1
|
Seidinger A, Roberts R, Bai Y, Müller M, Pfeil E, Matthey M, Rieck S, Alenfelder J, König GM, Pfeifer A, Kostenis E, Klinke A, Fleischmann BK, Wenzel D. Pharmacological Gq inhibition induces strong pulmonary vasorelaxation and reverses pulmonary hypertension. EMBO Mol Med 2024; 16:1930-1956. [PMID: 38977926 PMCID: PMC11319782 DOI: 10.1038/s44321-024-00096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease with limited survival. Herein, we propose the pharmacological inhibition of Gq proteins as a novel concept to counteract pulmonary vasoconstriction and proliferation/migration of pulmonary artery smooth muscle cells (PASMCs) in PAH. We demonstrate that the specific pan-Gq inhibitor FR900359 (FR) induced a strong vasorelaxation in large and small pulmonary arteries in mouse, pig, and human subjects ex vivo. Vasorelaxation by FR proved at least as potent as the currently used triple therapy. We also provide in vivo evidence that local pulmonary application of FR prevented right ventricular systolic pressure increase in healthy mice as well as in mice suffering from hypoxia (Hx)-induced pulmonary hypertension (PH). In addition, we demonstrate that chronic application of FR prevented and also reversed Sugen (Su)Hx-induced PH in mice. We also demonstrate that Gq inhibition reduces proliferation and migration of PASMCs in vitro. Thus, our work illustrates a dominant role of Gq proteins for pulmonary vasoconstriction as well as remodeling and proposes direct Gq inhibition as a powerful pharmacological strategy in PH.
Collapse
Affiliation(s)
- Alexander Seidinger
- Institute of Physiology, Department of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany
| | - Richard Roberts
- Pharmacology Research Group, University Hospital of Nottingham, Nottingham, UK
| | - Yan Bai
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Marion Müller
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr University of Bochum, Bad Oeynhausen, Germany
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Eva Pfeil
- Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Michaela Matthey
- Institute of Physiology, Department of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany
| | - Sarah Rieck
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Judith Alenfelder
- Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Evi Kostenis
- Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr University of Bochum, Bad Oeynhausen, Germany
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology, Department of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany.
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Shi Q, Sun X, Zhang H, Yang L, Fu Y, Wang G, Su Y, Li W, Li W. PLC-CN-NFAT1 signaling-mediated Aβ and IL-1β crosstalk synergistically promotes hippocampal neuronal damage. Int Immunopharmacol 2024; 134:112259. [PMID: 38749336 DOI: 10.1016/j.intimp.2024.112259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/18/2024] [Accepted: 05/10/2024] [Indexed: 06/03/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. Neuronal calcium overload plays an important role in Aβ deposition and neuroinflammation, which are strongly associated with AD. However, the specific mechanisms by which calcium overload contributes to neuroinflammation and AD and the relationship between them have not been elucidated. Phospholipase C (PLC) is involved in regulation of calcium homeostasis, and CN-NFAT1 signaling is dependent on intracellular Ca2+ ([Ca2+]i) to regulate transcription of genes. Therefore, we hypothesized that the PLC-CN-NFAT1 signaling might mediate the interaction between Aβ and inflammation to promote neuronal injury in AD. In this experiment, the results showed that the levels of Aβ, IL-1β and [Ca2+]i in the hippocampal primary neurons of APP/PS1 mice (APP neurons) were significantly increased. IL-1β exposure also significantly increased Aβ and [Ca2+]i in HT22 cells, suggesting a close association between Aβ and IL-1β in the development of AD. Furthermore, PLC activation induced significant calcium homeostasis imbalance, cell apoptosis, Aβ and ROS production, and significantly increased expressions of CN and NFAT1, while PLC inhibitor significantly reversed these changes in APP neurons and IL-1β-induced HT22 cells. Further results indicated that PLC activation significantly increased the expressions of NOX2, APP, BACE1, and NCSTN, which were inhibited by PLC inhibitor in APP neurons and IL-1β-induced HT22 cells. All indications point to a synergistic interaction between Aβ and IL-1β by activating the PLC-CN-NFAT1 signal, ultimately causing a vicious cycle, resulting in neuronal damage in AD. The study may provide a new idea and target for treatment of AD.
