1
|
Liu H, Weng J, Huang CLH, Jackson AP. Voltage-gated sodium channels in cancers. Biomark Res 2024; 12:70. [PMID: 39060933 PMCID: PMC11282680 DOI: 10.1186/s40364-024-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Voltage-gated sodium channels (VGSCs) initiate action potentials in electrically excitable cells and tissues. Surprisingly, some VGSC genes are aberrantly expressed in a variety of cancers, derived from "non-excitable" tissues that do not generate classic action potentials, showing potential as a promising pharmacological target for cancer. Most of the previous review articles on this topic are limited in scope, and largely unable to provide researchers with a comprehensive understanding of the role of VGSC in cancers. Here, we review the expression patterns of all nine VGSC α-subunit genes (SCN1A-11A) and their four regulatory β-subunit genes (SCN1B-4B). We reviewed data from the Cancer Genome Atlas (TCGA) database, complemented by an extensive search of the published papers. We summarized and reviewed previous independent studies and analyzed the VGSC genes in the TCGA database regarding the potential impact of VGSC on cancers. A comparison between evidence gathered from independent studies and data review was performed to scrutinize potential biases in prior research and provide insights into future research directions. The review supports the view that VGSCs play an important role in diagnostics as well as therapeutics of some cancer types, such as breast, colon, prostate, and lung cancer. This paper provides an overview of the current knowledge on voltage-gated sodium channels in cancer, as well as potential avenues for further research. While further research is required to fully understand the role of VGSCs in cancer, the potential of VGSCs for clinical diagnosis and treatment is promising.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| | - Jieling Weng
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Christopher L-H Huang
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Antony P Jackson
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
2
|
Ning Y, Wu Y, Zhou Q, Teng Y. The Effect of Quercetin in the Yishen Tongluo Jiedu Recipe on the Development of Prostate Cancer through the Akt1-related CXCL12/ CXCR4 Pathway. Comb Chem High Throughput Screen 2024; 27:863-876. [PMID: 37259219 DOI: 10.2174/1386207326666230530095355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND It remains a challenge to effectively treat prostate cancer (PCa) that affects global men's health. It is essential to find a natural alternative drug and explore its antitumor mechanism due to the serious toxic side effects of chemotherapy. METHODS The targets and signaling pathways were analyzed by network pharmacology and verified by molecular docking and LC-MS. The proliferation, apoptosis, invasion, and migration of DU145 cells were detected by the CCK-8 method, flow cytometry, and Transwell, respectively. The Bcl-2, caspase-3, CXCL12, and CXCR4 expressions and Akt1 phosphorylation were determined by Western blot. Akt1 overexpression was applied to identify the involvement of the Akt1- related CXCL12/CXCR4 pathway in regulating PCa. Nude mouse tumorigenesis was performed to analyze the effect of quercetin on PCa in vivo. RESULTS Network pharmacology analysis displayed that quercetin was the main active component of the Yishen Tongluo Jiedu recipe and Akt1 was the therapy target of PCa. LC-MS analysis showed that quercetin existed in the Yishen Tongluo Jiedu recipe, and molecular docking proved that quercetin bound to Akt1. Quercetin inhibited the proliferation of DU145 cells by upregulating caspase-3 and downregulating Bcl-2 expression, promoting apoptosis and reducing invasion and migration abilities. In vivo, quercetin downregulated CXCL12 and CXCR4 expressions and inhibited PCa development by the Akt1-related CXCL12/CXCR4 pathway. CONCLUSION As the active component of the Yishen Tongluo Jiedu recipe, quercetin inhibited PCa development through the Akt1-related CXCL12/CXCR4 pathway. This study provided a new idea for PCa treatment and a theoretical basis for further research.
