1
|
Wang X, Peng W, Zhao Y, Sha J, Li N, Huang S, Wang H. Immune cell related signature predicts prognosis in esophageal squamous cell carcinoma based on single-cell and bulk-RNA sequencing. Front Oncol 2024; 14:1370801. [PMID: 38903709 PMCID: PMC11187079 DOI: 10.3389/fonc.2024.1370801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Background It has been reported that tumor immune microenvironment performs a vital role in tumor progress. However, acting mechanism of immune cell related genes (IRGs) in esophageal squamous cell carcinoma (ESCC) is uncertain. Methods TCGA-ESCC, GSE23400, GSE26886, GSE75241, and GSE196756 datasets were gained via public databases. First, differentially expressed genes (DEGs) between ESCC and control samples from GSE23400, GSE26886, and GSE75241 were screened out by differential expression analysis, and overlapping DEGs were identified. Single-cell transcriptome data of GSE196756 were applied to explore immune cells that might be involved in regulation of ESCC. Then, weighted gene co-expression network analysis was applied to screen IRGs. Next, differentially expressed IRGs (DE-IRGs) were identified by overlapping IRGs and DEGs, and were incorporated into univariate Cox, least absolute shrinkage and selection operator, and multivariate Cox to acquire prognosis-related genes, and ESCC samples were grouped into high-/low-risk groups on the basis of median risk score. Finally, the role of prognosis model in immunotherapy was analyzed. Results Totally 248 DEGs were yielded by overlapping 3,915 DEGs in GSE26886, 459 DEGs in GSE23400, and 1,641 DEGs in GSE75241. Single-cell analysis found that B cells, dendritic cells, monocytes, neutrophils, natural killer cells, and T cells were involved in ESCC development. Besides, MEred, MEblack, MEpink, MEblue and MEbrown modules were considered as key modules because of their highest correlations with immune cell subtypes. A total of 154 DE-IRGs were yielded by taking intersection of DEGs and genes in key modules. Moreover, CTSC, ALOX12, and RMND5B were identified as prognosis-related genes in ESCC. Obviously, Exclusion and TIDE scores were notably lower in high-risk group than in the other one, indicating that high-risk group was more responsive to immunotherapy. Conclusions Through bioinformatic analysis, we identified a prognosis model consisting of IRGs (CTSC, ALOX12, and RMND5B) in ESCC, providing new ideas for studies related to treatment and prognosis of ESCC.
Collapse
Affiliation(s)
- Xian Wang
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Wei Peng
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yali Zhao
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiming Sha
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Na Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shan Huang
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Gastroenterology, The Second People’s Hospital of Hefei, Hefei, China
| |
Collapse
|
2
|
Wang X, Zhang Z, Shi Y, Zhang W, Su C, Wang D. Construction of a Novel Mitochondria-Associated Gene Model for Assessing ESCC Immune Microenvironment and Predicting Survival. J Microbiol Biotechnol 2024; 34:1164-1177. [PMID: 38719775 PMCID: PMC11180922 DOI: 10.4014/jmb.2310.10052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/30/2023] [Accepted: 02/02/2024] [Indexed: 05/29/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is among the most common malignant tumors of the digestive tract, with the sixth highest fatality rate worldwide. The ESCC-related dataset, GSE20347, was downloaded from the Gene Expression Omnibus (GEO) database, and weighted gene co-expression network analysis was performed to identify genes that are highly correlated with ESCC. A total of 91 transcriptome expression profiles and their corresponding clinical information were obtained from The Cancer Genome Atlas database. A mitochondria-associated risk (MAR) model was constructed using the least absolute shrinkage and selection operator Cox regression analysis and validated using GSE161533. The tumor microenvironment and drug sensitivity were explored using the MAR model. Finally, in vitro experiments were performed to analyze the effects of hub genes on the proliferation and invasion abilities of ESCC cells. To confirm the predictive ability of the MAR model, we constructed a prognostic model and assessed its predictive accuracy. The MAR model revealed substantial differences in immune infiltration and tumor microenvironment characteristics between high- and low-risk populations and a substantial correlation between the risk scores and some common immunological checkpoints. AZD1332 and AZD7762 were more effective for patients in the low-risk group, whereas Entinostat, Nilotinib, Ruxolutinib, and Wnt.c59 were more effective for patients in the high-risk group. Knockdown of TYMS significantly inhibited the proliferation and invasive ability of ESCC cells in vitro. Overall, our MAR model provides stable and reliable results and may be used as a prognostic biomarker for personalized treatment of patients with ESCC.
