-N315 mutation had a stronger ability to directly bind to ANXA2 than MPP2-K315, as shown by LC‒MS/MS and Co-IP, and resulted in activation of the ERK3/IL-17E pathway. Overall, our results demonstrated that the MPP2-K315N mutation may increase susceptibility to VKH disease.
Collapse
Affiliation(s)
- Xianyang Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Jiayu Meng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xingyun Liao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yusen Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Qian Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Zongren Xu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Shuming Yin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Siyuan He
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Wanqian Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Xiaotang Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Guoqing Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China.
- Chongqing Eye Institute, Chongqing, China.
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China.
- Chongqing Eye Institute, Chongqing, China.
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
2
|
Issa SS, Shaimardanova AA, Solovyeva VV, Rizvanov AA. Various AAV Serotypes and Their Applications in Gene Therapy: An Overview. Cells 2023; 12:785. [PMID: 36899921 PMCID: PMC10000783 DOI: 10.3390/cells12050785] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Despite scientific discoveries in the field of gene and cell therapy, some diseases still have no effective treatment. Advances in genetic engineering methods have enabled the development of effective gene therapy methods for various diseases based on adeno-associated viruses (AAVs). Today, many AAV-based gene therapy medications are being investigated in preclinical and clinical trials, and new ones are appearing on the market. In this article, we present a review of AAV discovery, properties, different serotypes, and tropism, and a following detailed explanation of their uses in gene therapy for disease of different organs and systems.
Collapse
Affiliation(s)
- Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alisa A. Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
3
|
She K, Su J, Wang Q, Liu Y, Zhong X, Jin X, Zhao Q, Xiao J, Li R, Deng H, Lu F, Yang Y, Wei Y. Delivery of nVEGFi using AAV8 for the treatment of neovascular age-related macular degeneration. Mol Ther Methods Clin Dev 2022; 24:210-221. [PMID: 35141350 PMCID: PMC8800040 DOI: 10.1016/j.omtm.2022.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/05/2022] [Indexed: 11/01/2022]
Abstract
Inhibition of vascular endothelial growth factor (VEGF) is the standard therapy for neovascular age-related macular degeneration (nAMD). However, anti-VEGF agents used in the clinic require repeated injections, causing adverse effects. Gene therapy could provide sustained anti-VEGF levels after a single injection, thereby drastically decreasing the treatment burden and improving visual outcomes. In this study, we developed a novel VEGF Trap, nVEGFi, containing domains 1 and 2 of VEGFR1 and domain 3 of VEGFR2 fused to the Fc portion of human IgG. The nVEGFi had a higher expression level than aflibercept under the same expression cassettes of adeno-associated virus (AAV)8 in vitro and in vivo. nVEGFi was found to be noninferior to aflibercept in binding and blocking VEGF in vitro. AAV8-mediated expression of nVEGFi was maintained for at least 12 weeks by subretinal delivery in C57BL/6J mice. In a mouse laser-induced choroidal neovascularization (CNV) model, 4 × 108 genome copies of AAV8-nVEGFi exhibited a significantly increased reduction in the CNV area compared with AAV8-aflibercept (78.1% vs. 63.9%, p < 0.05), while causing no structural or functional changes to the retina. In conclusion, this preclinical study showed that subretinal injection of AAV8-nVEGFi was long lasting, well tolerated, and effective for nAMD treatment, supporting future translation to the clinic.
Collapse
Affiliation(s)
- Kaiqin She
- Department of Ophthalmology, West China Hospital, Sichuan University, No.37, Guoxue Xiang, Chengdu, Sichuan 610041, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Ke-yuan Road 4, Gao-peng Street, Chengdu, Sichuan 610041, China
| | - Jing Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Ke-yuan Road 4, Gao-peng Street, Chengdu, Sichuan 610041, China
| | - Qingnan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Ke-yuan Road 4, Gao-peng Street, Chengdu, Sichuan 610041, China
| | - Yi Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Ke-yuan Road 4, Gao-peng Street, Chengdu, Sichuan 610041, China
| | - Xiaomei Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Ke-yuan Road 4, Gao-peng Street, Chengdu, Sichuan 610041, China
| | - Xiu Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Ke-yuan Road 4, Gao-peng Street, Chengdu, Sichuan 610041, China
| | - Qinyu Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Ke-yuan Road 4, Gao-peng Street, Chengdu, Sichuan 610041, China
| | - Jianlu Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Ke-yuan Road 4, Gao-peng Street, Chengdu, Sichuan 610041, China
| | - Ruiting Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Ke-yuan Road 4, Gao-peng Street, Chengdu, Sichuan 610041, China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Ke-yuan Road 4, Gao-peng Street, Chengdu, Sichuan 610041, China
| | - Fang Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, No.37, Guoxue Xiang, Chengdu, Sichuan 610041, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Ke-yuan Road 4, Gao-peng Street, Chengdu, Sichuan 610041, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Ke-yuan Road 4, Gao-peng Street, Chengdu, Sichuan 610041, China
| |
Collapse
|
4
|
Korneyenkov MA, Zamyatnin AA. Next Step in Gene Delivery: Modern Approaches and Further Perspectives of AAV Tropism Modification. Pharmaceutics 2021; 13:pharmaceutics13050750. [PMID: 34069541 PMCID: PMC8160765 DOI: 10.3390/pharmaceutics13050750] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Today, adeno-associated virus (AAV) is an extremely popular choice for gene therapy delivery. The safety profile and simplicity of the genome organization are the decisive advantages which allow us to claim that AAV is currently among the most promising vectors. Several drugs based on AAV have been approved in the USA and Europe, but AAV serotypes’ unspecific tissue tropism is still a serious limitation. In recent decades, several techniques have been developed to overcome this barrier, such as the rational design, directed evolution and chemical conjugation of targeting molecules with a capsid. Today, all of the abovementioned approaches confer the possibility to produce AAV capsids with tailored tropism, but recent data indicate that a better understanding of AAV biology and the growth of structural data may theoretically constitute a rational approach to most effectively produce highly selective and targeted AAV capsids. However, while we are still far from this goal, other approaches are still in play, despite their drawbacks and limitations.
Collapse
Affiliation(s)
- Maxim A. Korneyenkov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence: ; Tel.: +7-495-622-9843
| |
Collapse
|