1
|
Li GB, Shi WK, Zhang X, Qiu XY, Lin GL. Hsa-miR-483-5p/mRNA network that regulates chemotherapy resistance in locally advanced rectal cancer identified through plasma exosome transcriptomics. World J Clin Oncol 2024; 15:1061-1077. [PMID: 39193162 PMCID: PMC11346070 DOI: 10.5306/wjco.v15.i8.1061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Chemoresistance is the primary contributor to distant metastasis in the context of neoadjuvant chemoradiotherapy (nCRT) for rectal cancer. However, the underlying mechanisms remain elusive. AIM To detect the differential expression profiles of plasma exosomal microRNAs (miRNAs) in poor and good responders and explore the potential mechanisms of chemoresistance. METHODS In this study, the profiles of plasma exosomal miRNAs were compared in two dimensions according to treatment responses (poor/good responders) and treatment courses (pre/post-nCRT) using RNA sequencing. RESULTS Exosome hsa-miR-483-5p was up-regulated in good responders post-nCRT. Bioinformatics analysis revealed that the target genes of hsa-miR-483-5p were mainly enriched in tumor-specific pathways, such as the MAPK signaling pathway, EGFR tyrosine kinase inhibitor resistance, Toll-like receptor signaling pathway, VEGF signaling pathway, and mTOR signaling pathway. Further analysis indicated that MAPK3, RAX2, and RNF165 were associated with inferior recurrence-free survival in patients with rectal cancer, and the profiles of MAPK3, TSPYL5, and ZNF417 were correlated with tumor stage. In addition, the expression profiles of MAPK3, RNF165, and ZNF417 were negatively correlated with inhibitory concentration 50 values. Accordingly, an hsa-miR-483-5p/MAPK3/RNF 165/ZNF417 network was constructed. CONCLUSION This study provides insights into the mechanism of chemoresistance in terms of exosomal miRNAs. However, further research is required within the framework of our established miRNA-mRNA network.
Collapse
Affiliation(s)
- Gan-Bin Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing 100730, China
| | - Wei-Kun Shi
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing 100730, China
| | - Xiao Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing 100730, China
| | - Xiao-Yuan Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing 100730, China
| | - Guo-Le Lin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
2
|
Wei QY, Jin F, Wang ZY, Li BJ, Cao WB, Sun ZY, Mo SJ. MicroRNAs: A novel signature in the metastasis of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:1497-1523. [PMID: 38617454 PMCID: PMC11008420 DOI: 10.3748/wjg.v30.i11.1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant epithelial tumor, characterized by squamous cell differentiation, it is the sixth leading cause of cancer-related deaths globally. The increased mortality rate of ESCC patients is predominantly due to the advanced stage of the disease when discovered, coupled with higher risk of metastasis, which is an exceedingly malignant characteristic of cancer, frequently leading to a high mortality rate. Unfortunately, there is currently no specific and effective marker to predict and treat metastasis in ESCC. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, approximately 22 nucleotides in length. miRNAs are vital in modulating gene expression and serve pivotal regulatory roles in the occurrence, progression, and prognosis of cancer. Here, we have examined the literature to highlight the intimate correlations between miRNAs and ESCC metastasis, and show that ESCC metastasis is predominantly regulated or regulated by genetic and epigenetic factors. This review proposes a potential role for miRNAs as diagnostic and therapeutic biomarkers for metastasis in ESCC metastasis, with the ultimate aim of reducing the mortality rate among patients with ESCC.
