1
|
Yuan H, Xu J, Wang Y, Shi L, Dong Y, Liu F, Long J, Duan G, Jin Y, Chen S, Zhu J, Yang H. The longitudinal trend and influential factors exploring of global antimicrobial resistance in Klebsiella pneumoniae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175357. [PMID: 39127203 DOI: 10.1016/j.scitotenv.2024.175357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Klebsiella pneumoniae (Kp) is a human symbiotic opportunistic pathogen capable of causing severe hospital-based infections and community-acquired infections. The problem of antimicrobial resistance (AMR) has become increasing serious over time, posing a major threat to socio-economic and human development. In this study, we explored the global trend of AMR in 1786 strains of Kp isolated between 1982 and 2023. The number of antibiotic resistance genes (ARGs) in Kp increased significantly from 24.29 ± 5.44 to 32.42 ± 8.52 over time. Mobile genetic elements (MGEs) were responsible for the ARGs horizontal transfer of Kp strains. The results of structural equation modeling (SEM) indicated a strong association between the human development index and the increase of antibiotic consumption, which indirectly affected the occurrence and development of antibiotic resistance in Kp. The results of Generalized Linear Models (GLM) indicated that the influence of environmental factors such as temperature on the development of Kp resistance could not be ignored. Overall, this study monitored the longitudinal trend of antimicrobial resistance in Kp, explored the factors influencing antibiotic resistance, and provided insights for mitigating the threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Haitao Yuan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Xu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Wang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Liqin Shi
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuehan Dong
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fang Liu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jinzhao Long
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuefei Jin
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jingyuan Zhu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Wang S, Li W, Xi B, Cao L, Huang C. Mechanisms and influencing factors of horizontal gene transfer in composting system: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177017. [PMID: 39427888 DOI: 10.1016/j.scitotenv.2024.177017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Organic solid wastes such as livestock manure and sewage sludge are important sources and repositories of antibiotic resistance genes (ARGs). Composting, a solid waste treatment technology, has demonstrated efficacy in degrading various antibiotics and reducing ARGs. However, some recalcitrant ARGs (e.g., sul1, sul2) will enrich during the composting maturation period. These ARGs persist in compost products and spread through horizontal gene transfer (HGT). We analyzed the reasons behind the increase of ARGs during the maturation phase. It was found that the proliferation of ARG-host bacteria and HGT process play an important role. This article revealed that microbial physiological responses, environmental factors, pollutants, and quorum sensing (QS) can all influence the HGT process in composting systems. We examined the influence of these factors on HGT in the compost system and summarized potential mechanisms by analyzing the alterations in microbial communities. We comprehensively summarized the HGT hazards that these factors may present in composting systems. Finally, we summarized methods to inhibit HGT in compost, such as using additives, quorum sensing inhibitors (QSIs), microbial inoculation, and predicting HGT events. Overall, the HGT mechanism and driving force in complex composting systems are still insufficiently studied. In view of the current situation, using predictions to assess the risk of HGT in composting may be advisable.
Collapse
Affiliation(s)
- Simiao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lijia Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
3
|
Li G, Han L, Xia LJ, Gao A, Li ZP, Zhou SY, Wan L, Deng Y, Zhou TH, Lu XY, Luo Y, Liang DS, Wu GT, Tang SQ, Lian XL, Ren H, Liao XP, Chen L, Sun J. Waterborne polyurethane nanoparticles incorporating linoleic acid as a potential strategy for controlling antibiotic resistance spread in the mammalian intestine. Mater Today Bio 2024; 28:101181. [PMID: 39221217 PMCID: PMC11364912 DOI: 10.1016/j.mtbio.2024.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/10/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
Plasmid-mediated conjugative transfer of antibiotic resistance genes (ARGs) within the human and animal intestine represents a substantial global health concern. linoleic acid (LA) has shown promise in inhibiting conjugation in vitro, but its in vivo effectiveness in the mammalian intestinal tract is constrained by challenges in efficiently reaching the target site. Recent advancements have led to the development of waterborne polyurethane nanoparticles for improved drug delivery. In this study, we synthesized four waterborne polyurethane nanoparticles incorporating LA (WPU@LA) using primary raw materials, including N-methyldiethanolamine, 2,2'-(piperazine-1,4-diyl) diethanol, isophorone diisocyanate, castor oil, and acetic acid. These nanoparticles, identified as WPU0.89@LA, WPU0.99@LA, WPU1.09@LA, and WPU1.19@LA, underwent assessment for their pH-responsive release property and biocompatibility. Among these, WPU0.99@LA displayed superior pH-responsive release properties and biocompatibility towards Caco-2 and IPEC-J2 cells. In a mouse model, a dosage of 10 mg/kg/day WPU0.99@LA effectively reduced the conjugation of IncX4 plasmids carrying the mobile colistin resistance gene (mcr-1) by more than 45.1-fold. In vivo toxicity assessment demonstrated that 10 mg/kg/day WPU0.99@LA maintains desirable biosafety and effectively preserves gut microbiota homeostasis. In conclusion, our study provides crucial proof-of-concept support, demonstrating that WPU0.99@LA holds significant potential in controlling the spread of antibiotic resistance within the mammalian intestine.
