1
|
Bouzid T, Kim E, Riehl BD, Yang R, Saraswathi V, Kim JK, Lim JY. Mechanical Stretch Control of Adipocyte AKT Signaling and the Role of FAK and ROCK Mechanosensors. Bioengineering (Basel) 2024; 11:1279. [PMID: 39768098 PMCID: PMC11673816 DOI: 10.3390/bioengineering11121279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Adipose tissue in vivo is physiologically exposed to compound mechanical loading due to bodyweight bearing, posture, and motion. The capability of adipocytes to sense and respond to mechanical loading milieus to influence metabolic functions may provide a new insight into obesity and metabolic diseases such as type 2 diabetes (T2D). Here, we evidenced physiological mechanical loading control of adipocyte insulin signaling cascades. We exposed differentiated 3T3-L1 adipocytes to mechanical stretching and assessed key markers of insulin signaling, AKT activation, and GLUT4 translocation, required for glucose uptake. We showed that cyclic stretch loading at 5% strain and 1 Hz frequency increases AKT phosphorylation and GLUT4 translocation to the plasma membrane by approximately two-fold increases compared to unstretched controls for both markers as assessed by immunoblotting (p < 0.05). These results indicate that cyclic stretching activates insulin signaling and GLUT4 trafficking in adipocytes. In the mechanosensing mechanism study, focal adhesion kinase (FAK) inhibitor (FAK14) and RhoA kinase (ROCK) inhibitor (Y-27632) impaired actin cytoskeleton structural formation and significantly suppressed the stretch induction of AKT phosphorylation in adipocytes (p < 0.001). This suggests the regulatory role of focal adhesion and cytoskeletal mechanosensing in adipocyte insulin signaling under stretch loading. Our finding on the impact of mechanical stretch loading on key insulin signaling effectors in differentiated adipocytes and the mediatory role of focal adhesion and cytoskeleton mechanosensors is the first of its kind to our knowledge. This may suggest a therapeutic potential of mechanical loading cue in improving conditions of obesity and T2D. For instance, cyclic mechanical stretch loading of adipose tissue could be explored as a tool to improve insulin sensitivity in patients with obesity and T2D, and the mediatory mechanosensors such as FAK and ROCK may be targeted to further invigorate stretch-induced insulin signaling activation.
Collapse
Affiliation(s)
- Tasneem Bouzid
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.B.); (E.K.); (B.D.R.); (R.Y.)
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.B.); (E.K.); (B.D.R.); (R.Y.)
| | - Brandon D. Riehl
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.B.); (E.K.); (B.D.R.); (R.Y.)
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.B.); (E.K.); (B.D.R.); (R.Y.)
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA
| | - Viswanathan Saraswathi
- Department of Internal Medicine, University of Nebraska Medical Center and VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA;
| | - Jason K. Kim
- Program in Molecular Medicine and Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.B.); (E.K.); (B.D.R.); (R.Y.)
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Nebraska Center for the Prevention of Obesity Diseases, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
2
|
Xie X, Huang C, Huang Y, Zou X, Zhou R, Ai H, Huang L, Ma J. Genetic architecture for skeletal muscle glycolytic potential in Chinese Erhualian pigs revealed by a genome-wide association study using 1.4M SNP array. Front Genet 2023; 14:1141411. [PMID: 37007966 PMCID: PMC10064215 DOI: 10.3389/fgene.2023.1141411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/16/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction: Muscle glycolytic potential (GP) is a key factor affecting multiple meat quality traits. It is calculated based on the contents of residual glycogen and glucose (RG), glucose-6-phosphate (G6P), and lactate (LAT) contents in muscle. However, the genetic mechanism of glycolytic metabolism in skeletal muscle of pigs remains poorly understood. With a history of more than 400 years and some unique characteristics, the Erhualian pig is called the “giant panda” (very precious) in the world’s pig species by Chinese animal husbandry.Methods: Here, we performed a genome-wide association study (GWAS) using 1.4M single nucleotide polymorphisms (SNPs) chips for longissimus RG, G6P, LAT, and GP levels in 301 purebred Erhualian pigs.Results: We found that the average GP value of Erhualian was unusually low (68.09 μmol/g), but the variation was large (10.4–112.7 μmol/g). The SNP-based heritability estimates for the four traits ranged from 0.16–0.32. In total, our GWAS revealed 31 quantitative trait loci (QTLs), including eight for RG, nine for G6P, nine for LAT, five for GP. Of these loci, eight were genome-wide significant (p < 3.8 × 10−7), and six loci were common to two or three traits. Multiple promising candidate genes such as FTO, MINPP1, RIPOR2, SCL8A3, LIFR and SRGAP1 were identified. The genotype combinations of the five GP-associated SNPs also showed significant effect on other meat quality traits.Discussion: These results not only provide insights into the genetic architecture of GP related traits in Erhualian, but also are useful for pig breeding programs involving this breed.
