1
|
Nonaka Y, Hoshino K, Nakamura T, Kamitori S. Structural analysis of Spi-B DNA-binding Ets domain recognizing 5'-AGAA-3' and 5'-GGAA-3' sequences. Biochem Biophys Res Commun 2025; 749:151354. [PMID: 39892964 DOI: 10.1016/j.bbrc.2025.151354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/04/2025]
Abstract
Plasmacytoid dendritic cells produce large amounts of type-I interferon (IFN-I) upon sensing nucleic acid components of pathogens by Toll-like receptors (TLR7 and TLR9). The transcription factor Spi-B has the DNA-binding Ets domain, and transactivates the Ifna4 promoter co-operatively with IFN regulatory factor-7 (IRF-7) for TLR7/TLR9-induced IFN-I production. Spi-B associates with IRF-7, and activates transcription by binding to the 5'-AGAA-3' sequence, being different from 5'-GGAA-3', known as the Ets domain recognition sequence. To understand the molecular mechanism for the co-operative transactivation of the Ifna4 promoter by Spi-B and IRF-7, we performed X-ray structural determination of the Spi-B Ets domain in complex with target DNAs, including 5'-AGAA-3' and 5'-GGAA-3' sequences. Furthermore, we conducted a modeling study of the complex of the Spi-B and IRF-7 with Ifna4 promoter DNA. X-ray structures showed that the binding of the Spi-B Ets domain induces a kink in DNA at the recognition sequence, and a more kinked DNA structure was observed in 5'-AGAA-3' than 5'-GGAA-3'. A modeling study showed that the Spi-B-induced kinked DNA structure in 5'-AGAA-3' is favorable for Spi-B and IRF-7 to approach each other for association on DNA.
Collapse
Affiliation(s)
- Yasuhiro Nonaka
- International Institute of Rare Sugar Research and Education, Kagawa University, Takamatsu, Kagawa, 760-8521, Japan; Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Katsuaki Hoshino
- International Institute of Rare Sugar Research and Education, Kagawa University, Takamatsu, Kagawa, 760-8521, Japan; Department of Immunology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan; Research Facility Center for Science & Technology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Takanori Nakamura
- Research Facility Center for Science & Technology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Shigehiro Kamitori
- International Institute of Rare Sugar Research and Education, Kagawa University, Takamatsu, Kagawa, 760-8521, Japan; Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan; Research Facility Center for Science & Technology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.
| |
Collapse
|
2
|
Tsakiroglou M, Evans A, Doce-Carracedo A, Little M, Hornby R, Roberts P, Zhang E, Miyajima F, Pirmohamed M. Gene Expression Dysregulation in Whole Blood of Patients with Clostridioides difficile Infection. Int J Mol Sci 2024; 25:12653. [PMID: 39684365 DOI: 10.3390/ijms252312653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Clostridioides difficile (C. difficile) is a global threat and has significant implications for individuals and health care systems. Little is known about host molecular mechanisms and transcriptional changes in peripheral immune cells. This is the first gene expression study in whole blood from patients with C. difficile infection. We took blood and stool samples from patients with toxigenic C. difficile infection (CDI), non-toxigenic C. difficile infection (GDH), inflammatory bowel disease (IBD), diarrhea from other causes (DC), and healthy controls (HC). We performed transcriptome-wide RNA profiling on peripheral blood to identify diarrhea common and CDI unique gene sets. Diarrhea groups upregulated innate immune responses with neutrophils at the epicenter. The common signature associated with diarrhea was non-specific and shared by various other inflammatory conditions. CDI had a unique 45 gene set reflecting the downregulation of humoral and T cell memory functions. Dysregulation of immunometabolic genes was also abundant and linked to immune cell fate during differentiation. Whole transcriptome analysis of white cells in blood from patients with toxigenic C. difficile infection showed that there is an impairment of adaptive immunity and immunometabolism.