Collapse
Affiliation(s)
- Gong Li
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Lu Han
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Li-Juan Xia
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Ang Gao
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Zhi-Peng Li
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Shi-Ying Zhou
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Lei Wan
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yao Deng
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Tian-Hong Zhou
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xin-Yi Lu
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yang Luo
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Dun-Sheng Liang
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Gui-Ting Wu
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Sheng-Qiu Tang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, PR China
| | - Xin-Lei Lian
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Hao Ren
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xiao-Ping Liao
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Liang Chen
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, 14214, USA
| | - Jian Sun
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| |
Collapse
|
4
|
Wang B, Farhan MHR, Yuan L, Sui Y, Chu J, Yang X, Li Y, Huang L, Cheng G. Transfer dynamics of antimicrobial resistance among gram-negative bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176347. [PMID: 39306135 DOI: 10.1016/j.scitotenv.2024.176347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Antimicrobial resistance (AMR) in gram-negative bacteria (GNBs) is a significant global health concern, exacerbated by mobile genetic elements (MGEs). This review examines the transfer of antibiotic resistance genes (ARGs) within and between different species of GNB facilitated by MGEs, focusing on the roles of plasmids and phages. The impact of non-antibiotic chemicals, environmental factors affecting ARG transfer frequency, and underlying molecular mechanisms of bacterial resistance evolution are also discussed. Additionally, the study critically assesses the impact of fitness costs and compensatory evolution driven by MGEs in host organisms, shedding light on the transfer frequency of ARGs and host evolution within ecosystems. Overall, this comprehensive review highlights the factors and mechanisms influencing ARG movement among diverse GNB species and underscores the importance of implementing holistic One-Health strategies to effectively address the escalating public health challenges associated with AMR.
Collapse
Affiliation(s)
- Bangjuan Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Haris Raza Farhan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Linlin Yuan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Sui
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinhua Chu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaohan Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Nasu T, Maeda S. Escherichia coli persisters in biofilm can perform horizontal gene transfer by transformation. Biochem Biophys Res Commun 2024; 738:150549. [PMID: 39167960 DOI: 10.1016/j.bbrc.2024.150549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Persisters represent a subset of cells that exhibit transient tolerance to antimicrobials. These persisters can withstand sudden exposure to antimicrobials, even as the majority of normal cells perish. In this study, we have demonstrated the capacity of ampicillin-tolerant and alkali-tolerant persisters to execute horizontal gene transfer via in situ transformation within biofilms. Air-solid biofilms, comprising two Escherichia coli populations each with a distinct plasmid, were formed on agar media. They were treated with lethal doses of ampicillin or NaOH for 24 h, followed by a 1-min glass-ball roll. This process led to a high frequency of horizontal plasmid transfer (10-7-10-6 per cell) from dead cells to surviving persisters within the biofilms. Plasmid transfer was DNase-sensitive and also occurred by adding purified plasmid DNA to plasmid-free biofilms, demonstrating a transformation mechanism. This marks the first evidence of persisters' novel ability for horizontal gene transfer, via transformation.
Collapse
Affiliation(s)
- Tsubasa Nasu
- Graduate School of Humanities and Sciences, Nara Women's University, 630-8506, Kitauoya-nishimachi, Nara, Japan
| | - Sumio Maeda
- Graduate School of Humanities and Sciences, Nara Women's University, 630-8506, Kitauoya-nishimachi, Nara, Japan.