Collapse
Affiliation(s)
- Qifeng Shi
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Xiangyu Sun
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Hui Zhang
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Liu Yang
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yinglin Fu
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Guohang Wang
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yong Su
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China
| | - Weiping Li
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
3
|
Weinstein N, Carlsen J, Schulz S, Stapleton T, Henriksen HH, Travnik E, Johansson PI. A Lifelike guided journey through the pathophysiology of pulmonary hypertension-from measured metabolites to the mechanism of action of drugs. Front Cardiovasc Med 2024; 11:1341145. [PMID: 38845688 PMCID: PMC11153715 DOI: 10.3389/fcvm.2024.1341145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/12/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Pulmonary hypertension (PH) is a pathological condition that affects approximately 1% of the population. The prognosis for many patients is poor, even after treatment. Our knowledge about the pathophysiological mechanisms that cause or are involved in the progression of PH is incomplete. Additionally, the mechanism of action of many drugs used to treat pulmonary hypertension, including sotatercept, requires elucidation. Methods Using our graph-powered knowledge mining software Lifelike in combination with a very small patient metabolite data set, we demonstrate how we derive detailed mechanistic hypotheses on the mechanisms of PH pathophysiology and clinical drugs. Results In PH patients, the concentration of hypoxanthine, 12(S)-HETE, glutamic acid, and sphingosine 1 phosphate is significantly higher, while the concentration of L-arginine and L-histidine is lower than in healthy controls. Using the graph-based data analysis, gene ontology, and semantic association capabilities of Lifelike, led us to connect the differentially expressed metabolites with G-protein signaling and SRC. Then, we associated SRC with IL6 signaling. Subsequently, we found associations that connect SRC, and IL6 to activin and BMP signaling. Lastly, we analyzed the mechanisms of action of several existing and novel pharmacological treatments for PH. Lifelike elucidated the interplay between G-protein, IL6, activin, and BMP signaling. Those pathways regulate hallmark pathophysiological processes of PH, including vasoconstriction, endothelial barrier function, cell proliferation, and apoptosis. Discussion The results highlight the importance of SRC, ERK1, AKT, and MLC activity in PH. The molecular pathways affected by existing and novel treatments for PH also converge on these molecules. Importantly, sotatercept affects SRC, ERK1, AKT, and MLC simultaneously. The present study shows the power of mining knowledge graphs using Lifelike's diverse set of data analytics functionalities for developing knowledge-driven hypotheses on PH pathophysiological and drug mechanisms and their interactions. We believe that Lifelike and our presented approach will be valuable for future mechanistic studies of PH, other diseases, and drugs.
Collapse
Affiliation(s)
- Nathan Weinstein
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jørn Carlsen
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sebastian Schulz
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Timothy Stapleton
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hanne H. Henriksen
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Evelyn Travnik
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Pär Ingemar Johansson
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
4
|
Chen Y, Liu J, Zhang Q, Chai L, Chen H, Li D, Wang Y, Qiu Y, Shen N, Zhang J, Wang Q, Wang J, Xie X, Li S, Li M. Activation of CaMKII/HDAC4 by SDF1 contributes to pulmonary arterial hypertension via stabilization Runx2. Eur J Pharmacol 2024; 970:176483. [PMID: 38479721 DOI: 10.1016/j.ejphar.2024.176483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
Stromal derived factor 1 (SDF1) has been shown to be involved in the pathogenesis of pulmonary artery hypertension (PAH). However, the detailed molecular mechanisms remain unclear. To address this, we utilized primary cultured rat pulmonary artery smooth muscle cells (PASMCs) and monocrotaline (MCT)-induced PAH rat models to investigate the mechanisms of SDF1 driving PASMCs proliferation and pulmonary arterial remodeling. SDF1 increased runt-related transcription factor 2 (Runx2) acetylation by Calmodulin (CaM)-dependent protein kinase II (CaMKII)-dependent HDAC4 cytoplasmic translocation, elevation of Runx2 acetylation conferred its resistance to proteasome-mediated degradation. The accumulation of Runx2 further upregulated osteopontin (OPN) expression, finally leading to PASMCs proliferation. Blocking SDF1, suppression of CaMKII, inhibition the nuclear export of HDAC4 or silencing Runx2 attenuated pulmonary arterial remodeling and prevented PAH development in MCT-induced PAH rat models. Our study provides novel sights for SDF1 induction of PASMCs proliferation and suggests that targeting SDF1/CaMKII/HDAC4/Runx2 axis has potential value in the management of PAH.