Collapse
Affiliation(s)
- Maria Tsakiroglou
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Anthony Evans
- Computational Biology Facility, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK
| | - Alejandra Doce-Carracedo
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Clinical Directorate, GCP Laboratories, University of Liverpool, Liverpool L7 8TX, UK
| | - Margaret Little
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Rachel Hornby
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Paul Roberts
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Faculty of Science and Engineering, School of Biomedical Science and Physiology, University of Wolverhampton, Wolverhampton WV1 1LZ, UK
| | - Eunice Zhang
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Fabio Miyajima
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Oswaldo Cruz Foundation (Fiocruz), Branch Ceara, Eusebio 61773-270, Brazil
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| |
Collapse
|
3
|
Liao Q, Li F, Xue M, Chen W, Tao Z, Song Y, Yuan Y. Polydatin alleviates sepsis‑induced acute lung injury via downregulation of Spi‑B. Biomed Rep 2023; 19:102. [PMID: 38025835 PMCID: PMC10646764 DOI: 10.3892/br.2023.1684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/07/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis-induced acute lung injury (ALI) is related to the dysregulation of inflammatory responses. Polydatin supplement was reported to exhibit anti-inflammatory effects in several diseases. The present study aimed to investigate the role of polydatin in sepsis-induced ALI. A cecum ligation and puncture (CLP)-induced mouse ALI model was established first and the pathological changes of lung tissues were assessed using hematoxylin and eosin staining. Meanwhile, to mimic sepsis-induced ALI in vitro, pulmonary microvascular endothelial cells (PMVECs) were treated with lipopolysaccharide (LPS). Pro-inflammatory cytokines levels were measured in lung tissues and PMVECs using ELISA. Reverse transcription-quantitative PCR was used to measure the mRNA levels of Spi-B in lung tissues and PMVECs. Moreover, the expression levels of Spi-B, p-PI3K, p-Akt, and p-NF-κB in lung tissues and PMVECs were determined using western blotting. The data revealed that polydatin attenuated CLP-induced lung injury and inhibited sepsis-induced inflammatory responses in mice. Furthermore, polydatin significantly inhibited the expression of Spi-B, p-PI3K, p-Akt, and p-NF-κB in lung tissues of mice subjected to CLP-induced ALI, while this phenomenon was reversed through Spi-B overexpression. Consistently, the anti-inflammatory effect of polydatin was abolished by Spi-B overexpression. Taken together, the current findings revealed that polydatin alleviated sepsis-induced ALI via the downregulation of Spi-B.
Collapse
Affiliation(s)
- Qingwu Liao
- Shanghai Key Laboratory of Perioperative Stress and Protection, Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Fang Li
- Department of Geriatrics, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, Fujian 361015, P.R. China
| | - Mingming Xue
- Department of Emergency, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Wenan Chen
- Department of Emergency, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhengang Tao
- Department of Emergency, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yuejiao Song
- Department of Anesthesia, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, Fujian 361015, P.R. China
| | - Ying Yuan
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
4
|
Zhao X, Jiang Y, Ma X, Yang Q, Ding X, Wang H, Yao X, Jin L, Zhang Q. Demystifying the impact of prenatal tobacco exposure on the placental immune microenvironment: Avoiding the tragedy of mending the fold after death. J Cell Mol Med 2023; 27:3026-3052. [PMID: 37700485 PMCID: PMC10568673 DOI: 10.1111/jcmm.17846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Accepted: 07/05/2023] [Indexed: 09/14/2023] Open
Abstract
Prenatal tobacco exposure (PTE) correlates significantly with a surge in adverse pregnancy outcomes, yet its pathological mechanisms remain partially unexplored. This study aims to meticulously examine the repercussions of PTE on placental immune landscapes, employing a coordinated research methodology encompassing bioinformatics, machine learning and animal studies. Concurrently, it aims to screen biomarkers and potential compounds that could sensitively indicate and mitigate placental immune disorders. In the course of this research, two gene expression omnibus (GEO) microarrays, namely GSE27272 and GSE7434, were included. Gene set enrichment analysis (GSEA) and immune enrichment investigations on differentially expressed genes (DEGs) indicated that PTE might perturb numerous innate or adaptive immune-related biological processes. A cohort of 52 immune-associated DEGs was acquired by cross-referencing the DEGs with gene sets derived from the ImmPort database. A protein-protein interaction (PPI) network was subsequently established, from which 10 hub genes were extracted using the maximal clique centrality (MCC) algorithm (JUN, NPY, SST, FLT4, FGF13, HBEGF, NR0B2, AREG, NR1I2, SEMA5B). Moreover, we substantiated the elevated affinity of tobacco reproductive toxicants, specifically nicotine and nitrosamine, with hub genes through molecular docking (JUN, FGF13 and NR1I2). This suggested that these genes could potentially serve as crucial loci for tobacco's influence on the placental immune microenvironment. To further elucidate the immune microenvironment landscape, consistent clustering analysis was conducted, yielding three subtypes, where the abundance of follicular helper T cells (p < 0.05) in subtype A, M2 macrophages (p < 0.01), neutrophils (p < 0.05) in subtype B and CD8+ T cells (p < 0.05), resting NK cells (p < 0.05), M2 macrophages (p < 0.05) in subtype C were significantly different from the control group. Additionally, three pivotal modules, designated as red, blue and green, were identified, each bearing a close association with differentially infiltrated immunocytes, as discerned by the weighted gene co-expression network analysis (WGCNA). Functional enrichment analysis was subsequently conducted on these modules. To further probe into the mechanisms by which immune-associated DEGs are implicated in intercellular communication, 20 genes serving as ligands or receptors and connected to differentially infiltrating immunocytes were isolated. Employing a variety of machine learning techniques, including one-way logistic regression, LASSO regression, random forest and artificial neural networks, we screened 11 signature genes from the intersection of immune-associated DEGs and secretory protein-encoding genes derived from the Human Protein Atlas. Notably, CCL18 and IFNA4 emerged as prospective peripheral blood markers capable of identifying PTE-induced immune disorders. These markers demonstrated impressive predictive power, as indicated by the area under the curve (AUC) of 0.713 (0.548-0.857) and 0.780 (0.618-0.914), respectively. Furthermore, we predicted 34 potential compounds, including cyclosporine, oestrogen and so on, which may engage with hub genes and attenuate immune disorders instigated by PTE. The diagnostic performance of these biomarkers, alongside the interventional effect of cyclosporine, was further corroborated in animal studies via ELISA, Western blot and immunofluorescence assays. In summary, this study identifies a disturbance in the placental immune landscape, a secondary effect of PTE, which may underlie multiple pregnancy complications. Importantly, our research contributes to the noninvasive and timely detection of PTE-induced placental immune disorders, while also offering innovative therapeutic strategies for their treatment.
Collapse
Affiliation(s)
- Xiaoxuan Zhao
- Department of Traditional Chinese Medicine (TCM) GynecologyHangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical UniversityHangzhouChina
- Research Institute of Women's Reproductive Health Zhejiang Chinese Medical UniversityHangzhouChina
| | | | - Xiao Ma
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qujia Yang
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xinyi Ding
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Hanzhi Wang
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xintong Yao
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Linxi Jin
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qin Zhang
- Department of Traditional Chinese Medicine (TCM) GynecologyHangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical UniversityHangzhouChina
- Research Institute of Women's Reproductive Health Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
5
|
Hao S, Xinqi M, Weicheng X, Shiwei Y, Lumin C, Xiao W, Dong L, Jun H. Identification of key immune genes of osteoporosis based on bioinformatics and machine learning. Front Endocrinol (Lausanne) 2023; 14:1118886. [PMID: 37361541 PMCID: PMC10289263 DOI: 10.3389/fendo.2023.1118886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/03/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Immunity is involved in a variety of bone metabolic processes, especially osteoporosis. The aim of this study is to explore new bone immune-related markers by bioinformatics method and evaluate their ability to predict osteoporosis. Methods The mRNA expression profiles were obtained from GSE7158 in Gene expression Omnibus (GEO), and immune-related genes were obtained from ImmPort database (https://www.immport.org/shared/). immune genes related to bone mineral density(BMD) were screened out for differential analysis. protein-protein interaction (PPIs) networks were used to analyze the interrelationships between different immune-related genes (DIRGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of DIRGs function were performed. A least absolute shrinkage and selection operation (LASSO) regression model and multiple Support Vector Machine-Recursive Feature Elimination (mSVM-RFE) model were constructed to identify the candidate genes for osteoporosis prediction The receiver operator characteristic (ROC) curves were used to validate the performances of predictive models and candidate genes in GEO database (GSE7158,GSE13850).Through the RT - qPCR verify the key genes differentially expressed in peripheral blood mononuclear cells Finally, we constructed a nomogram model for predicting osteoporosis based on five immune-related genes. CIBERSORT algorithm was used to calculate the relative proportion of 22 immune cells. Results A total of 1158 DEGs and 66 DIRGs were identified between high-BMD and low-BMD women. These DIRGs were mainly enriched in cytokine-mediated signaling pathway, positive regulation of response to external stimulus and the cellular components of genes are mostly localized to external side of plasma membrane. And the KEGG enrichment analysis were mainly involved in Cytokine-cytokine receptor interaction, PI3K-Akt signaling pathway, Neuroactive ligand-receptor interaction,Natural killer cell mediated cytotoxicity. Then five key genes (CCR5, IAPP, IFNA4, IGHV3-73 and PTGER1) were identified and used as features to construct a predictive prognostic model for osteoporosis using the GSE7158 dataset. Conclusion Immunity plays an important role in the development of osteoporosis.CCR5, IAPP, IFNA4, IGHV3-73 and PTGER1were play an important role in the occurrences and diagnosis of OP.