| |
Collapse
|
6
|
Milenkov M, Proux C, Rasolofoarison TL, Rakotomalala FA, Rasoanandrasana S, Rahajamanana VL, Rafalimanana C, Ravaoarisaina Z, Ramahatafandry IT, Westeel E, Petitjean M, Berti V, Marin J, Mullaert J, Han L, Clermont O, Raskine L, Endtz H, Andremont A, Denamur E, Komurian-Pradel F, Samison LH, Armand-Lefevre L. Implementation of the WHO Tricycle protocol for surveillance of extended-spectrum β-lactamase producing Escherichia coli in humans, chickens, and the environment in Madagascar: a prospective genomic epidemiology study. THE LANCET. MICROBE 2024; 5:100850. [PMID: 38908389 DOI: 10.1016/s2666-5247(24)00065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/12/2024] [Accepted: 02/28/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a major public health threat, affecting not only people but also animals and the environment. The One Health dimension of AMR is well known; however, data are lacking on the circulation of resistance-conferring genes, particularly in low-income countries. In 2017, WHO proposed a protocol called Tricycle, focusing on extended-spectrum β-lactamase (ESBL)-Escherichia coli surveillance in the three sectors (humans, animals, and the environment). We implemented Tricycle in Madagascar to assess ESBL-E coli prevalence and describe intrasector and intersector circulation of ESBL-E coli and plasmids. METHODS In this prospective study, we collected blood culture data from hospitalised patients with a suspected bloodstream infection processed from May 1, 2018, to April 30, 2019, and rectal swabs from healthy pregnant women from July 30, 2018, to April 27, 2019, both from three hospitals in Antananarivo, Madagascar; and caeca from farm chickens and surface waters from the Ikopa river, wastewater, and slaughterhouse effluents in the Antananarivo area, Madagascar, from April 9, 2018, to April 30, 2019. All samples were tested for ESBL-E coli. The genomes of all isolates were sequenced using a short-read method on NextSeq 500 and NovaSeq 6000 platforms (Illumina, San Diego, CA, USA) and those carrying plasmid replicons using an additional long-read method on a MinION platform (Oxford Nanopore Technologies, Oxford, UK). We characterised genomes of isolated strains (sequence type, resistance and virulence gene content, and plasmid replicons). We then compared isolates using the variant calling method (single-nucleotide polymorphism). FINDINGS Data from 1056 blood cultures were collected and 289 pregnant women, 246 chickens, and 28 surface waters were sampled. Of the blood cultures, 18 contained E coli, of which seven (39%) were ESBL. ESBL-E coli was present in samples from 86 (30%) of 289 pregnant women, 140 (57%) of 246 chickens, and 28 (100%) of 28 surface water samples. The wet season (November to April) was associated with higher rates of carriage in humans (odds ratio 3·08 [1·81-5·27]) and chickens (2·79 [1·65-4·81]). Sequencing of 277 non-duplicated isolates (82 from pregnant women, 118 from chickens, and 77 from environmental samples) showed high genetic diversity (90 sequence types identified) with sector-specific genomic features. Single nucleotide polymorphism (SNP) analysis revealed that 169 (61%) of 277 isolates grouped into 44 clusters (two or more isolates) of closely related isolates (<40 SNPs), of which 24 clusters contained isolates from two sectors and five contained isolates from all three sectors. ESBL genes were all blaCTX-M variants (215 [78%] of 277 being blaCTX-M-15) and were located on a plasmid in 113 (41%) of 277 isolates. These ESBL-carrying plasmids were mainly IncF (63 [55%] of 114; one strain carried two plasmids) and IncY (42 [37%] of 114). The F31/36:A4:B1 (n=13) and F-:A-:B53 (n=8) pMLST subtypes, and the IncY plasmids, which were all highly conserved, were observed in isolates of differing genetic backgrounds from all sectors and were transferable in vitro by conjugation. INTERPRETATION Despite sector-specific population structures, both ESBL-E coli strains and plasmids are circulating among humans, chickens, and the environment in Antananarivo, Madagascar. The Tricycle protocol can be implemented in a low-income country and represents a powerful tool for investigating dissemination of AMR from a One Health perspective. FUNDING Fondation Mérieux and INSERM, Université Paris Cité.
Collapse
Affiliation(s)
- Milen Milenkov
- Fondation Mérieux, Lyon, France; Université Paris Cité, IAME, INSERM UMR 1137, Paris, France
| | - Caroline Proux
- Université Paris Cité, IAME, INSERM UMR 1137, Paris, France
| | | | | | - Saida Rasoanandrasana
- Laboratoire de Bactériologie, CHU Joseph Raseta Befelatanana, RESAMAD Network, Antananarivo, Madagascar
| | | | - Christian Rafalimanana
- Laboratoire de Bactériologie, CHU Joseph Ravoahangy Andrianavalona, RESAMAD Network, Antananarivo, Madagascar
| | | | | | | | | | - Valentine Berti
- Université Paris Cité, IAME, INSERM UMR 1137, Paris, France; Laboratoire de Bactériologie, Hôpital Bichat-Claude Bernard, AP-HP Nord-Université Paris Cité, Paris, France
| | - Julie Marin
- Université Paris Cité, IAME, INSERM UMR 1137, Paris, France; Université Sorbonne Paris Nord, IAME, INSERM UMR 1137, Bobigny, France
| | - Jimmy Mullaert
- Université Paris Cité, IAME, INSERM UMR 1137, Paris, France
| | - Lien Han
- Université Paris Cité, IAME, INSERM UMR 1137, Paris, France
| | | | | | - Hubert Endtz
- Fondation Mérieux, Lyon, France; Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, Netherlands
| | | | - Erick Denamur
- Université Paris Cité, IAME, INSERM UMR 1137, Paris, France; Laboratoire de Génétique Moléculaire, Hôpital Bichat-Claude Bernard, AP-HP Nord-Université de Paris, Paris, France
| | | | - Luc Hervé Samison
- Centre d'Infectiologie Charles Mérieux, University of Antananarivo, Antananarivo, Madagascar
| | - Laurence Armand-Lefevre
- Université Paris Cité, IAME, INSERM UMR 1137, Paris, France; Laboratoire de Bactériologie, Hôpital Bichat-Claude Bernard, AP-HP Nord-Université Paris Cité, Paris, France.