Collapse
Affiliation(s)
- Xiu Wang
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, P.R. China
| | - Zhenhu Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, P.R. China
| | - Yamin Shi
- School of Foreign Languages, Shandong University of Finance and Economics, Jinan 250014, P. R. China
| | - Wenjuan Zhang
- Department of Surgical, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, P.R. China
| | - Chongyi Su
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, P.R. China
| | - Dong Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, P.R. China
| |
Collapse
|
3
|
Weng S, Liu Z, Xu H, Ge X, Ren Y, Dang Q, Liu L, Zhang J, Luo P, Ren J, Han X. ALOX12: A Novel Insight in Bevacizumab Response, Immunotherapy Effect, and Prognosis of Colorectal Cancer. Front Immunol 2022; 13:910582. [PMID: 35833141 PMCID: PMC9271859 DOI: 10.3389/fimmu.2022.910582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer is a highly malignant cancer with poor prognosis and mortality rates. As the first biological agent approved for metastatic colorectal cancer (mCRC), bevacizumab was confirmed to exhibit good performance when combined with chemotherapy and immunotherapy. However, the efficacy of both bevacizumab and immunotherapy is highly heterogeneous across CRC patients with different stages. Thus, exploring a novel biomarker to comprehensively assess the prognosis and bevacizumab and immunotherapy response of CRC is of great significance. In our study, weighted gene co-expression network analysis (WGCNA) and the receiver operating characteristic (ROC) curves were employed to identify bevacizumab-related genes. After verification in four public cohorts and our internal cohort, ALOX12 was identified as a key gene related to bevacizumab response. Prognostic analysis and in vitro experiments further demonstrated that ALOX12 was closely associated with the prognosis, tumor proliferation, invasion, and metastasis. Multi-omics data analysis based on mutation and copy number variation (CNV) revealed that RYR3 drove the expression of ALOX12 and the deletion of 17p12 inhibited ALOX12 expression, respectively. Moreover, we interrogated the relationship between ALOX12 and immune cells and checkpoints. The results exhibited that high ALOX12 expression predicted a higher immune infiltration and better immunotherapy response, which was further validated in Tumor Immune Dysfunction and Exclusion (TIDE) and Subclass Mapping (SubMap) methods. Above all, our study provides a stable biomarker for clinical protocol optimization, prognostic assessment, precise treatment, and individualized treatment of CRC.
Collapse
Affiliation(s)
- Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
- *Correspondence: Xinwei Han, ; Jianzhuang Ren, ; Zaoqu Liu,
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Xiaoyong Ge
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianzhuang Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xinwei Han, ; Jianzhuang Ren, ; Zaoqu Liu,
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
- *Correspondence: Xinwei Han, ; Jianzhuang Ren, ; Zaoqu Liu,
| |
Collapse
|
4
|
Mirzaei S, Saghari S, Bassiri F, Raesi R, Zarrabi A, Hushmandi K, Sethi G, Tergaonkar V. NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial-mesenchymal transition. J Cell Physiol 2022; 237:2770-2795. [PMID: 35561232 DOI: 10.1002/jcp.30759] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
Metastasis of tumor cells is a complex challenge and significantly diminishes the overall survival and prognosis of cancer patients. The epithelial-to-mesenchymal transition (EMT) is a well-known mechanism responsible for the invasiveness of tumor cells. A number of molecular pathways can regulate the EMT mechanism in cancer cells and nuclear factor-kappaB (NF-κB) is one of them. The nuclear translocation of NF-κB p65 can induce the transcription of several genes involved in EMT induction. The present review describes NF-κB and EMT interaction in cancer cells and their association in cancer progression. Due to the oncogenic role NF-κB signaling, its activation enhances metastasis of tumor cells via EMT induction. This has been confirmed in various cancers including brain, breast, lung and gastric cancers, among others. The ZEB1/2, transforming growth factor-β, and Slug as inducers of EMT undergo upregulation by NF-κB to promote metastasis of tumor cells. After EMT induction driven by NF-κB, a significant decrease occurs in E-cadherin levels, while N-cadherin and vimentin levels undergo an increase. The noncoding RNAs can potentially also function as upstream mediators and modulate NF-κB/EMT axis in cancers. Moreover, NF-κB/EMT axis is involved in mediating drug resistance in tumor cells. Thus, suppressing NF-κB/EMT axis can also promote the sensitivity of cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sam Saghari
- Department of Health Services Management, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Bassiri
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Rasoul Raesi
- PhD in Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Qiang Z, Zhang H, Jin S, Yan C, Li Z, Tao L, Yu H. The prognostic value of arginase-1 and glypican-3 expression levels in patients after surgical intrahepatic cholangiocarcinoma resection. World J Surg Oncol 2021; 19:316. [PMID: 34715880 PMCID: PMC8556943 DOI: 10.1186/s12957-021-02426-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
Background The aim of this study was to investigate the prognostic value of arginase-1 (Arg-1) and glypican-3 (GPC-3) in patients with intrahepatic cholangiocarcinoma (ICC). Methods Two hundred and thirty-seven patients with ICC were included in this study. All patients had undergone radical surgery and had complete clinical information. Immunohistochemistry was used to assess the levels of Arg-1 and GPC-3 in ICC tissues. Univariate and multivariate analyses were conducted to identify independent risk factors in ICC. The relationship between Arg-1 and GPC-3 levels and patient survival was determined using the Kaplan-Meier method. Results High Arg-1 and GPC-3 expression levels were associated with poor prognosis in patients with ICC, and they could be as new prognostic biomarkers in ICC. Conclusion Arg-1 and GPC-3 can serve as independent prognostic biomarkers in ICC. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02426-9.