Collapse
Affiliation(s)
- Yu Ning
- Department of Anesthesiology Surgery, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, China
| | - Yongrong Wu
- Academy of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410218, China
| | - Qing Zhou
- Surgery of traditional Chinese Medicine, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, China
| | - Yongjie Teng
- Department of Anesthesiology Surgery, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, China
| |
Collapse
|
3
|
Maatoug S, Cheikh A, Khamessi O, Tabka H, Landoulsi Z, Guigonis JM, Diochot S, Bendahhou S, Benkhalifa R. Cross Pharmacological, Biochemical and Computational Studies of a Human Kv3.1b Inhibitor from Androctonus australis Venom. Int J Mol Sci 2021; 22:ijms222212290. [PMID: 34830172 PMCID: PMC8618407 DOI: 10.3390/ijms222212290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
The voltage-gated K+ channels Kv3.1 display fast activation and deactivation kinetics and are known to have a crucial contribution to the fast-spiking phenotype of certain neurons. AahG50, as a natural product extracted from Androctonus australis hector venom, inhibits selectively Kv3.1 channels. In the present study, we focused on the biochemical and pharmacological characterization of the component in AahG50 scorpion venom that potently and selectively blocks the Kv3.1 channels. We used a combined optimization through advanced biochemical purification and patch-clamp screening steps to characterize the peptide in AahG50 active on Kv3.1 channels. We described the inhibitory effect of a toxin on Kv3.1 unitary current in black lipid bilayers. In silico, docking experiments are used to study the molecular details of the binding. We identified the first scorpion venom peptide inhibiting Kv3.1 current at 170 nM. This toxin is the alpha-KTx 15.1, which occludes the Kv3.1 channel pore by means of the lysine 27 lateral chain. This study highlights, for the first time, the modulation of the Kv3.1 by alpha-KTx 15.1, which could be an interesting starting compound for developing therapeutic biomolecules against Kv3.1-associated diseases.
Collapse
Affiliation(s)
- Sonia Maatoug
- Laboratoire Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia; (A.C.); (H.T.); (Z.L.)
- Correspondence: (S.M.); (R.B.); Tel.: +216-98-81-27-32 (R.B.)
| | - Amani Cheikh
- Laboratoire Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia; (A.C.); (H.T.); (Z.L.)
| | - Oussema Khamessi
- Laboratoire des Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia;
| | - Hager Tabka
- Laboratoire Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia; (A.C.); (H.T.); (Z.L.)
- Faculté des Sciences de Bizerte, Université de Carthage, Bizerte 7021, Tunisia
| | - Zied Landoulsi
- Laboratoire Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia; (A.C.); (H.T.); (Z.L.)
| | - Jean-Marie Guigonis
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Fréderic Joliot, Commissariat à l′Energie Atomique et aux Énergies Alternatives (CEA), Université Côte d’Azur, F-06107 Nice, France;
| | - Sylvie Diochot
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Valbonne, France;
| | - Saïd Bendahhou
- UMR7370 CNRS, LP2M, Université Côte d’Azur, Labex ICST, Nice, France;
| | - Rym Benkhalifa
- Laboratoire Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia; (A.C.); (H.T.); (Z.L.)
- Correspondence: (S.M.); (R.B.); Tel.: +216-98-81-27-32 (R.B.)
| |
Collapse
|
4
|
Wu L, Chen Y, Chen M, Yang Y, Che Z, Li Q, You X, Fu W. Application of network pharmacology and molecular docking to elucidate the potential mechanism of Astragalus-Scorpion against prostate cancer. Andrologia 2021; 53:e14165. [PMID: 34185887 DOI: 10.1111/and.14165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/29/2021] [Accepted: 06/05/2021] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to investigate the molecular mechanism of the Astragalus-Scorpion drug pair in the treatment of prostate cancer (PCa). We employed network pharmacology and molecular docking technology to retrieving the active ingredients and corresponding targets of Astragalus-Scorpion by using TCMSP, BATMAN-TCM, TCMID and Swiss Target Prediction Databases. The targets related to PCa were retrieved through GeneCards. Cytoscape software was used to construct the 'active ingredient-target disease' network, and GO and KEGG enrichment analyses were performed on the common targets. Autodock software was used for molecular docking verification. In total, 26 active ingredients, 340 potential targets related to active ingredients and 122 common targets were screened from Astragalus-Scorpion drug pair. The core targets of the protein-protein interaction (PPI) network were JUN, AKT1, IL6, MAPK1 and RELA, whereas the core active ingredients were quercetin, kaempferol, formononetin, 7-o-methylisomucronulatol and calycosin. Nearly 762 GO entries and 154 pathways were obtained by using the pathway enrichment analysis. Molecular docking results revealed that quercetin and kaempferol bind to AKT1 and formononetin binds to RELA, all of which were found to be stable bounds.