| |
Collapse
|
7
|
Rzymski P, Gwenzi W, Poniedziałek B, Mangul S, Fal A. Climate warming, environmental degradation and pollution as drivers of antibiotic resistance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123649. [PMID: 38402936 DOI: 10.1016/j.envpol.2024.123649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Antibiotic resistance is a major challenge to public health, but human-caused environmental changes have not been widely recognized as its drivers. Here, we provide a comprehensive overview of the relationships between environmental degradation and antibiotic resistance, demonstrating that the former can potentially fuel the latter with significant public health outcomes. We describe that (i) global warming favors horizontal gene transfer, bacterial infections, the spread of drug-resistant pathogens due to water scarcity, and the release of resistance genes with wastewater; (ii) pesticide and metal pollution act as co-selectors of antibiotic resistance mechanisms; (iii) microplastics create conditions promoting and spreading antibiotic resistance and resistant bacteria; (iv) changes in land use, deforestation, and environmental pollution reduce microbial diversity, a natural barrier to antibiotic resistance spread. We argue that management of antibiotic resistance must integrate environmental goals, including mitigation of further increases in the Earth's surface temperature, better qualitative and quantitative protection of water resources, strengthening of sewage infrastructure and improving wastewater treatment, counteracting the microbial diversity loss, reduction of pesticide and metal emissions, and plastic use, and improving waste recycling. These actions should be accompanied by restricting antibiotic use only to clinically justified situations, developing novel treatments, and promoting prophylaxis. It is pivotal for health authorities and the medical community to adopt the protection of environmental quality as a part of public health measures, also in the context of antibiotic resistance management.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| | - Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe; Alexander von Humboldt Fellow and Guest Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Witzenhausen, Germany; Alexander von Humboldt Fellow and Guest Professor, Leibniz Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Serghei Mangul
- Titus Family Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Andrzej Fal
- Department of Allergy, Lung Diseases and Internal Medicine Central Clinical Hospital, Ministry of Interior, Warsaw, Poland; Collegium Medicum, Warsaw Faculty of Medicine, Cardinal Stefan Wyszyński University, Warsaw, Poland
| |
Collapse
|
8
|
Zhu S, Yang B, Wang Z, Liu Y. Augmented dissemination of antibiotic resistance elicited by non-antibiotic factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115124. [PMID: 37327521 DOI: 10.1016/j.ecoenv.2023.115124] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
The emergence and rapid spread of antibiotic resistance seriously compromise the clinical efficacy of current antibiotic therapies, representing a serious public health threat worldwide. Generally, drug-susceptible bacteria can acquire antibiotic resistance through genetic mutation or gene transfer, among which horizontal gene transfer (HGT) plays a dominant role. It is widely acknowledged that the sub-inhibitory concentrations of antibiotics are the key drivers in promoting the transmission of antibiotic resistance. However, accumulating evidence in recent years has shown that in addition to antibiotics, non-antibiotics can also accelerate the horizontal transfer of antibiotic resistance genes (ARGs). Nevertheless, the roles and potential mechanisms of non-antibiotic factors in the transmission of ARGs remain largely underestimated. In this review, we depict the four pathways of HGT and their differences, including conjugation, transformation, transduction and vesiduction. We summarize non-antibiotic factors accounting for the enhanced horizontal transfer of ARGs and their underlying molecular mechanisms. Finally, we discuss the limitations and implications of current studies.
Collapse
Affiliation(s)
- Shuyao Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
9
|
Michaelis C, Grohmann E. Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms. Antibiotics (Basel) 2023; 12:antibiotics12020328. [PMID: 36830238 PMCID: PMC9952180 DOI: 10.3390/antibiotics12020328] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Most bacteria attach to biotic or abiotic surfaces and are embedded in a complex matrix which is known as biofilm. Biofilm formation is especially worrisome in clinical settings as it hinders the treatment of infections with antibiotics due to the facilitated acquisition of antibiotic resistance genes (ARGs). Environmental settings are now considered as pivotal for driving biofilm formation, biofilm-mediated antibiotic resistance development and dissemination. Several studies have demonstrated that environmental biofilms can be hotspots for the dissemination of ARGs. These genes can be encoded on mobile genetic elements (MGEs) such as conjugative and mobilizable plasmids or integrative and conjugative elements (ICEs). ARGs can be rapidly transferred through horizontal gene transfer (HGT) which has been shown to occur more frequently in biofilms than in planktonic cultures. Biofilm models are promising tools to mimic natural biofilms to study the dissemination of ARGs via HGT. This review summarizes the state-of-the-art of biofilm studies and the techniques that visualize the three main HGT mechanisms in biofilms: transformation, transduction, and conjugation.