Collapse
Affiliation(s)
- Yuqian Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Jin Liu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Limin Chai
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Huan Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Danyang Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Yuanjie Qiu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Nirui Shen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Jia Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Xinming Xie
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
5
|
Yu W, Zhang Q, Qiu Y, Chen H, Huang X, Xiao L, Xu G, Li S, Hu P, Tong X. CDN1163 alleviates SERCA2 dysfunction-induced pulmonary vascular remodeling by inhibiting the phenotypic transition of pulmonary artery smooth muscle cells. Clin Exp Hypertens 2023; 45:2272062. [PMID: 37899350 DOI: 10.1080/10641963.2023.2272062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND AND PURPOSE Substitution of Cys674 (C674) in the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) causes SERCA2 dysfunction which leads to activated inositol requiring enzyme 1 alpha (IRE1α) and spliced X-box binding protein 1 (XBP1s) pathway accelerating cell proliferation of pulmonary artery smooth muscle cells (PASMCs) followed by significant pulmonary vascular remodeling resembling human pulmonary hypertension. Based on this knowledge, we intend to investigate other potential mechanisms involved in SERCA2 dysfunction-induced pulmonary vascular remodeling. EXPERIMENTAL APPROACH Heterozygous SERCA2 C674S knock-in (SKI) mice of which half of cysteine in 674 was substituted by serine to mimic the partial irreversible oxidation of C674 were used. The lungs of SKI mice and their littermate wild-type mice were collected for PASMC culture, protein expression, and pulmonary vascular remodeling analysis. RESULTS SERCA2 dysfunction increased intracellular Ca2+ levels, which activated Ca2+-dependent calcineurin (CaN) and promoted the nuclear translocation and protein expression of the nuclear factor of activated T-lymphocytes 4 (NFAT4) in an IRE1α/XBP1s pathway-independent manner. In SKI PASMCs, the scavenge of intracellular Ca2+ by BAPTA-AM or inhibition of CaN by cyclosporin A can prevent PASMC phenotypic transition. CDN1163, a SERCA2 agonist, suppressed the activation of CaN/NFAT4 and IRE1α/XBP1s pathways, reversed the protein expression of PASMC phenotypic transition markers and cell cycle-related proteins, and inhibited cell proliferation and migration when given to SKI PASMCs. Furthermore, CDN1163 ameliorated pulmonary vascular remodeling in SKI mice. CONCLUSIONS AND IMPLICATIONS SERCA2 dysfunction promotes PASMC phenotypic transition and pulmonary vascular remodeling by multiple mechanisms, which could be improved by SERCA2 agonist CDN1163.
Collapse
Affiliation(s)
- Weimin Yu
- Institute of Health Biological Chemical Medication, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Qian Zhang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yixiang Qiu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Hui Chen
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiaoyang Huang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Li Xiao
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Gang Xu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Siqi Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Central Clinical School, Monash University, Melbourne, Australia
| | - Pingping Hu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xiaoyong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
6
|
Nolze A, Matern S, Grossmann C. Calcineurin Is a Universal Regulator of Vessel Function-Focus on Vascular Smooth Muscle Cells. Cells 2023; 12:2269. [PMID: 37759492 PMCID: PMC10528183 DOI: 10.3390/cells12182269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Calcineurin, a serine/threonine phosphatase regulating transcription factors like NFaT and CREB, is well known for its immune modulatory effects and role in cardiac hypertrophy. Results from experiments with calcineurin knockout animals and calcineurin inhibitors indicate that calcineurin also plays a crucial role in vascular function, especially in vascular smooth muscle cells (VSMCs). In the aorta, calcineurin stimulates the proliferation and migration of VSMCs in response to vascular injury or angiotensin II administration, leading to pathological vessel wall thickening. In the heart, calcineurin mediates coronary artery formation and VSMC differentiation, which are crucial for proper heart development. In pulmonary VSMCs, calcineurin/NFaT signaling regulates the release of Ca2+, resulting in increased vascular tone followed by pulmonary arterial hypertension. In renal VSMCs, calcineurin regulates extracellular matrix secretion promoting fibrosis development. In the mesenteric and cerebral arteries, calcineurin mediates a phenotypic switch of VSMCs leading to altered cell function. Gaining deeper insights into the underlying mechanisms of calcineurin signaling will help researchers to understand developmental and pathogenetical aspects of the vasculature. In this review, we provide an overview of the physiological function and pathophysiology of calcineurin in the vascular system with a focus on vascular smooth muscle cells in different organs. Overall, there are indications that under certain pathological settings reduced calcineurin activity seems to be beneficial for cardiovascular health.