Collapse
Affiliation(s)
- Song Hao
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Mao Xinqi
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Weicheng
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Shiwei
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Cao Lumin
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wang Xiao
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liu Dong
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Jun
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Immunomodulatory effects of D-allose on cytokine production by plasmacytoid dendritic cells. Biochem Biophys Res Commun 2022; 627:130-136. [PMID: 36030654 DOI: 10.1016/j.bbrc.2022.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022]
Abstract
D-Allose is classified as a 'rare sugar,' i.e., part of the group of monosaccharides that are present in low quantities in the natural world. D-Allose has been demonstrated to exert many physiological functions. The effects of the rare sugars on immune responses are largely unexplored. Here, we investigated the physiological effects of D-allose on murine dendritic cells' cytokine production. When plasmacytoid dendritic cells (pDCs) were stimulated with a Toll-like receptor 7 (TLR7) ligand, a single-stranded RNA (ssRNA), or a TLR9 ligand, CpG DNA, in the medium containing D-allose, the productions of both interferon-alpha (IFN-α) and interleukin (IL)-12p40 were severely decreased. In contrast, a normal production of these cytokines was observed when pDCs were stimulated with other TLR7 ligands, an imidazoquinoline, or a guanosine analog. In contrast to the pDCs, conventional dendritic cells (cDCs) produced IL-12p40 and tumor necrosis factor-alpha (TNF-α) in response to an imidazoquinoline or CpG DNA even though D-allose was present in the medium. D-Allose did not induce pDC death, and not inhibit the endocytic uptake of fluorophore-labeled CpG DNA into pDCs. These results suggested that D-allose exerts its inhibitory effects after CpG DNA is internalized. We analyzed the TLR7/9 signal-induced activation of downstream signaling molecules in pDCs and observed that when pDCs were stimulated with a ssRNA or CpG DNA, the phosphorylation status of the MAPK family, which includes Erk1/2, JNK/SAPK, and p38 MAPK, was attenuated in the presence of D-allose compared to D-glucose controls. The stimulation of pDCs with an imidazoquinoline induced a strong phosphorylation of these MAPK family members even in the presence of D-allose. These findings reveal that D-allose can inhibit the cytokine production by pDCs stimulated with ssRNA or CpG DNA via an attenuation of the phosphorylation of MAPK family members.
Collapse
|
7
|
Saiga H, Ueno M, Tanaka T, Kaisho T, Hoshino K. Transcription factor MafB-mediated inhibition of type I interferons in plasmacytoid dendritic cells. Int Immunol 2021; 34:159-172. [PMID: 34734243 DOI: 10.1093/intimm/dxab103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/01/2021] [Indexed: 11/14/2022] Open
Abstract
Type I IFNs (IFN-α and IFN-β), immunomodulatory cytokines secreted from activated plasmacytoid dendritic cells (pDCs), contribute to the innate defense against pathogenic infections and the pathogenesis of the autoimmune disease psoriasis vulgaris. A previous study has shown that an E26 transformation-specific (Ets) family transcription factor Spi-B can transactivate the type I IFN promoter in synergy with IFN regulatory factor (IRF)-7 and is required for type I IFN production in pDCs. However, the mechanism of negative regulation of type I IFNs by pDCs remains unknown. In this study, we report that a basic leucine zipper (bZip) transcription factor v-maf musculoaponeurotic fibrosarcoma oncogene homolog B (MafB) suppresses the induction of type I IFNs in pDCs. The elevated expression of MafB inhibited the transactivation of type I IFN genes in a dose-dependent manner. At the molecular level, MafB interacted with the Ets domain of Spi-B and interfered with IRF-7-Spi-B complexation. Decreased MafB mRNA expression and degradation of MafB protein in the early phase of immune responses led to the enhancement of type I IFNs in pDCs. In vivo studies indicated that MafB is involved in resistance against imiquimod-induced psoriasis-like skin inflammation. Overall, these findings demonstrate that MafB acts as a negative regulator of type I IFN induction in pDCs and plays an important role in maintaining immune homeostasis.
Collapse
Affiliation(s)
- Hiroyuki Saiga
- Department of Immunology, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Takashi Tanaka
- Laboratory for Inflammatory Regulation, RIKEN Center for Integrative Medical Science (IMS-RCAI), Yokohama, Kanagawa 230-0045, Japan
| | - Tsuneyasu Kaisho
- Laboratory for Inflammatory Regulation, RIKEN Center for Integrative Medical Science (IMS-RCAI), Yokohama, Kanagawa 230-0045, Japan.,Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera, Wakayama 641-8509, Japan
| | - Katsuaki Hoshino
- Department of Immunology, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan.,Laboratory for Inflammatory Regulation, RIKEN Center for Integrative Medical Science (IMS-RCAI), Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|