1
|
Bai L, Sawai K, Tani T, Nakai M, Matsusaka H, Ito K, Tomita H, Sugano E, Ozaki T, Fukuda T. Adipose-derived cells surpass muscle-derived cells in primary cell isolation efficacy. In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-00979-z. [PMID: 39379766 DOI: 10.1007/s11626-024-00979-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Affiliation(s)
- Lanlan Bai
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan.
| | - Ken Sawai
- Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Tetsuta Tani
- Laboratory of Animal Reproduction, Department of Agriculture, Kindai University, Nara, Japan
| | - Mayuko Nakai
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| | - Himari Matsusaka
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| | - Keiko Ito
- Amami Dog and Cat Animal Hospital, Amami Island, Kagoshima, Japan
| | - Hiroshi Tomita
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| | - Eriko Sugano
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| | - Taku Ozaki
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| | - Tomokazu Fukuda
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan.
| |
Collapse
|
2
|
Orimoto A, Kashiwagi S, Funakoshi A, Shimizu T, Ishii T, Kiyono T, Fukuda T. Transcriptome-wide profiling for melanocytes derived from newborn and adult human epidermis with enhanced proliferation. Cell Biol Int 2024; 48:1573-1587. [PMID: 38961533 DOI: 10.1002/cbin.12214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 07/05/2024]
Abstract
The senescence-associated protein p16INK4A acts as a limiter element in cell-cycle progression. The loss of p16INK4A function is causally related to cellular immortalization. The increase in p16INK4A levels with advancing age was demonstrated in melanocytes. However, the characteristic difference between young and senescent melanocytes affecting immortalization of melanocytes remains unclear. In this study, we generated 10 different cell lines in total from newborn (NB) and adult (AD) primary normal human epidermal melanocytes (NHEM) using four different methods, transduction of CDK4R24C and cyclin D1 (K4D), K4D with TERT (K4DT), SV40 T-antigen (SV40T), and HPV16 E6 and E7 (E6/E7) and performed whole transcriptome sequencing analysis (RNA-Seq) to elucidate the differences of genome-wide expression profiles among cell lines. The analysis data revealed distinct differences in expression pattern between cell lines from NB and AD although no distinct biological differences were detected in analyses such as comparison of cell morphology, evaluation of cell proliferation, and cell cycle profiles. This study may provide useful in vitro models to benefit the understanding of skin-related diseases.
Collapse
Affiliation(s)
- Ai Orimoto
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| | - Sayo Kashiwagi
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Kyoto, Japan
| | - Ayaka Funakoshi
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Kyoto, Japan
| | - Takashi Shimizu
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Kyoto, Japan
| | - Tsuyoshi Ishii
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Kyoto, Japan
| | - Tohru Kiyono
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Tomokazu Fukuda
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
3
|
Orimoto A, Addison WN, Mochizuki S, Ariyoshi W, Ono K, Kitamura C, Kiyono T, Fukuda T. Controlled cell proliferation and immortalization of human dental pulp stem cells with a doxycycline-inducible expression system. Cell Biochem Funct 2024; 42:e4064. [PMID: 38807466 DOI: 10.1002/cbf.4064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
Human dental pulp stem cells are a potentially useful resource for cell-based therapies and tissue repair in dental and medical applications. However, the primary culture of isolated dental pulp stem cells has notably been limited. A major requirement of an ideal human dental pulp stem cell culture system is the preservation of efficient proliferation and innate stemness over prolonged passaging, while also ensuring ease of handling through standard, user-friendly culture methods. In this study, we have engineered a novel human dental pulp stem cell line, distinguished by the constitutive expression of telomerase reverse transcriptase (TERT), and the conditional expression of the R24C mutant cyclin-dependent kinase 4 (CDK4R24C) and Cyclin D1. We have named this cell line Tet-off K4DT hDPSCs. Furthermore, we have conducted a comprehensive comparative analysis of their biological attributes in relation to a previously immortalized human dental pulp stem cells, hDPSC-K4DT, which were immortalized by the constitutive expression of CDK4R24C, Cyclin D1 and TERT. In Tet-off K4DT cells, the expression of the K4D genes can be precisely suppressed by the inclusion of doxycycline. Remarkably, Tet-off K4DT cells demonstrated an extended cellular lifespan, increased proliferative capacity, and enhanced osteogenic differentiation potential when compared to K4DT cells. Moreover, Tet-off K4DT cells had no observable genomic aberrations and also displayed a sustained expression of stem cell markers even at relatively advanced passages. Taken together, the establishment of this new cell line holds immense promise as powerful experimental tool for both fundamental and applied research involving dental pulp stem cells.