Collapse
Affiliation(s)
| | | | - Claudia Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| |
Collapse
|
7
|
Terlizzi M, Colarusso C, Ferraro G, Falanga A, Monti MC, Somma P, De Rosa I, Panico L, Pinto A, Sorrentino R. Sex Differences in Sphingosine-1-Phosphate Levels Are Dependent on Ceramide Synthase 1 and Ceramidase in Lung Physiology and Tumor Conditions. Int J Mol Sci 2023; 24:10841. [PMID: 37446018 DOI: 10.3390/ijms241310841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Sex is a biological variable that can reflect clinical outcomes in terms of quality of life, therapy effectiveness, responsiveness and/or toxicity. Sphingosine-1-phosphate (S1P) is a lipidic mediator whose activity can be influenced by sex. To evaluate whether the S1P axis underlies sex 'instructions' in the lung during physiological and oncological lung conditions, sphingosine and S1P were quantified in the blood of healthy (H) volunteers, lung adenocarcinoma (ADK) and squamous cell carcinoma (SCC) patients of both sexes. S1P receptors and their metabolic enzymes were evaluated in the tissues. Circulating levels of S1P were similar among H female and male subjects and female SCC patients. Instead, male and female ADK patients had lower circulating S1P levels. S1P receptor 3 (S1PR3) was physiologically expressed in the lung, but it was overexpressed in male SCC, and female and male ADK, but not in female SCC patients, who showed a significantly reduced ceramide synthase 1 (CERS1) mRNA and an overexpression of the ceramidase (ASAH1) precursor in lung tumor tissues, compared to male SCC and both male and female ADK patients. These findings highlighted sex differences in S1P rheostat in pathological conditions, but not in physiological conditions, identifying S1P as a prognostic mediator depending on lung cancer histotype.
Collapse
Affiliation(s)
- Michela Terlizzi
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Fisciano, Italy
| | - Chiara Colarusso
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Fisciano, Italy
| | - Giusy Ferraro
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Fisciano, Italy
| | - Anna Falanga
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Fisciano, Italy
| | - Maria Chiara Monti
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Fisciano, Italy
| | - Pasquale Somma
- Anatomy and Pathology Unit, Ospedale dei Colli, Azienda Ospedaliera di Rilievo Nazionale (AORN), "Monaldi", 84131 Naples, Italy
| | - Ilaria De Rosa
- Anatomy and Pathology Unit, Ospedale dei Colli, Azienda Ospedaliera di Rilievo Nazionale (AORN), "Monaldi", 84131 Naples, Italy
| | - Luigi Panico
- Anatomy and Pathology Unit, Ospedale dei Colli, Azienda Ospedaliera di Rilievo Nazionale (AORN), "Monaldi", 84131 Naples, Italy
| | - Aldo Pinto
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Fisciano, Italy
| | | |
Collapse
|
8
|
Mamazhakypov A, Maripov A, Sarybaev AS, Schermuly RT, Sydykov A. Osteopontin in Pulmonary Hypertension. Biomedicines 2023; 11:biomedicines11051385. [PMID: 37239056 DOI: 10.3390/biomedicines11051385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Pulmonary hypertension (PH) is a pathological condition with multifactorial etiology, which is characterized by elevated pulmonary arterial pressure and pulmonary vascular remodeling. The underlying pathogenetic mechanisms remain poorly understood. Accumulating clinical evidence suggests that circulating osteopontin may serve as a biomarker of PH progression, severity, and prognosis, as well as an indicator of maladaptive right ventricular remodeling and dysfunction. Moreover, preclinical studies in rodent models have implicated osteopontin in PH pathogenesis. Osteopontin modulates a plethora of cellular processes within the pulmonary vasculature, including cell proliferation, migration, apoptosis, extracellular matrix synthesis, and inflammation via binding to various receptors such as integrins and CD44. In this article, we provide a comprehensive overview of the current understanding of osteopontin regulation and its impact on pulmonary vascular remodeling, as well as consider research issues required for the development of therapeutics targeting osteopontin as a potential strategy for the management of PH.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Abdirashit Maripov
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek 720040, Kyrgyzstan
| | - Akpay S Sarybaev
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek 720040, Kyrgyzstan
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Akylbek Sydykov
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| |
Collapse
|
9
|