Collapse
Affiliation(s)
- Xinke Xie
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
| | - Cong Huang
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
| | - Yizhong Huang
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoxiao Zou
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
| | - Runxin Zhou
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
| | - Huashui Ai
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
| | - Lusheng Huang
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
- Correspondence: Lusheng Huang, ; Junwu Ma,
| | - Junwu Ma
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
- Correspondence: Lusheng Huang, ; Junwu Ma,
| |
Collapse
|
3
|
Chun KH. Discovery of Cellular RhoA Functions by the Integrated Application of Gene Set Enrichment Analysis. Biomol Ther (Seoul) 2021; 30:98-116. [PMID: 34429388 PMCID: PMC8724844 DOI: 10.4062/biomolther.2021.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/19/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022] Open
Abstract
The small GTPase RhoA has been studied extensively for its role in actin dynamics. In this study, multiple bioinformatics tools were applied cooperatively to the microarray dataset GSE64714 to explore previously unidentified functions of RhoA. Comparative gene expression analysis revealed 545 differentially expressed genes in RhoA-null cells versus controls. Gene set enrichment analysis (GSEA) was conducted with three gene set collections: (1) the hallmark, (2) the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and (3) the Gene Ontology Biological Process. GSEA results showed that RhoA is related strongly to diverse pathways: cell cycle/growth, DNA repair, metabolism, keratinization, response to fungus, and vesicular transport. These functions were verified by heatmap analysis, KEGG pathway diagramming, and direct acyclic graphing. The use of multiple gene set collections restricted the leakage of information extracted. However, gene sets from individual collections are heterogenous in gene element composition, number, and the contextual meaning embraced in names. Indeed, there was a limit to deriving functions with high accuracy and reliability simply from gene set names. The comparison of multiple gene set collections showed that although the gene sets had similar names, the gene elements were extremely heterogeneous. Thus, the type of collection chosen and the analytical context influence the interpretation of GSEA results. Nonetheless, the analyses of multiple collections made it possible to derive robust and consistent function identifications. This study confirmed several well-described roles of RhoA and revealed less explored functions, suggesting future research directions.
Collapse
Affiliation(s)
- Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
4
|
Gendaszewska-Darmach E, Garstka MA, Błażewska KM. Targeting Small GTPases and Their Prenylation in Diabetes Mellitus. J Med Chem 2021; 64:9677-9710. [PMID: 34236862 PMCID: PMC8389838 DOI: 10.1021/acs.jmedchem.1c00410] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
A fundamental role
of pancreatic β-cells to maintain proper
blood glucose level is controlled by the Ras superfamily of small
GTPases that undergo post-translational modifications, including prenylation.
This covalent attachment with either a farnesyl or a geranylgeranyl
group controls their localization, activity, and protein–protein
interactions. Small GTPases are critical in maintaining glucose homeostasis
acting in the pancreas and metabolically active tissues such as skeletal
muscles, liver, or adipocytes. Hyperglycemia-induced upregulation
of small GTPases suggests that inhibition of these pathways deserves
to be considered as a potential therapeutic approach in treating T2D.
This Perspective presents how inhibition of various points in the
mevalonate pathway might affect protein prenylation and functioning
of diabetes-affected tissues and contribute to chronic inflammation
involved in diabetes mellitus (T2D) development. We also demonstrate
the currently available molecular tools to decipher the mechanisms
linking the mevalonate pathway’s enzymes and GTPases with diabetes.
Collapse
Affiliation(s)
- Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 4/10, 90-924 Łódź, Poland
| | - Malgorzata A Garstka
- Core Research Laboratory, Department of Endocrinology, Department of Tumor and Immunology, Precision Medical Institute, Western China Science and Technology Innovation Port, School of Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, DaMingGong, Jian Qiang Road, Wei Yang district, Xi'an 710016, China
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| |
Collapse
|
5
|
Maier G, Delezie J, Westermark PO, Santos G, Ritz D, Handschin C. Transcriptomic, proteomic and phosphoproteomic underpinnings of daily exercise performance and zeitgeber activity of training in mouse muscle. J Physiol 2021; 600:769-796. [PMID: 34142717 PMCID: PMC9290843 DOI: 10.1113/jp281535] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Key points Maximal endurance performance is greater in the early daytime. Timed exercise differentially alters the muscle transcriptome and (phospho)‐proteome. Early daytime exercise triggers energy provisioning and tissue regeneration. Early night‐time exercise activates stress‐related and catabolic pathways. Scheduled training has limited effects on the muscle and liver circadian clocks.