Collapse
Affiliation(s)
- Ai Orimoto
- Division of Endodontics and Restorative Dentistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - William N Addison
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Shinichi Mochizuki
- Department of Chemistry and Biochemistry, The University of Kitakyushu, Kitakyushu, Fukuoka, Japan
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Chiaki Kitamura
- Division of Endodontics and Restorative Dentistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Tohru Kiyono
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Tomokazu Fukuda
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
4
|
Bai L, Tani T, Kobayashi T, Nouda R, Kanai Y, Sano Y, Takami K, Tomita H, Sugano E, Ozaki T, Kiyono T, Fukuda T. Establishment of immortalized Egyptian Rousettus bat cell lines. FEBS Open Bio 2024; 14:598-612. [PMID: 38373743 PMCID: PMC10988675 DOI: 10.1002/2211-5463.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/04/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
The Egyptian Rousettus bat (Rousettus aegyptiacus) is a common fruit bat species that is distributed mainly in Africa and the Middle East. Bats serve as reservoir hosts for numerous pathogens. Human activities, such as hunting bats for food, managing vermin, and causing habitat loss, elevate the likelihood of transmission of bat pathogens to humans and other animals. Consequently, bat cell lines play a crucial role as research materials for investigating viral pathogens. However, the inherent limitation of finite cell division in primary cells necessitates the use of immortalized cells derived from various bat tissues. Herein, we successfully established six fibroblast cell lines derived from an infant bat heart and lungs and an elderly bat heart. Three of the six cell lines, called K4DT cells, were transduced by a combination of cell cycle regulators, mutant cyclin-dependent kinase 4, cyclin D1, and human telomerase reverse transcriptase. The other three cell lines, named SV40 cells, were transfected with simian virus 40 large T antigen. Transgene protein expression was detected in the transduced cells. All three K4DT cell lines and one lung-derived SV40 cell line were virtually immortalized and nearly maintained the normal diploid karyotypes. However, the two other heart-derived SV40 cell lines had aberrant karyotypes and the young bat-derived cell line stopped proliferating at approximately 40 population doublings. These bat cell lines are valuable for studying pathogen genomics and biology.
Collapse
Affiliation(s)
- Lanlan Bai
- Graduate School of Science and EngineeringIwate UniversityJapan
| | - Tetsuya Tani
- Laboratory of Animal Reproduction, Department of AgricultureKindai UniversityNaraJapan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial DiseasesOsaka UniversityJapan
| | - Ryotaro Nouda
- Department of Virology, Research Institute for Microbial DiseasesOsaka UniversityJapan
| | - Yuta Kanai
- Department of Virology, Research Institute for Microbial DiseasesOsaka UniversityJapan
| | - Yusuke Sano
- Local Independent Administrative Agency Tennoji Zoological GardensOsakaJapan
| | - Kazutoshi Takami
- Osaka Municipal Tennoji Zoological GardensJapan
- Present address:
*Toyohashi Zoo and Botanical ParkToyohashiJapan
| | - Hiroshi Tomita
- Graduate School of Science and EngineeringIwate UniversityJapan
| | - Eriko Sugano
- Graduate School of Science and EngineeringIwate UniversityJapan
| | - Taku Ozaki
- Graduate School of Science and EngineeringIwate UniversityJapan
| | - Tohru Kiyono
- Exploratory Oncology Research & Clinical Trial CenterNational Cancer CenterChibaJapan
| | - Tomokazu Fukuda
- Graduate School of Science and EngineeringIwate UniversityJapan
| |
Collapse
|
5
|
Tani T. Immortalization of American miniature horse-derived fibroblast by cell cycle regulator with normal karyotype. PeerJ 2024; 12:e16832. [PMID: 38288466 PMCID: PMC10823992 DOI: 10.7717/peerj.16832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Immortalized cells serve as a crucial research tool that capitalizes on their robust proliferative properties for functional investigations of an organism. Establishing an immortalized American miniature horse cell line could yield valuable insights into these animals' genetic and physiological characteristics and susceptibility to health issues. To date, immortalized small horse cells with normal karyotypes have not been established. In this study, we successfully established primary and immortalized fibroblast cell lines through the combined expression of human-derived mutant cyclin-dependent kinase 4 (CDK4R24C), cyclin D1, and Telomerase Reverse Transcriptase (TERT), although CDK4R24C and cyclin D1, SV40T and TERT did not result in successful immortalization. Our comparison of the properties of these immortalized cells demonstrated that K4DT immortalized cells maintain a normal karyotype. Ultimately, our findings could pave the way for the development of targeted interventions to enhance the health and well-being of American miniature horses.