Kong L, Sun R, Zhou H, Shi Q, Liu Y, Han M, Li W, Qun S, Li W. Trpc6 knockout improves behavioral dysfunction and reduces Aβ production by inhibiting CN-NFAT1 signaling in T2DM mice. Exp Neurol 2023; 363:114350. [PMID: 36791875 DOI: 10.1016/j.expneurol.2023.114350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023]
Abstract
As the prevalence of diabetes and health awareness increase, type 2 diabetes mellitus -associated cognitive dysfunction is receiving increasing attention. However, the pathogenesis is not entirely understood. Transient receptor potential cation channel 6 (TRPC6) is highly correlated with intracellular Ca2+ concentrations, and neuronal calcium overload is an important cause of cognitive dysfunction. In the present study, we investigated the effect and mechanism of Trpc6 knockout in high-fat diet and streptozotocin-induced T2DM mice. The body weight and fasting blood glucose were recorded during the experiment. Behavioral dysfunction was detected using the open field test (OFT), elevated plus maze (EPM), hole-board test (HBT), Morris water maze (MWM) test and contextual fear conditioning (CFC) test. Nissl and H&E staining were used to examine neuronal damage. Western blot, quantitative real-time polymerase chain reaction (q-PCR), and immunofluorescence were performed to detect amyloid beta protein (Aβ) deposition and related indicators of neurological impairments in the cerebral cortex and hippocampus. The results indicated that Trpc6 knockout inhibited body weight loss and fasting blood glucose increase, improved spontaneous activity, learning and memory dysfunction, and alleviated neuroinflammation and neuronal damage in T2DM mice. The further results demonstrated that Trpc6 knockout decreased Aβ generation and deposition, and reduced the expressions of inflammasome-related proteins in T2DM mice. In addition, Trpc6 knockout inhibited intracellular calcium overload in diabetic mice and primary cultured hippocampal neurons, which in turn suppressed CN and NFAT1 expression. These data suggest that Trpc6 knockout may inhibit the CN-NFAT1 signaling pathway by decreasing intracellular calcium overload in the brain of T2DM mice, which consequently reduce Aβ deposition and neuroinflammation, and ultimately delay the development of T2DM-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Liangliang Kong
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, China
| | - Ran Sun
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, China
| | - Huimsin Zhou
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, China
| | - Qifeng Shi
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, China
| | - Yan Liu
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, China
| | - Min Han
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, China
| | - Weiping Li
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, China
| | - Sen Qun
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
10
|
Apolipoprotein D modulates lipid mediators and osteopontin in an anti-inflammatory direction. Inflamm Res 2023; 72:263-280. [PMID: 36536251 DOI: 10.1007/s00011-022-01679-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND HDL has been proposed to possess anti-inflammatory properties; however, the detail mechanisms have not been fully elucidated. METHODS We investigated the roles of Apolipoprotein D (ApoD) in the pathogenesis of inflammation in the mouse model of diet-induced obesity and that of lipopolysaccharide-induced sepsis and the in vitro experiments. Furthermore, we analyzed serum ApoD levels in human subjects. RESULTS The overexpression of human ApoD decreased the plasma IL-6 and TNF-a levels in both mice models. Lipidomics analyses demonstrated association of ApoD with increase of arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, as well as of their metabolites, and of the anti-inflammatory molecule sphingosine 1-phosphate, and decrease of proinflammatory lysophosphatidic acids and lysophosphatidylinositol. ApoD-containing lipoproteins might directly bind eicosapentaenoic acid and docosahexaenoic acid. The modulations of the lysophosphatidic acid and sphingosine 1-phosphate levels resulted from the suppression of autotaxin expression and elevation of apolipoprotein M (ApoM), respectively. Moreover, ApoD negatively regulated osteopontin, a proinflammatory adipokine. The activation of PPARg by ApoD might suppress autotaxin and osteopontin. Serum ApoD levels were negatively correlated with the serum osteopontin and autotaxin levels and, positively with serum ApoM levels. CONCLUSION ApoD is an anti-inflammatory apolipoprotein, which modulates lipid mediators and osteopontin in an anti-inflammatory direction.