Collapse
Affiliation(s)
- Litong Wu
- Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Guangzhou University of Chinese Medicine, Shenzhen, China.,School of Graduate, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Chen
- Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Guangzhou University of Chinese Medicine, Shenzhen, China.,School of Graduate, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minjing Chen
- Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Guangzhou University of Chinese Medicine, Shenzhen, China.,School of Graduate, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yueqin Yang
- Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Guangzhou University of Chinese Medicine, Shenzhen, China.,School of Graduate, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zuzhao Che
- Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Guangzhou University of Chinese Medicine, Shenzhen, China.,School of Graduate, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qixin Li
- Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xujun You
- Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wei Fu
- Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
5
|
Lozano-Trujillo LA, Garzón-Perdomo DK, Vargas ACR, de Los Reyes LM, Avila-Rodriguez MF, Gay OTG, Turner LF. Cytotoxic Effects of Blue Scorpion Venom (Rhopalurus junceus) in a Glioblastoma Cell Line Model. Curr Pharm Biotechnol 2021; 22:636-645. [PMID: 32679017 DOI: 10.2174/1389201021666200717092207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/12/2020] [Accepted: 06/14/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND Cancer is one of the leading cause of death worldwide. Besides current therapies and treatments to counter cancer, new alternatives are required to diminish the cell proliferation of oncogenic processes. METHODS One of the most promissory therapy includes the use of blue scorpion venom as a specific cytotoxic agent to kill tumoral cells, including Glioblastoma multiforme. OBJECTIVES We show evidence of the cytotoxic effect of blue scorpion venom in a cellular model of Glioblastoma multiforme. RESULTS Our results demonstrate that 50 μg/ml of scorpion venom is capable to diminish the viability of Glioblastoma populations. CONCLUSION It is possible that the action mechanism could be associated with a loss of membrane integrity. Additionally, some metalloproteinases as MMP2 and MMP9 may also participate in the potential action mechanism.
Collapse
Affiliation(s)
- Laura A Lozano-Trujillo
- Departamento de Biologia, Facultad de Ciencias, Universidad del Tolima, 730006299, Ibague, Colombia
| | - Diana K Garzón-Perdomo
- Departamento de Biologia, Facultad de Ciencias, Universidad del Tolima, 730006299, Ibague, Colombia
| | - Andrea C R Vargas
- Departamento de Biologia, Facultad de Ciencias, Universidad del Tolima, 730006299, Ibague, Colombia
| | - Lina M de Los Reyes
- Departamento de Biologia, Facultad de Ciencias, Universidad del Tolima, 730006299, Ibague, Colombia
| | - Marco F Avila-Rodriguez
- Departamento de Ciencias Clinicas, Facultad de Ciencias de la Salud, Universidad del Tolima, 730006299, Ibague, Colombia
| | | | - Liliana F Turner
- Departamento de Biologia, Facultad de Ciencias, Universidad del Tolima, 730006299, Ibague, Colombia
| |
Collapse
|
6
|
Gao S, Liang H, Shou Z, Yao Y, Lv Y, Shang J, Lu W, Jia C, Liu Q, Zhang H, Xiao L. De novo transcriptomic and proteomic analysis and potential toxin screening of Mesobuthus martensii samples from four different provinces. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113268. [PMID: 32810618 DOI: 10.1016/j.jep.2020.113268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/04/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As well-known medicinal materials in traditional Chinese medicine, scorpions, commonly called as Quanxie () in Chinese, have been widely used to treat several diseases such as rheumatoid arthritis, apoplexy, epilepsy and chronic pain for more than a thousand years. Not only in the ancient times, the scorpions have also been recorded nowadays in the Pharmacopoeia of the People's Republic of China since 1963. AIM OF STUDY This study aims to explore the differences in composition of the venom of scorpions from different regions by using the method of transcriptomics and proteomics. MATERIALS AND METHODS Whole de novo