Abstract Timed physical activity might potentiate the health benefits of training. The underlying signalling events triggered by exercise at different times of day are, however, poorly understood. Here, we found that time‐dependent variations in maximal treadmill exercise capacity of naïve mice were associated with energy stores, mostly hepatic glycogen levels. Importantly, running at different times of day resulted in a vastly different activation of signalling pathways, e.g. related to stress response, vesicular trafficking, repair and regeneration. Second, voluntary wheel running at the opposite phase of the dark, feeding period surprisingly revealed a minimal zeitgeber (i.e. phase‐shifting) effect of training on the muscle clock. This integrated study provides important insights into the circadian regulation of endurance performance and the control of the circadian clock by exercise. In future studies, these results could contribute to better understanding circadian aspects of training design in athletes and the application of chrono‐exercise‐based interventions in patients.
Collapse
Affiliation(s)
- Geraldine Maier
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Julien Delezie
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Pål O Westermark
- Leibniz-Institut für Nutztierbiologie, Institut für Genetik und Biometrie, Wilhelm-Stahl-Allee 2, Dummerstorf, D-18196, Germany
| | - Gesa Santos
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Danilo Ritz
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Christoph Handschin
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| |
Collapse
|
6
|
Machin PA, Tsonou E, Hornigold DC, Welch HCE. Rho Family GTPases and Rho GEFs in Glucose Homeostasis. Cells 2021; 10:cells10040915. [PMID: 33923452 PMCID: PMC8074089 DOI: 10.3390/cells10040915] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Dysregulation of glucose homeostasis leading to metabolic syndrome and type 2 diabetes is the cause of an increasing world health crisis. New intriguing roles have emerged for Rho family GTPases and their Rho guanine nucleotide exchange factor (GEF) activators in the regulation of glucose homeostasis. This review summates the current knowledge, focusing in particular on the roles of Rho GEFs in the processes of glucose-stimulated insulin secretion by pancreatic β cells and insulin-stimulated glucose uptake into skeletal muscle and adipose tissues. We discuss the ten Rho GEFs that are known so far to regulate glucose homeostasis, nine of which are in mammals, and one is in yeast. Among the mammalian Rho GEFs, P-Rex1, Vav2, Vav3, Tiam1, Kalirin and Plekhg4 were shown to mediate the insulin-stimulated translocation of the glucose transporter GLUT4 to the plasma membrane and/or insulin-stimulated glucose uptake in skeletal muscle or adipose tissue. The Rho GEFs P-Rex1, Vav2, Tiam1 and β-PIX were found to control the glucose-stimulated release of insulin by pancreatic β cells. In vivo studies demonstrated the involvement of the Rho GEFs P-Rex2, Vav2, Vav3 and PDZ-RhoGEF in glucose tolerance and/or insulin sensitivity, with deletion of these GEFs either contributing to the development of metabolic syndrome or protecting from it. This research is in its infancy. Considering that over 80 Rho GEFs exist, it is likely that future research will identify more roles for Rho GEFs in glucose homeostasis.
Collapse
Affiliation(s)
- Polly A. Machin
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; (P.A.M.); (E.T.)
| | - Elpida Tsonou
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; (P.A.M.); (E.T.)
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge CB22 3AT, UK;
| | - David C. Hornigold
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge CB22 3AT, UK;
| | - Heidi C. E. Welch
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; (P.A.M.); (E.T.)
- Correspondence: ; Tel.: +44-(0)1223-496-596
| |
Collapse
|
7
|
Identification of novel functions of the ROCK2-specific inhibitor KD025 by bioinformatics analysis. Gene 2020; 737:144474. [PMID: 32057928 DOI: 10.1016/j.gene.2020.144474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022]
Abstract
Rho-associated protein kinases (ROCKs) have various cellular functions, which include actin cytoskeleton remodeling and vesicular trafficking, and there are two major mammalian ROCK isotypes, namely, ROCK1 (ROKβ) and ROCK2 (ROKα). The ROCK2-specific inhibitor KD025 (SLx-2119) is currently undergoing phase II clinical trials, but its cellular functions have not been fully explored. In this study, we investigated the functions of KD025 at the genomics level by bioinformatics analysis using the GSE8686 microarray dataset from the NCBI GEO database, in three different primary human cell lines. An initial microarray analysis conducted by Boerma et al. focused on the effects of KD025 on cell adhesion and blood coagulation, but did not provide comprehensive information on the functions of KD025. Our analysis of differentially expressed genes (DEGs) showed ~70% coincidence with Boerma et al.'s findings, and newly identified that CCND1, CXCL2, NT5E, and SMOX were differentially expressed by KD025. However, due to low numbers of co-regulated DEGs, we were unable to extract the functions of KD025 with significance. To overcome this limitation, we used gene set enrichment analysis (GSEA) and the heatmap hierarchical clustering method. We confirmed KD025 regulated inflammation and adipogenesis pathways, as previously reported experimentally. In addition, we found KD025 has novel regulatory functions on various pathways, including oxidative phosphorylation, WNT signaling, angiogenesis, and KRAS signaling. Further studies are required to systematically characterize these newly identified functions of KD025.
Collapse
|