Collapse
Affiliation(s)
- Tetsuya Tani
- Department of Advanced Bioscience, Kindai University, Nara, Nara, Japan
| |
Collapse
|
6
|
Kikuchi N, Matsusaka H, Bai L, Sano H, Eitsuka T, Nakagawa K, Sugano E, Ozaki T, Tomita H, Kiyono T, Fukuda T. Sheep-derived cell immortalization through the expression of cell cycle regulators and biological characterization using transcriptomes. Cell Biol Int 2023. [PMID: 37178391 DOI: 10.1002/cbin.12034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/13/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Sheep are important domestic animals for the production of wool and meat. Although numerous cultured cell lines from humans and mice have been established, the number of cell lines derived from sheep is limited. To overcome this issue, the efficient establishment of a sheep-derived cell line and its biological characterization is reported. Mutant cyclin-dependent kinase 4, cyclin D1, and telomerase reverse transcriptase were introduced into sheep muscle-derived cells in an attempt to immortalize primary cells using the K4DT method. Furthermore, the SV40 large T oncogene was introduced into the cells. The successful immortalization of sheep muscle-derived fibroblasts was shown using the K4DT method or SV40 large T antigen. Furthermore, the expression profile of established cells showed close biological characteristics of ear-derived fibroblasts. This study provides a useful cellular resource for veterinary medicine and cell biology.
Collapse
Affiliation(s)
- Noe Kikuchi
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| | - Himari Matsusaka
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| | - Lanlan Bai
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| | - Hiroaki Sano
- Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Takahiro Eitsuka
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Kiyotaka Nakagawa
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Eriko Sugano
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| | - Taku Ozaki
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| | - Hiroshi Tomita
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| | - Tohru Kiyono
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Tomokazu Fukuda
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
7
|
Bai L, Kikuchi N, Eitsuka T, Matsusaka H, Nakagawa K, Katayama M, Ito K, Inoue-Murayama M, Kiyono T, Fukuda T. Immortalization of primary cells derived from the endangered Ryukyu long-furred rat. In Vitro Cell Dev Biol Anim 2023; 59:224-233. [PMID: 36971906 DOI: 10.1007/s11626-023-00757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
The Ryukyu long-furred rat is an endangered species confined to the southernmost three small islands of Japan (Amami-Oshima, Tokunoshima, and Okinawa). Its population is rapidly decreasing because of roadkill, deforestation, and feral animals. To date, its genomic and biological information are poorly understood. In this study, we successfully immortalized Ryukyu long-furred rat cells by expressing a combination of cell cycle regulators, mutant cyclin-dependent kinase 4 (CDK4R24C) and cyclin D1, together with telomerase reverse transcriptase or an oncogenic protein, the Simian Virus large T antigen. The cell cycle distribution, telomerase enzymatic activity, and karyotype of these two immortalized cell lines were analyzed. The karyotype of the former cell line immortalized with cell cycle regulators and telomerase reverse transcriptase retained the nature of the primary cells, while that of the latter cell line immortalized with the Simian Virus large T antigen had many aberrant chromosomes. These immortalized cells would be valuable for studying the genomics and biology of Ryukyu long-furred rats.
Collapse
Affiliation(s)
- Lanlan Bai
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan.
| | - Noe Kikuchi
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| | - Takahiro Eitsuka
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Himari Matsusaka
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| | - Kiyotaka Nakagawa
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Masafumi Katayama
- Environmental Genomics Office, Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Keiko Ito
- Amami Dog and Cat Animal Hospital, Amami Island, Kagoshima, Japan
| | | | - Tohru Kiyono
- Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan.
| | - Tomokazu Fukuda
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan.