Collapse
|
10
|
Tiwari A, Kurittu P, Al-Mustapha AI, Heljanko V, Johansson V, Thakali O, Mishra SK, Lehto KM, Lipponen A, Oikarinen S, Pitkänen T, Heikinheimo A. Wastewater surveillance of antibiotic-resistant bacterial pathogens: A systematic review. Front Microbiol 2022; 13:977106. [PMID: 36590429 PMCID: PMC9798455 DOI: 10.3389/fmicb.2022.977106] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Infectious diseases caused by antibiotic-resistant bacterial (ARB) pathogens are a serious threat to human and animal health. The active surveillance of ARB using an integrated one-health approach can help to reduce the emergence and spread of ARB, reduce the associated economic impact, and guide antimicrobial stewardship programs. Wastewater surveillance (WWS) of ARB provides composite samples for a total population, with easy access to the mixed community microbiome. This concept is emerging rapidly, but the clinical utility, sensitivity, and uniformity of WWS of ARB remain poorly understood especially in relation to clinical evidence in sewershed communities. Here, we systematically searched the literature to identify studies that have compared findings from WWS of ARB and antibiotic resistance genes (ARG) with clinical evidence in parallel, thereby evaluating how likely WWS of ARB and ARG can relate to the clinical cases in communities. Initially, 2,235 articles were obtained using the primary search keywords, and 1,219 articles remained after de-duplication. Among these, 35 articles fulfilled the search criteria, and an additional 13 relevant articles were included by searching references in the primary literature. Among the 48 included papers, 34 studies used a culture-based method, followed by 11 metagenomics, and three PCR-based methods. A total of 28 out of 48 included studies were conducted at the single sewershed level, eight studies involved several countries, seven studies were conducted at national or regional scales, and five at hospital levels. Our review revealed that the performance of WWS of ARB pathogens has been evaluated more frequently for Escherichia coli, Enterococcus spp., and other members of the family Enterobacteriaceae, but has not been uniformly tested for all ARB pathogens. Many wastewater-based ARB studies comparing the findings with clinical evidence were conducted to evaluate the public health risk but not to relate with clinical evidence and to evaluate the performance of WWS of ARB. Indeed, relating WWS of ARB with clinical evidence in a sewershed is not straightforward, as the source of ARB in wastewater cannot be only from symptomatic human individuals but can also be from asymptomatic carriers as well as from animal sources. Further, the varying fates of each bacterial species and ARG within the sewerage make the aim of connecting WWS of ARB with clinical evidence more complicated. Therefore, future studies evaluating the performance of many AMR pathogens and their genes for WWS one by one can make the process simpler and the interpretation of results easier.
Collapse
Affiliation(s)
- Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,*Correspondence: Ananda Tiwari,
| | - Paula Kurittu
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ahmad I. Al-Mustapha
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria,Department of Veterinary Services, Kwara State Ministry of Agriculture and Rural Development, Ilorin, Nigeria
| | - Viivi Heljanko
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Venla Johansson
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Shyam Kumar Mishra
- School of Optometry and Vision Science, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Kirsi-Maarit Lehto
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anssi Lipponen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tarja Pitkänen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
11
|
Feldman SF, Temkin E, Wulffhart L, Nutman A, Schechner V, Shitrit P, Shvartz R, Schwaber MJ, Carmeli Y. Effect of temperature on Escherichia coli bloodstream infection in a nationwide population-based study of incidence and resistance. Antimicrob Resist Infect Control 2022; 11:144. [PMID: 36424647 PMCID: PMC9685946 DOI: 10.1186/s13756-022-01184-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The incidence of Escherichia coli bloodstream infections (BSI) is high and increasing. We aimed to describe the effect of season and temperature on the incidence of E. coli BSI and antibiotic-resistant E. coli BSI and to determine differences by place of BSI onset. METHODS All E. coli BSI in adult Israeli residents between January 1, 2018 and December 19, 2019 were included. We used the national database of mandatory BSI reports and outdoor temperature data. Monthly incidence and resistance were studied using multivariable negative binomial regressions with season (July-October vs. other) and temperature as covariates. RESULTS We included 10,583 events, 9012 (85%) community onset (CO) and 1571 (15%) hospital onset (HO). For CO events, for each average monthly temperature increase of 5.5 °C, the monthly number of events increased by 6.2% (95% CI 1.6-11.1%, p = 0.008) and the monthly number of multidrug-resistant events increased by 4.9% (95% CI 0.3-9.7%, p = 0.04). The effect of season was not significant. For HO events, incidence of BSI and resistant BSI were not associated with temperature or season. CONCLUSION Temperature increases the incidence of CO E. coli BSI and CO antibiotic-resistant E. coli BSI. Global warming threatens to increase the incidence of E. coli BSI.