Collapse
|
11
|
Dong X, Kong L, Huang L, Su Y, Li X, Yang L, Ji P. Ginsenoside Rg1 treatment protects against cognitive dysfunction via inhibiting PLC–CN–NFAT1 signaling in T2DM mice. J Ginseng Res 2022; 47:458-468. [DOI: 10.1016/j.jgr.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/26/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
|
12
|
Ding S, Yang L, Huang L, Kong L, Chen M, Su Y, Li X, Dong X, Han Y, Li W, Li W. Chronic glucocorticoid exposure accelerates Aβ generation and neurotoxicity by activating calcium-mediated CN-NFAT1 signaling in hippocampal neurons in APP/PS1 mice. Food Chem Toxicol 2022; 168:113407. [PMID: 36075474 DOI: 10.1016/j.fct.2022.113407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
Glucocorticoid (GC) exposure can lead to deterioration of the structure and function of hippocampal neurons and is closely involved in Alzheimer's disease (AD). Amyloid-β (Aβ) overproduction is an important aspect of AD pathogenesis. Our study mainly investigated the mechanism of chronic GC exposure in accelerating Aβ production in primary cultured hippocampal neurons from APP/PS1 mice. The results indicated that chronic dexamethasone (DEX, 1 μM) significantly accelerated neuronal damage and Aβ accumulation in hippocampal neurons from APP/PS1 mice. Meanwhile, DEX exposure markedly upregulated APP, NCSTN, BACE1 and p-Tau/Tau expression in hippocampal neurons from APP/PS1 mice. Our study also indicated that chronic DEX exposure significantly increased intracellular Ca2+ ([Ca2+]i) levels and the expressions of p-PLC, CN and NFAT1 in hippocampal neurons from APP/PS1 mice. We further found that stabilizing intracellular calcium homeostasis with 2-APB (50 μM) and SKF-96365 (10 μM) significantly alleviated neuronal damage and Aβ accumulation in chronic DEX-induced hippocampal neurons from APP/PS1 mice. Additionally, dual luciferase assays showed that NFAT1 upregulated NCSTN transactivation, which was further increased upon DEX treatment. This study suggests that chronic DEX exposure accelerates Aβ accumulation by activating calcium-mediated CN-NFAT1 signaling in hippocampal neurons from APP/PS1 mice, which may be closely related to the acceleration of AD.
Collapse
Affiliation(s)
- Shixin Ding
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China; Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
| | - Liu Yang
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Lei Huang
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Liangliang Kong
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Ming Chen
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yong Su
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xuewang Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Xianan Dong
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yuli Han
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Weiping Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
13
|
Extracellular Lipids in the Lung and Their Role in Pulmonary Fibrosis. Cells 2022; 11:cells11071209. [PMID: 35406772 PMCID: PMC8997955 DOI: 10.3390/cells11071209] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Lipids are major actors and regulators of physiological processes within the lung. Initial research has described their critical role in tissue homeostasis and in orchestrating cellular communication to allow respiration. Over the past decades, a growing body of research has also emphasized how lipids and their metabolism may be altered, contributing to the development and progression of chronic lung diseases such as pulmonary fibrosis. In this review, we first describe the current working model of the mechanisms of lung fibrogenesis before introducing lipids and their cellular metabolism. We then summarize the evidence of altered lipid homeostasis during pulmonary fibrosis, focusing on their extracellular forms. Finally, we highlight how lipid targeting may open avenues to develop therapeutic options for patients with lung fibrosis.
Collapse
|
14
|
Dong X, Li L, Zhang D, Su Y, Yang L, Li X, Han Y, Li W, Li W. Ginsenoside Rg1 attenuates LPS-induced cognitive impairments and neuroinflammation by inhibiting NOX2 and Ca2+–CN–NFAT1 signaling in mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
15
|
Khan SA, Goliwas KF, Deshane JS. Sphingolipids in Lung Pathology in the Coronavirus Disease Era: A Review of Sphingolipid Involvement in the Pathogenesis of Lung Damage. Front Physiol 2021; 12:760638. [PMID: 34690821 PMCID: PMC8531546 DOI: 10.3389/fphys.2021.760638] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022] Open
Abstract
Sphingolipids are bioactive lipids involved in the regulation of cell survival, proliferation, and the inflammatory response. The SphK/S1P/S1PR pathway (S1P pathway) is a driver of many anti-apoptotic and proliferative processes. Pro-survival sphingolipid sphingosine-1-phosphate (S1P) initiates its signaling cascade by interacting with various sphingosine-1-phosphate receptors (S1PR) through which it is able to exert its pro-survival or inflammatory effects. Whereas sphingolipids, including ceramides and sphingosines are pro-apoptotic. The pro-apoptotic lipid, ceramide, can be produced de novo by ceramide synthases and converted to sphingosine by way of ceramidases. The balance of these antagonistic lipids and how this balance manifests is the essence of the sphingolipid rheostat. Recent studies on SARS-CoV-2 have implicated the S1P pathway in the pathogenesis of novel coronavirus disease COVID-19-related lung damage. Accumulating evidence indicates that an aberrant inflammatory process, known as "cytokine storm" causes lung injury in COVID-19, and studies have shown that the S1P pathway is involved in signaling this hyperinflammatory response. Beyond the influence of this pathway on cytokine storm, over the last decade the S1P pathway has been investigated for its role in a wide array of lung pathologies, including pulmonary fibrosis, pulmonary arterial hypertension (PAH), and lung cancer. Various studies have used S1P pathway modulators in models of lung disease; many of these efforts have yielded results that point to the potential efficacy of targeting this pathway for future treatment options. Additionally, they have emphasized S1P pathway's significant role in inflammation, fibrosis, and a number of other endothelial and epithelial changes that contribute to lung damage. This review summarizes the S1P pathway's involvement in COVID-19 and chronic lung diseases and discusses the potential for targeting S1P pathway as a therapeutic option for these diseases.