Collapse
Affiliation(s)
- Zeyuan Qiang
- Department of Hepatobiliary Surgery, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Haofeng Zhang
- Department of Hepatobiliary Surgery, Medical College of Zhengzhou University, Zhengzhou, China
| | - Shuai Jin
- Department of Hepatobiliary Surgery, Medical College of Zhengzhou University, Zhengzhou, China
| | - Cao Yan
- Department of Hepatobiliary Surgery, Medical College of Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Lianyuan Tao
- Department of Hepatobiliary Surgery, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Haibo Yu
- Department of Hepatobiliary Surgery, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China. .,Department of Hepatobiliary Surgery, Medical College of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Song J, Liu Y, Guan X, Zhang X, Yu W, Li Q. A Novel Ferroptosis-Related Biomarker Signature to Predict Overall Survival of Esophageal Squamous Cell Carcinoma. Front Mol Biosci 2021; 8:675193. [PMID: 34291083 PMCID: PMC8287967 DOI: 10.3389/fmolb.2021.675193] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/11/2021] [Indexed: 01/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) accounts for the main esophageal cancer (ESCA) type, which is also associated with the greatest malignant grade and low survival rates worldwide. Ferroptosis is recently discovered as a kind of programmed cell death, which is indicated in various reports to be involved in the regulation of tumor biological behaviors. This work focused on the comprehensive evaluation of the association between ferroptosis-related gene (FRG) expression profiles and prognosis in ESCC patients based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). ALOX12, ALOX12B, ANGPTL7, DRD4, MAPK9, SLC38A1, and ZNF419 were selected to develop a novel ferroptosis-related gene signature for GEO and TCGA cohorts. The prognostic risk model exactly classified patients who had diverse survival outcomes. In addition, this study identified the ferroptosis-related signature as a factor to independently predict the risk of ESCC. Thereafter, we also constructed the prognosis nomogram by incorporating clinical factors and risk score, and the calibration plots illustrated good prognostic performance. Moreover, the association of the risk score with immune checkpoints was observed. Collectively, the proposed ferroptosis-related gene signature in our study is effective and has a potential clinical application to predict the prognosis of ESCC.
Collapse
Affiliation(s)
- Jiahang Song
- Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanhu Liu
- Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Guan
- Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xun Zhang
- Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenda Yu
- Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qingguo Li
- Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Cardiovascular Surgery, The Affiliated Hospital of Qinghai University, Xining, China
| |
Collapse
|
7
|
Ashrafizadeh M, Shahinozzaman M, Orouei S, Zarrin V, Hushmandi K, Hashemi F, Kumar A, Samarghandian S, Najafi M, Zarrabi A. Crosstalk of long non-coding RNAs and EMT: Searching the missing pieces of an incomplete puzzle for lung cancer therapy. Curr Cancer Drug Targets 2021; 21:640-665. [PMID: 33535952 DOI: 10.2174/1568009621666210203110305] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/02/2020] [Accepted: 11/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung cancer is considered to be the first place among the cancer-related deaths worldwide and demands novel strategies in the treatment of this life-threatening disorder. The aim of this review is to explore regulation of epithelial-to-mesenchymal transition (EMT) by long non-coding RNAs (lncRNAs) in lung cancer. INTRODUCTION LncRNAs can be considered as potential factors for targeting in cancer therapy, since they regulate a bunch of biological processes, e.g. cell proliferation, differentiation and apoptosis. The abnormal expression of lncRNAs occurs in different cancer cells. On the other hand, epithelial-to-mesenchymal transition (EMT) is a critical mechanism participating in migration and metastasis of cancer cells. METHOD Different databases including Googlescholar, Pubmed and Sciencedirect were used for collecting articles using keywords such as "LncRNA", "EMT", and "Lung cancer". RESULT There are tumor-suppressing lncRNAs that can suppress EMT and metastasis of lung cancer cells. Expression of such lncRNAs undergoes down-regulation in lung cancer progression and restoring their expression is of importance in suppressing lung cancer migration. There are tumor-promoting lncRNAs triggering EMT in lung cancer and enhancing their migration. CONCLUSION LncRNAs are potential regulators of EMT in lung cancer, and targeting them, both pharmacologically and genetically, can be of importance in controlling migration of lung cancer cells.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul. Turkey
| | - Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742. United States
| | - Sima Orouei
- Department of Genetics Science, Tehran Medical Sciences Branch, Islamic Azad University, Tehran. Iran
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran. Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran. Iran
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541. Korea
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur. Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanashah University of Medical Sciences, Kermanshah 6715847141. Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul. Turkey
| |
Collapse
|
8
|
Gao S, Hu J, Li Y. Targeting of the Alox12-12-HETE in Blast Crisis Chronic Myeloid Leukemia Inhibits Leukemia Stem/Progenitor Cell Function. Cancer Manag Res 2020; 12:12509-12517. [PMID: 33312001 PMCID: PMC7726836 DOI: 10.2147/cmar.s280554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction Chronic myeloid leukemia (CML) is a myeloid malignancy characterized by the oncogene BCR-ABL. CML responds well to therapy targeting BCR-ABL in the chronic phase but is resistant to treatment when it progresses to the blast phase (BP). This study attempted to address whether arachidonate 12-lipoxygenase (Alox12) confers to CML drug resistance. Materials and Methods We analyzed the expression of Alox12 using Western blotting, ELISA, and RT-PCR methods. Loss of functional analysis was performed using cellular activity assays on CML and normal hematopoietic stem/progenitor cells (HSPCs). Results Alox12 and 12-Hydroxyeicosatetraenoic acid (12-HETE) are overexpressed in BP-CML but not HSPCs, and that Alox12-12-HETE axis is regulated by BCR-ABL. The Alox12-12-HETE axis is required for CML. Specific Alox12 inhibitor inhibits colony formation, survival, and self-renewal capacity in BP-CML HSPCs, and to a significantly greater extent than in normal HSPCs. Of note, the Alox12 inhibitor significantly augments dasatinib’s efficacy in BP-CML HSPCs. Mechanism studies show that Alox12 inhibition does not affect activities of essential signaling pathways involved in maintaining stem cell function, such as Wnt, p53, and bone morphogenetic protein (BMP). In contrast, we show that Alox12 inhibition disrupts nicotinamide adenine dinucleotide phosphate (NADPH) homeostasis and induces oxidative stress and damage in CML HSPCs and committed cells. Conclusion Alox12-12-HETE axis is a specific and critical regulator of BP-CML HSPCs functions. Pharmacological inhibition of Alox12 may be useful in BP-CML.
Collapse
Affiliation(s)
- Si Gao
- Department of Haematology and Rheumatology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, People's Republic of China
| | - Jialin Hu
- Department of General Medicine, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yong Li
- Department of Pharmacy, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
9
|
Chen Q, Chen S, Zhao J, Zhou Y, Xu L. MicroRNA-126: A new and promising player in lung cancer. Oncol Lett 2020; 21:35. [PMID: 33262827 PMCID: PMC7693477 DOI: 10.3892/ol.2020.12296] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most common malignant tumors associated with cancer death; however, the mechanisms involved in lung tumor development have not been completely elucidated, which impedes the advancement of clinical diagnosis and therapy. MicroRNA-126 (miR-126) is an important member of the microRNA family and is encoded by intron 7 of epidermal growth factor-like domain-containing gene 7. Increasing evidence has demonstrated that miR-126, as a distinct endothelial-enriched miRNA and new tumor suppressor gene, serves a promising role in the occurrence, development and metastasis of various types of cancer, including liver cancer, colorectal cancer, melanoma and lung cancer. In the present review, the current knowledge of the role of miR-126 in lung cancer growth, metastasis, diagnosis and prognosis as well as therapy was summarized, which may provide new insights on the biological roles of miRNAsin lung cancer and facilitate the ultimate development of miRNA-based therapies in clinical patients with non-small cell lung cancer.
Collapse
Affiliation(s)
- Qijun Chen
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Shuanghua Chen
- Department of General Medicine, The Third Hospital Affiliated to Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Juanjuan Zhao
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Lin Xu
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|