Collapse
Affiliation(s)
- Sarah F. Feldman
- grid.414840.d0000 0004 1937 052XNational Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel Aviv, Israel
| | - Elizabeth Temkin
- grid.414840.d0000 0004 1937 052XNational Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel Aviv, Israel
| | - Liat Wulffhart
- grid.414840.d0000 0004 1937 052XNational Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel Aviv, Israel
| | - Amir Nutman
- grid.414840.d0000 0004 1937 052XNational Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vered Schechner
- grid.414840.d0000 0004 1937 052XNational Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pnina Shitrit
- grid.12136.370000 0004 1937 0546Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel ,grid.415250.70000 0001 0325 0791Infection Control Unit, Meir Medical Center, Kefar Sava, Israel
| | - Racheli Shvartz
- grid.414840.d0000 0004 1937 052XNational Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel Aviv, Israel
| | - Mitchell J. Schwaber
- grid.414840.d0000 0004 1937 052XNational Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yehuda Carmeli
- grid.414840.d0000 0004 1937 052XNational Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Identification of Key Genes during Ca 2+-Induced Genetic Transformation in Escherichia coli by Combining Multi-Omics and Gene Knockout Techniques. Appl Environ Microbiol 2022; 88:e0058722. [PMID: 36255244 PMCID: PMC9642010 DOI: 10.1128/aem.00587-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanism of the Ca2+-mediated formation of competent cells in Escherichia coli remains unclear. In this study, transcriptome and proteomics techniques were used to screen genes in response to Ca2+ treatment. A total of 333 differentially expressed genes (317 upregulated and 16 downregulated) and 145 differentially expressed proteins (54 upregulated and 91 downregulated) were obtained. These genes and proteins are mainly enriched in cell membrane components, transmembrane transport, and stress response-related functional terms. Fifteen genes with these functions, including yiaW, ygiZ, and osmB, are speculated to play a key role in the cellular response to Ca2+. Three single-gene deletion strains were constructed with the Red homologous recombination method to verify its function in genetic transformation. The transformation efficiencies of yiaW, ygiZ, and osmB deletion strains for different-size plasmids were significantly increased. None of the three gene deletion strains changed in size, which is one of the main elements of microscopic morphology, but they exhibited different membrane permeabilities and transformation efficiencies. This study demonstrates that Ca2+-mediated competence formation in E. coli is not a simple physicochemical process and may involve the regulation of genes in response to Ca2+. This study lays the foundation for further in-depth analyses of the molecular mechanism of Ca2+-mediated transformation. IMPORTANCE Using transcriptome and proteome techniques and association analysis, we identified several key genes involved in the formation of Ca2+-mediated E. coli DH5α competent cells. We used Red homologous recombination technology to construct three single-gene deletion strains and found that the transformation efficiencies of yiaW, ygiZ, and osmB deletion strains for different-size plasmids were significantly increased. These results proved that the genetic transformation process is not only a physicochemical process but also a reaction process involving multiple genes. These results suggest ways to improve the horizontal gene transfer mechanism of foodborne microorganisms and provide new ideas for ensuring the safety of food preservation and processing.
Collapse
|
13
|
Kasagaki S, Hashimoto M, Maeda S. Subminimal inhibitory concentrations of ampicillin and mechanical stimuli cooperatively promote cell-to-cell plasmid transformation in Escherichia coli. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100130. [PMID: 35909620 PMCID: PMC9325862 DOI: 10.1016/j.crmicr.2022.100130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Horizontal gene transfer (HGT) is a bacterial evolution tool for improved survival. Although several environmental stimuli induce or promote HGT, the diversity and complexity of the environmental factors have not been sufficiently elucidated. In this study, we showed that the biofilm culture of Escherichia coli at the air-solid interface in the presence of a subminimal inhibitory concentration (sub-MIC) of ampicillin (∼0.5-4 µg/mL) and subsequent mechanical stimulation (rolling small glass balls, ø = 5-8 mm) cooperatively promoted horizontal plasmid transfer without the usual competence-inducing conditions. Either of the two treatments promoted plasmid transfer at a lower frequency than when the treatments were combined. The effect of several parameters on the two treatments was tested and then optimized, achieving a high frequency of plasmid transfer (up to 10-6 per cell) under optimal conditions. Plasmid transfer was DNase-sensitive for both treatments, demonstrating its mechanism of transformation. Plasmid transfer occurred using various E. coli strains, plasmids, ball materials, shaking conditions, and even the mechanical stimulation of brushing the biofilm with a toothbrush, indicating the conditional flexibility of this phenomenon. This is the first demonstration of the promoting effect of the combination of a sub-MIC antibiotic and mechanical stimulation on horizontal plasmid transfer between E. coli cells via transformation. Regarding environmental bacterial physiology, the aggregations or biofilms of bacterial cells may encounter both sub-MIC antibiotics and mechanical stimuli in some specific environments, therefore, this type of HGT could also occur naturally.