Collapse
Affiliation(s)
| | | | - Jessy S. Deshane
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
16
|
Wang A, Valdez-Jasso D. Cellular mechanosignaling in pulmonary arterial hypertension. Biophys Rev 2021; 13:747-756. [PMID: 34765048 PMCID: PMC8555029 DOI: 10.1007/s12551-021-00828-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 12/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a vasculopathy characterized by sustained elevated pulmonary arterial pressures in which the pulmonary vasculature undergoes significant structural and functional remodeling. To better understand disease mechanisms, in this review article we highlight recent insights into the regulation of pulmonary arterial cells by mechanical cues associated with PAH. Specifically, the mechanobiology of pulmonary arterial endothelial cells (PAECs), smooth muscle cells (PASMCs) and adventitial fibroblasts (PAAFs) has been investigated in vivo, in vitro, and in silico. Increased pulmonary arterial pressure increases vessel wall stress and strain and endothelial fluid shear stress. These mechanical cues promote vasoconstriction and fibrosis that contribute further to hypertension and alter the mechanical milieu and regulation of pulmonary arterial cells.
Collapse
Affiliation(s)
- Ariel Wang
- Bioengineering Department, University of California San Diego, La Jolla, CA USA
| | | |
Collapse
|
17
|
S1P induces proliferation of pulmonary artery smooth muscle cells by promoting YAP-induced Notch3 expression and activation. J Biol Chem 2021; 296:100599. [PMID: 33781742 PMCID: PMC8094894 DOI: 10.1016/j.jbc.2021.100599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/26/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), a natural multifunctional phospholipid, is highly increased in plasma from patients with pulmonary arterial hypertension and mediates proliferation of pulmonary artery smooth muscle cells (PASMCs) by activating the Notch3 signaling pathway. However, the mechanisms underpinning S1P-mediated induction of PASMCs proliferation remain unclear. In this study, using biochemical and molecular biology approaches, RNA interference and gene expression analyses, 5'-ethynyl-2'-deoxyuridine incorporation assay, and 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, we demonstrated that S1P promoted the activation of signal transducers and activators of transcription 3 (STAT3) through sphingosine-1-phosphate receptor 2 (S1PR2), and subsequently upregulated the expression of the microRNA miR-135b, which further reduced the expression of E3 ubiquitin ligase β-transduction repeat-containing protein and led to a reduction in yes-associated protein (YAP) ubiquitinated degradation in PASMCs. YAP is the core effector of the Hippo pathway and mediates the expression of particular genes. The accumulation of YAP further increased the expression and activation of Notch3 and ultimately promoted the proliferation of PASMCs. In addition, we showed that preblocking S1PR2, prior silencing of STAT3, miR-135b, or YAP, and prior inhibition of Notch3 all attenuated S1P-induced PASMCs proliferation. Taken together, our study indicates that S1P stimulates PASMCs proliferation by activation of the S1PR2/STAT3/miR-135b/β-transduction repeat-containing protein/YAP/Notch3 pathway, and our data suggest that targeting this cascade might have potential value in ameliorating PASMCs hyperproliferation and benefit pulmonary arterial hypertension.
