1
|
Chen N, Luo J, Zhou T, Shou Y, Du C, Song G, Xu L, Zhao K, Jin Y, Li C, Yu D. Lysine β-hydroxybutyrylation promotes lipid accumulation in alcoholic liver disease. Biochem Pharmacol 2024; 228:115936. [PMID: 38012969 DOI: 10.1016/j.bcp.2023.115936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Continuous (chronic or sub-chronic) alcohol consumption induces a metabolic byproduct known as ketone bodies, and the accumulation of ketones leads to a life-threatening syndrome called alcoholic ketoacidosis. However, the mechanism underlining the physiological effects of ketone accumulation in alcoholic liver disease (ALD) is still in its infancy. Here, we discovered that mitochondrial acetyl-CoA accumulation was diverted into the ketogenesis pathway in ethanol-fed mice and ethanol-exposed hepatocytes. Unexpectedly, global protein lysine β-hydroxybutyrylation (Kbhb) was induced in response to increased ketogenesis-derived β-hydroxybutyrate (BHB) levels both in hepatocytes and in livers of mice. Focusing on the solute carrier family (SLCs), we found that SLC25A5 presented obvious Kbhb at lysine residues 147 and 166. Kbhb modifications at these two lysine residues stabilized SLC25A5 expression by blocking ubiquitin-proteasome pathway. Subsequent mutation analysis revealed that Kbhb of SLC25A5 at K147 and K166 had site-specific regulatory roles by increasing peroxisome proliferator activated receptor gamma (PPARγ) expression, which further promoting lipogenesis. Additionally, 3-hydroxy-3-methylglutaryl-coenzyme A synthase 2 (HMGCS2), a rate-limiting enzyme for BHB production, was profoundly induced by ethanol exposure, and knockout of Hmgcs2 with CRISPR/Cas9 attenuated SLC25A5 Kbhb. Together, our study demonstrated a widespread Kbhb landscape under ethanol exposure and clarified a physiological effect of Kbhb modification on liver lipid accumulation.
Collapse
Affiliation(s)
- Ningning Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Tao Zhou
- School of Public Health, Qingdao University, Qingdao, China
| | - Yingqing Shou
- School of Public Health, Qingdao University, Qingdao, China
| | - Chenlong Du
- School of Public Health, Qingdao University, Qingdao, China
| | - Ge Song
- School of Public Health, Qingdao University, Qingdao, China
| | - Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Xu K, Fei W, Gao W, Fan C, Li Y, Hong Y, Cui R. SOD3 regulates FLT1 to affect bone metabolism by promoting osteogenesis and inhibiting adipogenesis through PI3K/AKT and MAPK pathways. Free Radic Biol Med 2024; 212:65-79. [PMID: 38141889 DOI: 10.1016/j.freeradbiomed.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/30/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Osteoporosis is a chronic disease that seriously affects the quality of life and longevity of the elderly, so exploring the mechanism of osteoporosis is crucial for drug development and treatment. Bone marrow mesenchymal stem cells are stem cells with multiple differentiation potentials in bone marrow, and changing their differentiation direction can change bone mass. As an extracellular superoxide dismutase, Superoxide Dismutase 3 (SOD3) has been proved to play an important role in multiple organs, but the detailed mechanism of action in bone metabolism is still unclear. In this study, the results of clinical serum samples ELISA and single cell sequencing chip analysis proved that the expression of SOD3 was positively correlated with bone mass, and SOD3 was mainly expressed in osteoblasts and adipocytes and rarely expressed in osteoblasts in BMSCs. In vitro experiments showed that SOD3 can promote osteogenesis and inhibit adipogenesis. Compared with WT mice, the mice that were knocked out of SOD3 had a significant decrease in bone mineral density and significant changes in related parameters. The results of HE and IHC staining suggested that knocking out SOD3 would lead to fat accumulation in the bone marrow cavity and weakened osteogenesis. Both in vitro and in vivo experiments indicated that SOD3 affects bone metabolism by promoting osteogenesis and inhibiting adipogenesis. The results of transcriptome sequencing and revalidation showed that SOD3 can affect the expression of FLT1. Through in vitro experiments, we proved that FLT1 can also promote osteogenesis and inhibit adipogenesis. In addition, through the repeated experiments, the interaction between the two molecules (SOD3 and FLT1) was verified again. Finally, it was verified by WB that SOD3 regulates FLT1 to affect bone metabolism through PI3K/AKT and MAPK pathways.