Collapse
Affiliation(s)
- Sayuri Kasagaki
- Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-nishimachi, Nara, 630-8506, Japan
| | - Mayuko Hashimoto
- Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-nishimachi, Nara, 630-8506, Japan
| | - Sumio Maeda
- Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-nishimachi, Nara, 630-8506, Japan
| |
Collapse
|
14
|
Milenkov M, Rasoanandrasana S, Rahajamanana LV, Rakotomalala RS, Razafindrakoto CA, Rafalimanana C, Ravelomandranto E, Ravaoarisaina Z, Westeel E, Petitjean M, Mullaert J, Clermont O, Raskine L, Samison LH, Endtz H, Andremont A, Denamur E, Komurian-Pradel F, Armand-Lefevre L. Prevalence, Risk Factors, and Genetic Characterization of Extended-Spectrum Beta-Lactamase Escherichia coli Isolated From Healthy Pregnant Women in Madagascar. Front Microbiol 2021; 12:786146. [PMID: 35003019 PMCID: PMC8740230 DOI: 10.3389/fmicb.2021.786146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial resistance is a major public health concern worldwide affecting humans, animals and the environment. However, data is lacking especially in developing countries. Thus, the World Health Organization developed a One-Health surveillance project called Tricycle focusing on the prevalence of ESBL-producing Escherichia coli in humans, animals, and the environment. Here we present the first results of the human community component of Tricycle in Madagascar. From July 2018 to April 2019, rectal swabs from 492 pregnant women from Antananarivo, Mahajanga, Ambatondrazaka, and Toamasina were tested for ESBL-E. coli carriage. Demographic, sociological and environmental risk factors were investigated, and E. coli isolates were characterized (antibiotic susceptibility, resistance and virulence genes, plasmids, and genomic diversity). ESBL-E. coli prevalence carriage in pregnant women was 34% varying from 12% (Toamasina) to 65% (Ambatondrazaka). The main risk factor associated with ESBL-E. coli carriage was the rainy season (OR = 2.9, 95% CI 1.3-5.6, p = 0.009). Whole genome sequencing was performed on 168 isolates from 144 participants. bla CTX-M-15 was the most frequent ESBL gene (86%). One isolate was resistant to carbapenems and carried the bla NDM-5 gene. Most isolates belonged to commensalism associated phylogenetic groups A, B1, and C (90%) and marginally to extra-intestinal virulence associated phylogenetic groups B2, D and F (10%). Multi locus sequence typing showed 67 different sequence types gathered in 17 clonal complexes (STc), the most frequent being STc10/phylogroup A (35%), followed distantly by the emerging STc155/phylogroup B1 (7%), STc38/phylogroup D (4%) and STc131/phylogroup B2 (3%). While a wide diversity of clones has been observed, SNP analysis revealed several genetically close isolates (n = 34/168) which suggests human-to-human transmissions. IncY plasmids were found with an unusual prevalence (23%), all carrying a bla CTX-M-15. Most of them (85%) showed substantial homology (≥85%) suggesting a dissemination of IncY ESBL plasmids in Madagascar. This large-scale study reveals a high prevalence of ESBL-E. coli among pregnant women in four cities in Madagascar associated with warmth and rainfall. It shows the great diversity of E. coli disseminating throughout the country but also transmission of specific clones and spread of plasmids. This highlights the urgent need of public-health interventions to control antibiotic resistance in the country.