Collapse
|
18
|
Ranasinghe ADCU, Lee DD, Schwarz MA. Mechanistic regulation of SPHK1 expression and translocation by EMAP II in pulmonary smooth muscle cells. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158789. [PMID: 32771459 DOI: 10.1016/j.bbalip.2020.158789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/22/2020] [Accepted: 08/02/2020] [Indexed: 12/20/2022]
Abstract
Phosphorylation of sphingosine by sphingosine kinase 1 (SPHK1) produces the bioactive sphingolipid sphingosine-1-phosphate (S1P), a microvascular and immuno-modulator associated with vascular remodeling in pulmonary arterial hypertension (PAH). The low intracellular concentration of S1P is under tight spatial-temporal control. Molecular mechanisms that mediate S1P burden and S1P regulation of vascular remodeling are poorly understood. Similarities between two early response pro-inflammatory cytokine gene transcript activation profiles, S1P and Endothelial Monocyte Activating Polypeptide II (EMAP II), suggested a strategic link between their signaling pathways. We determined that EMAP II triggers a bimodal phosphorylation, transcriptional regulation and membrane translocation of SPHK1 through a common upstream process in both macrophages and pulmonary artery smooth muscle cells (PASMCs). EMAP II initiates a dual function of ERK1/2: phosphorylation of SPHK1 and regulation of the transcription factor EGR1 that induces expression of SPHK1. Activated ERK1/2 induces a bimodal phosphorylation of SPHK1 which reciprocally increases S1P levels. This identified common upstream signaling mechanism between a protein and a bioactive lipid initiates cell specific downstream signaling representing a multifactorial mechanism that contributes to inflammation and PASMC proliferation which are cardinal histopathological phenotypes of PAH.
Collapse
Affiliation(s)
- A Dushani C U Ranasinghe
- Harper Cancer Research Institute, USA; Department of Chemistry and Biochemistry, University of Notre Dame, USA
| | - Daniel D Lee
- Harper Cancer Research Institute, USA; Departments of Pediatrics and Anatomy, Cell Biology & Physiology, Indiana University, South Bend, IN, USA
| | - Margaret A Schwarz
- Harper Cancer Research Institute, USA; Department of Chemistry and Biochemistry, University of Notre Dame, USA; Departments of Pediatrics and Anatomy, Cell Biology & Physiology, Indiana University, South Bend, IN, USA.
| |
Collapse
|
19
|
Saygin D, Tabib T, Bittar HET, Valenzi E, Sembrat J, Chan SY, Rojas M, Lafyatis R. Transcriptional profiling of lung cell populations in idiopathic pulmonary arterial hypertension. Pulm Circ 2020; 10:10.1177_2045894020908782. [PMID: 32166015 PMCID: PMC7052475 DOI: 10.1177/2045894020908782] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Despite recent improvements in management of idiopathic pulmonary arterial
hypertension, mortality remains high. Understanding the alterations in the
transcriptome–phenotype of the key lung cells involved could provide insight
into the drivers of pathogenesis. In this study, we examined differential gene
expression of cell types implicated in idiopathic pulmonary arterial
hypertension from lung explants of patients with idiopathic pulmonary arterial
hypertension compared to control lungs. After tissue digestion, we analyzed all
cells from three idiopathic pulmonary arterial hypertension and six control
lungs using droplet-based single cell RNA-sequencing. After dimensional
reduction by t-stochastic neighbor embedding, we compared the transcriptomes of
endothelial cells, pericyte/smooth muscle cells, fibroblasts, and macrophage
clusters, examining differential gene expression and pathways implicated by
analysis of Gene Ontology Enrichment. We found that endothelial cells and
pericyte/smooth muscle cells had the most differentially expressed gene profile
compared to other cell types. Top differentially upregulated genes in
endothelial cells included novel genes: ROBO4, APCDD1, NDST1, MMRN2,
NOTCH4, and DOCK6, as well as previously reported
genes: ENG, ORAI2, TFDP1, KDR, AMOTL2, PDGFB, FGFR1, EDN1, and
NOTCH1. Several transcription factors were also found to be
upregulated in idiopathic pulmonary arterial hypertension endothelial cells
including SOX18, STRA13, LYL1, and ELK, which
have known roles in regulating endothelial cell phenotype. In particular,
SOX18 was implicated through bioinformatics analyses in
regulating the idiopathic pulmonary arterial hypertension endothelial cell
transcriptome. Furthermore, idiopathic pulmonary arterial hypertension
endothelial cells upregulated expression of FAM60A and
HDAC7, potentially affecting epigenetic changes in
idiopathic pulmonary arterial hypertension endothelial cells. Pericyte/smooth
muscle cells expressed genes implicated in regulation of cellular apoptosis and
extracellular matrix organization, and several ligands for genes showing
increased expression in endothelial cells. In conclusion, our study represents
the first detailed look at the transcriptomic landscape across idiopathic
pulmonary arterial hypertension lung cells and provides robust insight into
alterations that occur in vivo in idiopathic pulmonary arterial hypertension
lungs.
Collapse
Affiliation(s)
- Didem Saygin
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Tracy Tabib
- Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Humberto E T Bittar
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Eleanor Valenzi
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John Sembrat
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Stephen Y Chan
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Robert Lafyatis
- Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|