Collapse
Affiliation(s)
- Ke Xu
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Aging and Medicine, Shanghai, China; Center of Community-Based Health Research, Fudan University, Shanghai, China.
| | - Wenchao Fei
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Aging and Medicine, Shanghai, China; Center of Community-Based Health Research, Fudan University, Shanghai, China.
| | - Wenxue Gao
- Medical Services Section, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Changxiu Fan
- Department of Stomatology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.
| | - Yinghua Li
- Shanghai Clinical Research Center for Aging and Medicine, Shanghai, China; Center of Community-Based Health Research, Fudan University, Shanghai, China; Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.
| | - Yang Hong
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Aging and Medicine, Shanghai, China; Center of Community-Based Health Research, Fudan University, Shanghai, China.
| | - Ran Cui
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Cao Y, Jia Q, Xing Y, Ma C, Guan H, Tian W, Kang X, Tian Y, Liu X, Li H. STC2 Inhibits Hepatic Lipid Synthesis and Correlates with Intramuscular Fatty Acid Composition, Body Weight and Carcass Traits in Chickens. Animals (Basel) 2024; 14:383. [PMID: 38338026 PMCID: PMC10854843 DOI: 10.3390/ani14030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Stanniocalcin 2 (STC2) is a secreted glycoprotein involved in multiple biological processes. To systemically study the biological role of STC2 in chickens, phylogenetic tree analysis and conservation analysis were conducted. Association analysis between variations in the STC2 gene and the economic traits of Gushi-Anka F2 was conducted. The tissue expression patterns of STC2 expression in different chicken tissues and liver at different stages were detected. The biological role of STC2 in chicken liver was investigated through overexpression and interfering methods in the LMH cell line. Correlation analyses between STC2 expression and lipid components were conducted. (1) The phylogenetic tree displayed that chicken STC2 is most closely related with Japanese quail and most distantly related with Xenopus tropicalis. STC2 has the same identical conserved motifs as other species. (2) rs9949205 (T > C) found in STC2 intron was highly significantly correlated with chicken body weight at 0, 2, 4, 6, 8, 10 and 12 weeks (p < 0.01). Extremely significant correlations of rs9949205 with semi-evisceration weight (SEW), evisceration weight (EW), breast muscle weight (BMW), leg muscle weight (LMW), liver weight and abdominal fat weight (AFW) were revealed (p < 0.01). Significant associations between rs9949205 and abdominal fat percentage, liver weight rate, breast muscle weight rate and leg muscle weight rate were also found (p < 0.05). Individuals with TT or TC genotypes had significantly lower abdominal fat percentage and liver weight rate compared to those with the CC genotype, while their body weight and other carcass traits were higher. (3) STC2 showed a high expression level in chicken liver tissue, which significantly increased with the progression of age (p < 0.05). STC2 was observed to inhibit the content of lipid droplets, triglycerides (TG) and cholesterol (TC), as well the expression level of genes related to lipid metabolism in LMH cells. (4) Correlation analysis showed that the STC2 gene was significantly correlated with 176 lipids in the breast muscle (p < 0.05) and mainly enriched in omega-3 and omega-6 unsaturated fatty acids. In conclusion, the STC2 gene in chicken might potentially play a crucial role in chicken growth and development, as well as liver lipid metabolism and muscle lipid deposition. This study provides a scientific foundation for further investigation into the regulatory mechanism of the STC2 gene on lipid metabolism and deposition in chicken liver.
Collapse
Affiliation(s)
- Yuzhu Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Q.J.); (Y.X.); (C.M.); (H.G.); (W.T.); (X.K.); (Y.T.); (X.L.)
| | - Qihui Jia
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Q.J.); (Y.X.); (C.M.); (H.G.); (W.T.); (X.K.); (Y.T.); (X.L.)
| | - Yuxin Xing
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Q.J.); (Y.X.); (C.M.); (H.G.); (W.T.); (X.K.); (Y.T.); (X.L.)
| | - Chenglin Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Q.J.); (Y.X.); (C.M.); (H.G.); (W.T.); (X.K.); (Y.T.); (X.L.)
| | - Hongbo Guan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Q.J.); (Y.X.); (C.M.); (H.G.); (W.T.); (X.K.); (Y.T.); (X.L.)