Collapse
Affiliation(s)
- Qi-Ying Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Feng Jin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhong-Yu Wang
- Department of Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Bing-Jie Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Wen-Bo Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhi-Yan Sun
- Division of Special Service, Department of Basic Oncology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Sai-Jun Mo
- Department of Basic Science of Oncology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
3
|
Soltaninezhad P, Arab F, Mohtasham N, FakherBaheri M, Kavishahi NN, Aghaee-Bakhtiari SH, Zare-Mahmoodabadi R, Pakfetrat A, Taban KI, Mohajertehran F. Unveiling the Potential of Serum MiR-483-5p: A Promising Diagnostic and Prognostic Biomarker in OLP and OSCC Patients by In silico Analysis of Differential Gene Expression. Curr Pharm Des 2024; 30:310-322. [PMID: 38310566 DOI: 10.2174/0113816128276149240108163407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) and oral lichen planus (OLP) are two separate conditions affecting the mouth and result in varying clinical outcomes and levels of malignancy. Achieving early diagnosis and effective therapy planning requires the identification of reliable diagnostic biomarkers for these disorders. MicroRNAs (miRNAs) have recently received attention as powerful biomarkers for various illnesses, including cancer. In particular, miR-483-5p is a promising diagnostic and prognostic biomarker in various cancers. Therefore, this study aimed to investigate the role of serum miR-483-5p in the diagnosis and prognosis of OLP and OSCC patients by in silico analysis of differential gene expression. METHODS GSE23558 and GSE52130 data sets were selected, and differential gene expression analysis was performed using microarray data from GSE52130 and GSE23558. The analysis focused on comparing OLP and OSCC samples with normal samples. The genes intersected through the differential gene expression analysis were then extracted to determine the overlapping genes among the upregulated or downregulated DEGs. The downregulated genes among the DEGs were subsequently imported into the miRWalk database to search for potential target genes of miRNA 483-5p that lacked validation. To gain insight into the biological pathways associated with the DEGs, we conducted pathway analysis utilizing tools, such as Enrichr. Additionally, the cellular components associated with these DEGs were investigated by analyzing the String database. On the other hand, blood serum samples were collected from 35 OSCC patients, 34 OLP patients, and 34 healthy volunteers. The expression level of miR-483-5p was determined using quantitative reverse transcription polymerase chain reaction (RT-qPCR). The Kruskal-Wallis test was utilized to investigate the considerable correlation. Moreover, this study explored the prognostic value of miR-483-5p through its association with clinicopathological parameters in OSCC patients. RESULTS The results showed that serum expression of miR-483-5p was considerably higher in OSCC patients compared to OLP patients and healthy controls (p 0.0001) and that this difference was statistically significant. Furthermore, elevated miR-483-5p expression was associated with tumor size, lymph node metastasis, and stage of tumor nodal metastasis in OSCC patients (p 0.001, p 0.038, and p 0.0001, respectively). In silico analysis found 71 upregulated genes at the intersection of upregulated DEGs and 44 downregulated genes at the intersection of downregulated DEGs, offering insight into the potential underlying mechanisms of miR-483-5p's engagement in OSCC and OLP. The majority of these DEGs were found to be involved in autophagy pathways, but DEGs involved in the histidine metabolism pathway showed significant results. Most of these DEGs were located in the extracellular region. After screening for downregulated genes that were invalidated, miRNA 483-5p had 7 target genes. CONCLUSION This study demonstrates the potential of serum miR-483-5p as a promising diagnostic and prognostic biomarker in OSCC and OLP patients. Its upregulation in OSCC patients and its association with advanced tumor stage and potential metastasis suggest the involvement of miR-483-5p in critical signaling pathways involved in cell proliferation, apoptosis, and cell cycle regulation, making it a reliable indicator of disease progression. Nevertheless, additional experimental studies are essential to validate these findings and establish a foundation for the advancement of targeted therapies and personalized treatment approaches.
Collapse
MESH Headings
- Humans
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/blood
- Carcinoma, Squamous Cell/pathology
- Computer Simulation
- Gene Expression Regulation, Neoplastic
- Lichen Planus, Oral/genetics
- Lichen Planus, Oral/blood
- Lichen Planus, Oral/diagnosis
- MicroRNAs/blood
- MicroRNAs/genetics
- Mouth Neoplasms/genetics
- Mouth Neoplasms/blood
- Mouth Neoplasms/diagnosis
- Mouth Neoplasms/pathology
- Prognosis
Collapse
Affiliation(s)
| | - Fatemeh Arab
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nooshin Mohtasham
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadhossein FakherBaheri
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nima Nikbin Kavishahi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Reza Zare-Mahmoodabadi
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atessa Pakfetrat
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Izadi Taban
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Mohajertehran
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Du J, Zhang S, Zhang X, Yang Z, Xue S, Xu G, Zheng B, Chen C. miR-1301-3p promotes invasion and migration and EMT progression in esophageal cancer by downregulating NBL1 expression. Thorac Cancer 2023; 14:3032-3041. [PMID: 37680006 PMCID: PMC10599971 DOI: 10.1111/1759-7714.15093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Esophageal cancer (ESCA) is one of the most aggressive and lethal human malignant cancers. MicroRNA-1301-3p (miR-1301-3p) plays vital roles in a majority of malignancies. The aim of this study was to investigate the role of miR-1301-3p/NBL1 axis on ESCA cell invasion, migration, epithelial-mesenchymal transition (EMT) process, as well as its association with prognosis of ESCA patients. METHODS The expression levels of miR-1301-3p and NBL1 were predicted by bioinformatics and further verified by RT-qPCR assays. Kaplan-Meier (K-M) plotter analysis and univariate and multivariate Cox analyses were used to evaluate the relationship between miR-1301-3p and clinicopathological variables and prognosis. The role of miR-1301-3p on cell invasion, migration was detected by transwell invasion, and wound healing assays, respectively. The EMT-related proteins were detected by western blot. The target genes and the target binding sites were predicted by bioinformatics and further determined by RT-qPCR assay. RESULTS MiR-1301-3p was remarkably upregulated in ESCA tissues and cells, and its high expression was associated with poor prognosis of ESCA. Overexpression of miR-1301-3p promoted ESCA cell invasion, migration and mediated EMT process in vitro, whereas knockdown of miR-1301-3p showed the opposite effects. Moreover, NBL1 was predicted as a target gene of miR-1301-3p. NBL1 was lowly expressed in ESCA cells and significantly decreased after upregulation of miR-1301-3p. Meanwhile, we found that low expression of NBL1 was significantly associated with poor prognosis of ESCA patients. CONCLUSION MiR-1301-3p is a potential biomarker for predicting the prognosis of ESCA patients. It may promote ESCA invasion, migration and EMT progression by regulating NBL1 expression.