| |
Collapse
|
8
|
Konnai M, Yamamoto M, Ito K, Yamabe H, Kishimoto TE, Aoki H, Machida Y, Michishita M, Haritani M, Yoshimura H. Infective endocarditis with systemic bacterial embolism caused by Staphylococcus aureus in a free-ranging Amami rabbit (Pentalagus furnessi). J Comp Pathol 2023; 201:23-27. [PMID: 36652791 DOI: 10.1016/j.jcpa.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/16/2022] [Accepted: 12/04/2022] [Indexed: 01/19/2023]
Abstract
The Amami rabbit (Pentalagus furnessi) is found only on the two islands of Amami-Ōshima and Tokunoshima in southwest Japan. It has a primitive appearance and ecology, is an evolutionarily valuable animal and has been assigned to the International Union for Conservation of Nature Red List of Threatened Species. We describe a case with mild purulent wounds on the distal digital skin of both forelimbs and multiple nodular lesions in various organs, including the heart and kidney. Microscopically, the heart lesions were characterized by disruption of the mitral valve and multifocal myocardial necrosis and abscesses due to infection with gram-positive cocci. Similar bacterial infarctions were also found in other organs, including the kidneys. The bacteria were identified as Staphylococcus aureus by immunohistochemical and molecular biological examinations. This first report of infective endocarditis and systemic infarctions caused by S. aureus in an Amami rabbit indicates the importance of monitoring purulent injuries, even if mild, to prevent secondary infections in this species.
Collapse
Affiliation(s)
- Masaki Konnai
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Masami Yamamoto
- Laboratory of Physiological Pathology, Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Keiko Ito
- Amami Dog & Cat Animal Hospital, Oshima-gun, Kagoshima, Japan
| | - Hanae Yamabe
- Laboratory of Physiological Pathology, Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Takuya E Kishimoto
- Laboratory of Physiological Pathology, Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan; FUJIFILM VET Systems Ltd, Tokyo, Japan
| | - Hiroshi Aoki
- Department of Basic Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yukino Machida
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Masaki Michishita
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan; Center for Animal Life Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Makoto Haritani
- Laboratory of Physiological Pathology, Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan; Environmental Science for Sustainable Development, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hisashi Yoshimura
- Laboratory of Physiological Pathology, Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan; Center for Animal Life Science, Nippon Veterinary and Life Science University, Tokyo, Japan.
| |
Collapse
|
9
|
Guo D, Zhang L, Wang X, Zheng J, Lin S. Establishment methods and research progress of livestock and poultry immortalized cell lines: A review. Front Vet Sci 2022; 9:956357. [PMID: 36118350 PMCID: PMC9478797 DOI: 10.3389/fvets.2022.956357] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
An infinite cell line is one of the most favored experimental tools and plays an irreplaceable role in cell-based biological research. Primary cells from normal animal tissues undergo a limited number of divisions and subcultures in vitro before they enter senescence and die. On the contrary, an infinite cell line is a population of non-senescent cells that could proliferate indefinitely in vitro under the stimulation of external factors such as physicochemical stimulation, virus infection, or transfer of immortality genes. Cell immortalization is the basis for establishing an infinite cell line, and previous studies have found that methods to obtain immortalized cells mainly included physical and chemical stimulations, heterologous expression of viral oncogenes, increased telomerase activity, and spontaneous formation. However, some immortalized cells do not necessarily proliferate permanently even though they can extend their lifespan compared with primary cells. An infinite cell line not only avoids the complicated process of collecting primary cell, it also provides a convenient and reliable tool for studying scientific problems in biology. At present, how to establish a stable infinite cell line to maximize the proliferation of cells while maintaining the normal function of cells is a hot issue in the biological community. This review briefly introduces the methods of cell immortalization, discusses the related progress of establishing immortalized cell lines in livestock and poultry, and compares the characteristics of several methods, hoping to provide some ideas for generating new immortalized cell lines.
Collapse
|
10
|
Orimoto A, Shinohara H, Eitsuka T, Nakagawa K, Sasaki E, Kiyono T, Fukuda T. Immortalization of common marmoset-derived fibroblasts via expression of cell cycle regulators using the piggyBac transposon. Tissue Cell 2022; 77:101848. [DOI: 10.1016/j.tice.2022.101848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
|
11
|
KAv-1 is Better Suited to Chick Fibroblast Culture than DMEM or 199 Media. J Poult Sci 2021; 58:270-279. [PMID: 34899023 PMCID: PMC8630408 DOI: 10.2141/jpsa.0200085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/01/2021] [Indexed: 12/27/2022] Open
Abstract
Cultured cells are a useful resource for poultry scientists, since these cells allow scientists to evaluate biological responses to conditions such as infectious diseases in vitro while mimicking the whole-body response in birds. However avian cell culture requires an optimized basal medium, and there are currently relatively few options for this basal medium (medium 199 and KAv-1). This means that there is still room for the development of an optimal basal medium for avian cell culture. Here we compare KAv-1 medium, Dulbecco's modified Eagle medium (DMEM) and medium 199 during the culture of chick fibroblasts and determine that KAv-1 remains the optimal medium for these assays. Our results show that DNA damage is reduced in fibroblasts cultured in the KAv-1 medium, when compared to both DMEM and Medium 199 and that these cells also display improved growth dynamics in KAv-1 medium when compared to both DMEM and medium 199. To the best of our knowledge, this is the first study to describe a comparative analysis of culture media for avian cells, which would provide useful information for poultry scientists.