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Q.J.); (Y.X.); (C.M.); (H.G.); (W.T.); (X.K.); (Y.T.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Q.J.); (Y.X.); (C.M.); (H.G.); (W.T.); (X.K.); (Y.T.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Q.J.); (Y.X.); (C.M.); (H.G.); (W.T.); (X.K.); (Y.T.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Q.J.); (Y.X.); (C.M.); (H.G.); (W.T.); (X.K.); (Y.T.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Q.J.); (Y.X.); (C.M.); (H.G.); (W.T.); (X.K.); (Y.T.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| |
Collapse
|
4
|
Shi M, Yang S, Huang X, Wang S, Li W, Yun J, Lu C, Yang Y, Cai C, Gao P, Guo X, Li B, Cao G. Caveolae-associated protein 3 promotes adipogenic differentiation of porcine preadipocytes by promoting extracellular signal-regulated kinase phosphorylation. Anim Sci J 2023; 94:e13822. [PMID: 36922373 DOI: 10.1111/asj.13822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/03/2023] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
Fat deposition is one of the key factors affecting the economic development of pig husbandry. The aim of this study was to investigate the expression characteristics of caveolae-associated protein 3 (CAVIN3) and to elucidate its effect and mechanism on adipogenic differentiation of porcine preadipocytes. Cell transfection, quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blot, and oil red O staining were used to detect the effect of CAVIN3 on the differentiation of porcine preadipocytes. The results showed that CAVIN3 was expressed in various tissues, with higher expression in adipose tissue, differentially expressed during cell adipogenic differentiation, and mainly distributed in the cytoplasm. Functional studies showed that, after CAVIN3 interference in preadipocytes, the expression of adipogenic factors and the content of lipid droplets were significantly decreased (p < 0.05). The results were reversed after CAVIN3 was overexpressed. The mechanism research showed that LY3214996 inhibited the extracellular signal-regulated kinase (ERK) phosphorylation and further inhibited lipogenic factors expression. Overexpression of CAVIN3 attenuates the inhibitory effect of LY3214996 on ERK phosphorylation and attenuates its inhibitory effect on adipogenic differentiation. Therefore, this study demonstrated that CAVIN3 promotes the differentiation of porcine preadipocytes by promoting ERK phosphorylation. The present study can lay a theoretical foundation for further studying the molecular mechanism of porcine fat deposition.
Collapse
Affiliation(s)
- Mingyue Shi
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Shuai Yang
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Xiaoyu Huang
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Shouyuan Wang
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Wenxia Li
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Jiale Yun
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Chang Lu
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Yang Yang
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Chunbo Cai
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
5
|
Lin C, Miao J, He J, Feng W, Chen X, Jiang X, Liu J, Li B, Huang Q, Liao S, Liu Y. The regulatory mechanism of LncRNA-mediated ceRNA network in osteosarcoma. Sci Rep 2022; 12:8756. [PMID: 35610231 PMCID: PMC9130241 DOI: 10.1038/s41598-022-11371-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 04/18/2022] [Indexed: 12/25/2022] Open
Abstract
Aberrantly expressed lncRNAs have been reported to be closely related to the oncogenesis and development of osteosarcoma. However, the role of a dysregulated lncRNA-miRNA-mRNA network in osteosarcoma in the same individual needs to be further investigated. Whole transcriptome sequencing was performed on the tumour tissues and matched paratumour tissues of three patients with confirmed osteosarcoma. Two divergent lncRNA-miRNA-mRNA regulatory networks were constructed in accordance with their biological significance. The GO and KEGG analysis results of the mRNAs in the two networks revealed that the aberrantly expressed lncRNAs were involved in regulating bone growth and development, epithelial cell proliferation, cell cycle arrest and the N-terminal acetylation of proteins. The survival analysis results of the two networks showed that patients with high expression of GALNT3, FAM91A1, STC2 and SLC7A1 end in poorer prognosis. Likewise, patients with low expression of IGF2, BLCAP, ZBTB47, THRB, PKIA and MITF also had poor prognosis. A subnetwork was then constructed to demonstrate the key genes regulated by aberrantly expressed lncRNAs at the posttranscriptional level via the ceRNA network. Aberrantly expressed lncRNAs in osteosarcoma tissues regulate genes involved in cellular proliferation, differentiation, angiogenesis and the cell cycle via the ceRNA network.