Collapse
Affiliation(s)
- Milen Milenkov
- Fondation Mérieux, Lyon, France
- Université de Paris, IAME, INSERM UMR 1137, Paris, France
| | - Saida Rasoanandrasana
- Laboratoire de Bactériologie, CHU Joseph Raseta Befelatanana, RESAMAD Network, Antananarivo, Madagascar
| | | | | | | | - Christian Rafalimanana
- Laboratoire de Bactériologie, CHU Joseph Ravoahangy Andrianavalona, RESAMAD Network, Antananarivo, Madagascar
| | - Emile Ravelomandranto
- Laboratoire de Bactériologie, CHRR Alaotra Mangoro, RESAMAD Network, Ambatondrazaka, Madagascar
| | | | | | | | - Jimmy Mullaert
- Université de Paris, IAME, INSERM UMR 1137, Paris, France
| | | | | | - Luc Hervé Samison
- Centre d’Infectiologie Charles Mérieux, University of Antananarivo, Antananarivo, Madagascar
| | - Hubert Endtz
- Fondation Mérieux, Lyon, France
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, Netherlands
| | | | - Erick Denamur
- Université de Paris, IAME, INSERM UMR 1137, Paris, France
- Laboratoire de Génétique Moléculaire, Hôpital Bichat-Claude Bernard, AP-HP Nord-Université de Paris, Paris, France
| | | | - Laurence Armand-Lefevre
- Université de Paris, IAME, INSERM UMR 1137, Paris, France
- Laboratoire de Bactériologie, Hôpital Bichat-Claude Bernard, AP-HP Nord-Université de Paris, Paris, France
| |
Collapse
|
15
|
Ku YS, Wang Z, Duan S, Lam HM. Rhizospheric Communication through Mobile Genetic Element Transfers for the Regulation of Microbe-Plant Interactions. BIOLOGY 2021; 10:biology10060477. [PMID: 34071379 PMCID: PMC8227670 DOI: 10.3390/biology10060477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022]
Abstract
Simple Summary Rhizosphere, where microbes and plants coexist, is a hotspot of mobile genetic element (MGE) transfers. It was suggested that ancient MGE transfers drove the evolution of both microbes and plants. On the other hand, recurrent MGE transfers regulate microbe-plant interaction and the adaptation of microbes and plants to the environment. The studies of MGE transfers in the rhizosphere provide useful information for the research on pathogenic/ beneficial microbe-plant interaction. In addition, MGE transfers between microbes and the influence by plant root exudates on such transfers provide useful information for the research on bioremediation. Abstract The transfer of mobile genetic elements (MGEs) has been known as a strategy adopted by organisms for survival and adaptation to the environment. The rhizosphere, where microbes and plants coexist, is a hotspot of MGE transfers. In this review, we discuss the classic mechanisms as well as novel mechanisms of MGE transfers in the rhizosphere. Both intra-kingdom and cross-kingdom MGE transfers will be addressed. MGE transfers could be ancient events which drove evolution or recurrent events which regulate adaptations. Recent findings on MGE transfers between plant and its interacting microbes suggest gene regulations brought forth by such transfers for symbiosis or defense mechanisms. In the natural environment, factors such as temperature and soil composition constantly influence the interactions among different parties in the rhizosphere. In this review, we will also address the effects of various environmental factors on MGE transfers in the rhizosphere. Besides environmental factors, plant root exudates also play a role in the regulation of MGE transfer among microbes in the rhizosphere. The potential use of microbes and plants for bioremediation will be discussed.
Collapse
|
16
|
Zhang S, Huang J, Zhao Z, Cao Y, Li B. Hospital Wastewater as a Reservoir for Antibiotic Resistance Genes: A Meta-Analysis. Front Public Health 2020; 8:574968. [PMID: 33194975 PMCID: PMC7655780 DOI: 10.3389/fpubh.2020.574968] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/01/2020] [Indexed: 11/13/2022] Open
Abstract
Background: The emergence and dissemination of antibiotic resistance genes (ARGs) in the environment poses a huge global health hazard. Hospital wastewater (HWW), in which a high density of antibiotic residues and antibiotic-resistant bacteria are present, may be a reservoir of ARGs dissemination into the environment. Our meta-analysis comprehensively analyzes the prevalence of ARGs in HWW, as well as the influencing factors in ARGs distribution. Methods: Online databases were used to search for literature using the subject terms: “Drug Resistance” AND “Genes” AND “Hospitals” AND “Wastewater.” Two reviewers independently applied predefined criteria to assess the literature and extract data including “relative abundance of ARGs,” “title,” “authors,” “country,” “location,” “sampling year,” and “sampling seasons.” The median values and 95% confidence intervals of ARGs abundance were calculated by Wilcox.test function in R. Temporal trends, spatial differences, seasonal variations and removal efficiency of ARGs were analyzed by Pearson correlation analysis and Kruskal-Wallis H test. Results: Resistance genes to carbapenems, sulfonamides, tetracyclines and mobile genetic elements were found at high relative abundance (>10−4 gene copies/16S rRNA gene copies) in HWW. The abundance of resistance genes to extended-spectrum β-lactams, carbapenems, sulfonamides and glycopeptide significantly decreased, while tetracycline resistance genes abundance increased from 2014 to 2018. The abundance of ARGs was significantly different by country but not by season. ARGs could not be completely removed by on-site HWW treatments and the removal efficiency varies for different ARGs. Conclusions: HWW presents more types of ARGs, and their abundance is higher than those in most wastewater systems. HWW may be a reservoir of ARGs and play an important role in the dissemination of ARGs.
Collapse
Affiliation(s)
- Shengcen Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiangqing Huang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhichang Zhao
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Bin Li
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|