Collapse
|
12
|
Orimoto A, Takahashi K, Imai M, Kiyono T, Kawaoka Y, Fukuda T. Establishment of human airway epithelial cells with doxycycline-inducible cell growth and fluorescence reporters. Cytotechnology 2021; 73:555-569. [PMID: 34349346 DOI: 10.1007/s10616-021-00477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/13/2021] [Indexed: 11/29/2022] Open
Abstract
We previously reported the successful establishment of multiple immortalized cell lines that preserved the original nature of the primary cells via co-expression of R24C mutant cyclin-dependent kinase 4 (CDK4R24C), Cyclin D1, and telomerase reverse transcriptase (TERT). However, as these genes are kind of oncogenes, tools to control their expression levels are favorable. In this study, we describe a new polycistronic lentiviral vector expressing proliferation factors, CDK4R24C and Cyclin D1 along with enhanced green fluorescence protein (EGFP) under the control of doxycycline (Dox)-dependent transactivator (rtTA) and tetracycline response element (TRE). By introducing the Dox-inducible lentiviral vector into human airway epithelial cells, we established a novel human airway epithelial cell line harboring polycistronic Dox-inducible CDK4R24C and Cyclin D1, referred to as Tet-on K4D cells. We showed that the cell growth of Tet-on K4D cells could be controlled by Dox. Furthermore, expression of K4D genes and rtTA gene can be independently monitored by fluorescent imaging. Cultured airway epithelial cells are useful as a tool for studying the pathogenesis of lung disorders. Altogether, our established human airway epithelial cells could be used for a variety of studies such as lung pathology and biology underlying the differentiation process to form the complex pseudostratified multicellular layers. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-021-00477-0.
Collapse
Affiliation(s)
- Ai Orimoto
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate Japan
| | - Kohei Takahashi
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate Japan
| | - Masaki Imai
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-Related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tomokazu Fukuda
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate Japan
| |
Collapse
|
13
|
Muraoka A, Osuka S, Kiyono T, Suzuki M, Yokoi A, Murase T, Nishino K, Niimi K, Nakamura T, Goto M, Kajiyama H, Kondo Y, Kikkawa F. Establishment and characterization of cell lines from human endometrial epithelial and mesenchymal cells from patients with endometriosis. F&S SCIENCE 2020; 1:195-205. [PMID: 35559928 DOI: 10.1016/j.xfss.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To establish and characterize cell lines derived from human endometrial epithelial cells (ECs) and mesenchymal cells (MCs) from patients with and without endometriosis. DESIGN In vitro experimental study. SETTING University and national cancer center research institute. PATIENT(S) Two women with endometriosis and two women without endometriosis. INTERVENTION(S) Sampling of endometrial ECs and MCs. MAIN OUTCOME MEASURE(S) Establishing immortalized endometrial ECs and MCs with quantitative reverse transcription-polymerase chain reaction (qRT-PCR), immunocytochemical analysis, and RNA sequence profiling performed to characterize the immortalized cells and a cell proliferation assay, three-dimensional culture, and assays for hormone responses performed to characterize the features of ECs. RESULT(S) The qRT-PCR, immunocytochemical analysis, and Western blot analysis revealed that the ECs and MCs maintained their original features. Moreover, the immortalized cells were found to retain responsiveness to sex steroid hormones. The ECs formed a gland-like structure in three-dimensional culture, indicating the maintenance of normal EC phenotypes. The RNA sequence profiling, principal component analysis, and clustering analysis showed that the gene expression patterns of the immortalized cells were different from those of cancer cells. Several signaling pathways that were statistically significantly enriched in ECs and MCs with endometriosis were revealed. CONCLUSION(S) We successfully obtained four paired immortalized endometrial ECs and MCs from patients with and without endometriosis. Using these cells could help identify diagnostic and therapeutic targets for endometriosis. The cell lines established in this study will thus serve as powerful experimental tools in the study of endometriosis.
Collapse
Affiliation(s)
- Ayako Muraoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan; Division of Cancer Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Satoko Osuka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.
| | - Tohru Kiyono
- Project for Prevention of HPV-related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa City, Japan.
| | - Miho Suzuki
- Division of Cancer Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Tomohiko Murase
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kimihiro Nishino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kaoru Niimi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Tomoko Nakamura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Maki Goto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|