Collapse
Affiliation(s)
- Chengsen Lin
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Orthopedics, The Children's Hospital of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jifeng Miao
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Juliang He
- Department of Bone and Soft Tissue Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Wenyu Feng
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xianxiang Chen
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaohong Jiang
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Orthopedics, Ethnic Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jianhong Liu
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Boxiang Li
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Orthopedics, Ethnic Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qian Huang
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shijie Liao
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Yun Liu
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
6
|
Zhu S, Wang W, Zhang J, Ji S, Jing Z, Chen YQ. Slc25a5 regulates adipogenesis by modulating ERK signaling in OP9 cells. Cell Mol Biol Lett 2022; 27:11. [PMID: 35109789 PMCID: PMC8903613 DOI: 10.1186/s11658-022-00314-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/17/2022] [Indexed: 01/09/2023] Open
Abstract
Background A comprehensive understanding of the molecular mechanisms of adipogenesis is a critically important strategy for identifying new targets for obesity intervention. Methods Transcriptomic and lipidomic approaches were used to explore the functional genes regulating adipogenic differentiation and their potential mechanism of action in OP9 cells and adipose-derived stem cells. Oil Red O staining was used to detect oil droplets in adipocytes. Results RNA sequencing (RNA-seq) showed that Slc25a5 expression was significantly upregulated in adipogenic differentiation. Depletion of Slc25a5 led to the suppressed expression of adipogenesis-related genes, reduced the accumulation of triglycerides, and inhibited PPARγ protein expression. Moreover, the knockdown of Slc25a5 resulted in significant reduction of oxidative phosphorylation (OXPHOS) protein expression (ATP5A1, CQCRC2, and MTCO1) and ATP production. The RNA-seq and real-time quantitative polymerase chain reaction (RT–qPCR) results suggested that adipogenic differentiation is possibly mediated by ERK1/2 phosphorylation, and this hypothesis was confirmed by intervention with PD98059 (an ERK 1/2 inhibitor). Conclusions This study indicates that Slc25a5 inhibits adipogenesis and might be a new therapeutic target for the treatment of obesity. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00314-y.
Collapse
Affiliation(s)
- Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
| | - Wei Wang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jingwei Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Siyu Ji
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Zhe Jing
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yong Q Chen
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China. .,School of Food Science and Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
7
|
Pan S, Chen Y, Zhang L, Liu Z, Xu X, Xing H. Curcumin represses lipid accumulation through inhibiting ERK1/2-PPAR-γ signaling pathway and triggering apoptosis in porcine subcutaneous preadipocytes. Anim Biosci 2021; 35:763-777. [PMID: 34727633 PMCID: PMC9065776 DOI: 10.5713/ab.21.0371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/19/2021] [Indexed: 12/01/2022] Open
Abstract
Objective Excessive lipid accumulation in adipocytes results in prevalence of obesity and metabolic syndrome. Curcumin (CUR), a naturally phenolic active ingredient, has been shown to have lipid-lowering effects. However, its underlying mechanisms have remained largely unknown. Therefore, the study aims to determine the effect of CUR on cellular lipid accumulation in porcine subcutaneous preadipocytes (PSPA) and to clarify novel mechanisms. Methods The PSPA were cultured and treated with or without CUR. Both cell counting Kit-8 and lactate dehydrogenase release assays were used to examine cytotoxicity. Intracellular lipid contents were measured by oil-red-o staining extraction and triglyceride quantification. Apoptosis was determined by flow cytometry and the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-nick end labelling assay. Adipogenic and apoptosis genes were analyzed by quantitative polymerase chain reaction and Western blot. Results The CUR dose-dependently reduced the proliferation and lipid accumulation of PSPA. Noncytotoxic doses of CUR (10 to 20 μM) significantly inhibited extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and expression of adipogenic genes peroxisome proliferation-activity receptor-γ (PPAR-γ), CCAAT/enhancer binding protein-α, sterol regulatory element-binding protein-1c, adipocyte protein-2, glucose transporter-4 as well as key lipogenic enzymes fatty acid synthase and acetyl-CoA carboxylase, while ERK1/2 activation significantly reversed CUR-reduced lipid accumulation by increasing PPAR-γ. Furthermore, compared with differentiation induced media treated cells, higher dose of CUR (30 μM) significantly decreased the expression of AKT and B-cell lymphoma-2 (BCL-2), while increased the expression of BCL-2-associated X (BAX) and the BAX/BCL-2 expression ratio, suggesting triggered apoptosis by inactivating AKT and increasing BAX/BCL-2 ratio and Caspase-3 expression. Moreover, AKT activation significantly rescued CUR inhibiting lipid accumulation via repressing apoptosis. Conclusion These results demonstrate that CUR is capable of suppressing differentiation by inhibiting ERK1/2-PPAR-γ signaling pathway and triggering apoptosis via decreasing AKT and subsequently increasing BAX/BCL-2 ratio and Caspase-3, suggesting that CUR provides an important method for the reduction of porcine body fat, as well as the prevention and treatment of human obesity.