transcriptomes, proteomics and their bioinformatic analyses were performed on samples of the scorpion Mesobuthus martensii and their venoms from four different provinces with clear geographical boundaries, including Hebei, Henan, Shandong and Shanxi. RESULTS The four captured samples had the same morphology, and the conserved CO-1 sequence matched that of M. martensii. A total of 141,003 of 174,653 transcripts were identified as unigenes, of which we successfully annotated 51,627 (36.61%), 21,970 (15.58%), 7,168 (5.08%), and 45,263 (32.10%) unigenes with the NR, GO, KEGG and SWISSPROT databases, respectively, while a total of 427 proteins were collected from the protein extracted from venoms. Both GO and KEGG annotations exhibited only slight differences among the four samples while the expression level of gene and protein was quite different. A total of 249 toxin-related unigenes were successfully screened, including 41 serine proteases and serine protease inhibitors, 39 potassium channel toxins, 38 phospholipases, 16 host defense peptides, 9 metalloproteases, and 50 other toxins. Although the toxin species were similar among the four samples, the gene expression of each toxin varied considerably, for example, the scorpion from HB province has the most abundant expression quality in sequences c48391_g1, c55239_g1 and c47749_g1 while the lowest expressions of c51178_g1, c62033_g3 and c63754_g2. CONCLUSION The regional differences in the transcriptomes and proteomes of M. martensii are mainly from expression levels e.g. toxins rather than expression species, of which the method can be further extended to evaluate the qualities of traditional Chinese medicines obtained from different regions.
Collapse
Affiliation(s)
- Songyu Gao
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Hongyu Liang
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China; College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China.
| | - Zhaoyong Shou
- Faculty of Health Service, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Yuzhe Yao
- School of Nursing, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Yang Lv
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Jing Shang
- School of Nursing, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Wei Lu
- 905th Hospital of PLA Navy, Second Military Medical University (Naval Medical University), Shanghai, 200052, China.
| | - Changliang Jia
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Qing Liu
- College of Animal Science and Veterinary Medicine, ShanXi Agricultural University, ShanXi, TaiGu, 030801, China.
| | - Haiyan Zhang
- Department of Health Care, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Liang Xiao
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| |
Collapse
|
7
|
Venom peptides in cancer therapy: An updated review on cellular and molecular aspects. Pharmacol Res 2020; 164:105327. [PMID: 33276098 DOI: 10.1016/j.phrs.2020.105327] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
Based on the high incidence and mortality rates of cancer, its therapy remains one of the most vital challenges in the field of medicine. Consequently, enhancing the efficacy of currently applied treatments and finding novel strategies are of great importance for cancer treatment. Venoms are important sources of a variety of bioactive compounds including salts, small molecules, macromolecules, proteins, and peptides that are defined as toxins. They can exhibit different pharmacological effects, and in recent years, their anti-tumor activities have gained significant attention. Several different compounds are responsible for the anti-tumor activity of venoms, and peptides are one of them. In the present review, we discuss the possible anti-tumor activities of venom peptides by highlighting molecular pathways and mechanisms through which these molecules can act effectively. Venom peptides can induce cell death in cancer cells and can substantially enhance the efficacy of chemotherapy and radiotherapy. Also, the venom peptides can mitigate the migration of cancer cells via suppression of angiogenesis and epithelial-to-mesenchymal transition. Notably, nanoparticles have been applied in enhancing the bioavailability of venom peptides and providing targeted delivery, thereby leading to their elevated anti-tumor activity and potential application for cancer therapy.
Collapse
|
8
|
Díaz-García A, Varela D. Voltage-Gated K +/Na + Channels and Scorpion Venom Toxins in Cancer. Front Pharmacol 2020; 11:913. [PMID: 32655396 PMCID: PMC7325878 DOI: 10.3389/fphar.2020.00913] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/04/2020] [Indexed: 12/25/2022] Open
Abstract
Ion channels have recently been recognized as novel therapeutic targets in cancer research since they are overexpressed in different histological tissues, and their activity is linked to proliferation, tumor progression, angiogenesis, metastasis, and apoptosis. Voltage gated-potassium channels (VGKC) are involved in cell proliferation, cancer progression, cell cycle transition, and apoptosis. Moreover, voltage-dependent sodium channels (VGSC) contribute to decreases in extracellular pH, which, in turn, promotes cancer cell migration and invasion. Furthermore, VGSC and VGKC modulate voltage-sensitive Ca2+ channel activity by controlling the membrane potential and regulating Ca2+ influx, which functions as a second messenger in processes related to proliferation, invasion, migration, and metastasis. The subgroup of these types of channels that have shown a high oncogenic potential have become known as "oncochannels", and the evidence has highlighted them as key potential therapeutic targets. Scorpion venoms contain a high proportion of peptide toxins that act by modulating voltage-gated Na+/K+ channel activity. Increasing scientific data have pointed out that scorpion venoms and their toxins can affect the activity of oncochannels, thus showing their potential for anticancer therapy. In this review, we provide an update of the most relevant voltage-gated Na+\K+ ion channels as cellular targets and discuss the possibility of using scorpion venom and toxins for anticancer therapy.
Collapse
Affiliation(s)
- Alexis Díaz-García
- LifEscozul Chile SpA, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
| | - Diego Varela
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
- Program of Physiology and Biophysics, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Ahmadi S, Knerr JM, Argemi L, Bordon KCF, Pucca MB, Cerni FA, Arantes EC, Çalışkan F, Laustsen AH. Scorpion Venom: Detriments and Benefits. Biomedicines 2020; 8:biomedicines8050118. [PMID: 32408604 PMCID: PMC7277529 DOI: 10.3390/biomedicines8050118] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
Scorpion venom may cause severe medical complications and untimely death if injected into the human body. Neurotoxins are the main components of scorpion venom that are known to be responsible for the pathological manifestations of envenoming. Besides neurotoxins, a wide range of other bioactive molecules can be found in scorpion venoms. Advances in separation, characterization, and biotechnological approaches have enabled not only the development of more effective treatments against scorpion envenomings, but have also led to the discovery of several scorpion venom peptides with interesting therapeutic properties. Thus, scorpion venom may not only be a medical threat to human health, but could prove to be a valuable source of bioactive molecules that may serve as leads for the development of new therapies against current and emerging diseases. This review presents both the detrimental and beneficial properties of scorpion venom toxins and discusses the newest advances within the development of novel therapies against scorpion envenoming and the therapeutic perspectives for scorpion toxins in drug discovery.
Collapse
Affiliation(s)
- Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eşkisehir Osmangazi University, TR-26040 Eşkisehir, Turkey;
- Correspondence: (S.A.); (A.H.L.); Tel.: +45-7164-6042 (S.A.); +45-2988-1134 (A.H.L.)
| | - Julius M. Knerr
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
| | - Lídia Argemi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
| | - Karla C. F. Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto—São Paulo 14040-903, Brazil; (K.C.F.B.); (E.C.A.)
| | - Manuela B. Pucca
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Medical School, Federal University of Roraima, Boa Vista, Roraima 69310-000, Brazil
| | - Felipe A. Cerni
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto—São Paulo 14040-903, Brazil; (K.C.F.B.); (E.C.A.)
| | - Eliane C. Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto—São Paulo 14040-903, Brazil; (K.C.F.B.); (E.C.A.)
| | - Figen Çalışkan
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eşkisehir Osmangazi University, TR-26040 Eşkisehir, Turkey;
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Correspondence: (S.A.); (A.H.L.); Tel.: +45-7164-6042 (S.A.); +45-2988-1134 (A.H.L.)
| |
Collapse
|