Collapse
Affiliation(s)
- Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Department of Animal Science, Washington State University, Pullman, 99163, WA, USA
| | - Yongfang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Lin Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhuang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xingyu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Hua Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, China
| |
Collapse
|
8
|
Ou L, Kang W, Liang Z, Gao F, Dong T, Wei P, Li M. Investigation of anti-osteoporosis mechanisms of Rehmanniae Radix Preparata based on network pharmacology and experimental verification. J Orthop Surg Res 2021; 16:599. [PMID: 34649566 PMCID: PMC8515747 DOI: 10.1186/s13018-021-02751-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Background Rehmanniae Radix Preparata (RRP) can effectively improve the symptoms of osteoporosis, but its molecular mechanism for treating osteoporosis is still unclear. The objective of this study is to investigate the anti-osteoporosis mechanisms of RRP through network pharmacology. Methods The overlapping targets of RRP and osteoporosis were screened out using online platforms. A visual network diagram of PPI was constructed and analyzed by Cytoscape 3.7.2 software. Molecular docking was used to evaluate the binding activity of ligands and receptors, and some key genes were verified through pharmacological experiments. Results According to topological analysis results, AKT1, MAPK1, ESR1, and SRC are critical genes for RRP to treat osteoporosis, and they have high binding activity with stigmasterol and sitosterol. The main signal pathways of RRP in the treatment of osteoporosis, including the estrogen signaling pathway, HIF-1 signal pathway, MAPK signal pathway, PI3K-Akt signal pathway. Results of animal experiments showed that RRP could significantly increase the expression levels of Akt1, MAPK1, ESR1, and SRC1 mRNA in bone tissue to increase bone density. Conclusion This study explained the coordination between multiple components and multiple targets of RRP in the treatment of osteoporosis and provided new ideas for its clinical application and experimental research.
Collapse
Affiliation(s)
- Li Ou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Wenqian Kang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ziyi Liang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Feng Gao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Taiwei Dong
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Peifeng Wei
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Min Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| |
Collapse
|
9
|
Cui J, Liu X, Yang L, Che S, Guo H, Han J, Zhu Z, Cao B, An X, Zhang L, Song Y. MiR-184 Combined with STC2 Promotes Endometrial Epithelial Cell Apoptosis in Dairy Goats via RAS/RAF/MEK/ERK Pathway. Genes (Basel) 2020; 11:genes11091052. [PMID: 32906580 PMCID: PMC7565287 DOI: 10.3390/genes11091052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
The endometrium undergoes a series of complex changes to form a receptive endometrium (RE) that allows the embryo to be implanted. The inability to establish endometrial receptivity of livestock causes embryo implantation failure and considerable losses to animal husbandry. MicroRNAs (miRNAs) are a class of noncoding RNAs. Studies have found that miRNAs can regulate many critical physiological processes, including the establishment of RE during embryo implantation. miR-184 is highly expressed in the endometrial receptive period of dairy goats. This study aimed to explore the effect of miR-184 on endometrial epithelial cell (EEC) apoptosis and RE establishment. Stanniocalcin2 (STC2) is a direct target of miR-184, and miR-184 decreases the expression of STC2 in dairy goat EECs. miR-184 can activate EECs apoptosis through the RAS/RAF/MEK/ERK pathway. Additionally, miR-184 increases the expression levels of RE marker genes, such as forkhead box M1 (FOXM1) and vascular endothelial growth factor (VEGF). These findings indicate that miR-184 promotes the apoptosis of endometrial epithelial cells in dairy goats by downregulating STC2 via the RAS/RAF/MEK/ERK pathway, and that it may also regulate the establishment of RE in dairy goats.
Collapse
|