Collapse
Affiliation(s)
- Jianting Du
- Department of Thoracic SurgeryFujian Medical University Union HospitalFuzhouChina
- Key Laboratory of Cardio‐Thoracic Surgery (Fujian Medical University)Fujian Province UniversityFuzhouChina
| | - Shuliang Zhang
- Department of Thoracic SurgeryFujian Medical University Union HospitalFuzhouChina
- Key Laboratory of Cardio‐Thoracic Surgery (Fujian Medical University)Fujian Province UniversityFuzhouChina
| | - Xiaodan Zhang
- Department of Thoracic SurgeryFujian Medical University Union HospitalFuzhouChina
- Key Laboratory of Cardio‐Thoracic Surgery (Fujian Medical University)Fujian Province UniversityFuzhouChina
| | - Zhang Yang
- Department of Thoracic SurgeryFujian Medical University Union HospitalFuzhouChina
- Key Laboratory of Cardio‐Thoracic Surgery (Fujian Medical University)Fujian Province UniversityFuzhouChina
| | - Songtao Xue
- Department of Thoracic SurgeryFujian Medical University Union HospitalFuzhouChina
- Key Laboratory of Cardio‐Thoracic Surgery (Fujian Medical University)Fujian Province UniversityFuzhouChina
| | - Guobing Xu
- Department of Thoracic SurgeryFujian Medical University Union HospitalFuzhouChina
- Key Laboratory of Cardio‐Thoracic Surgery (Fujian Medical University)Fujian Province UniversityFuzhouChina
| | - Bin Zheng
- Department of Thoracic SurgeryFujian Medical University Union HospitalFuzhouChina
- Key Laboratory of Cardio‐Thoracic Surgery (Fujian Medical University)Fujian Province UniversityFuzhouChina
| | - Chun Chen
- Department of Thoracic SurgeryFujian Medical University Union HospitalFuzhouChina
- Key Laboratory of Cardio‐Thoracic Surgery (Fujian Medical University)Fujian Province UniversityFuzhouChina
| |
Collapse
|
5
|
Chiliquinga AJ, Acosta B, Ogonaga-Borja I, Villarruel-Melquiades F, de la Garza J, Gariglio P, Ocádiz-Delgado R, Ramírez A, Sánchez-Pérez Y, García-Cuellar CM, Bañuelos C, Camacho J. Ion Channels as Potential Tools for the Diagnosis, Prognosis, and Treatment of HPV-Associated Cancers. Cells 2023; 12:1376. [PMID: 37408210 PMCID: PMC10217072 DOI: 10.3390/cells12101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The human papilloma virus (HPV) group comprises approximately 200 genetic types that have a special affinity for epithelial tissues and can vary from producing benign symptoms to developing into complicated pathologies, such as cancer. The HPV replicative cycle affects various cellular and molecular processes, including DNA insertions and methylation and relevant pathways related to pRb and p53, as well as ion channel expression or function. Ion channels are responsible for the flow of ions across cell membranes and play very important roles in human physiology, including the regulation of ion homeostasis, electrical excitability, and cell signaling. However, when ion channel function or expression is altered, the channels can trigger a wide range of channelopathies, including cancer. In consequence, the up- or down-regulation of ion channels in cancer makes them attractive molecular markers for the diagnosis, prognosis, and treatment of the disease. Interestingly, the activity or expression of several ion channels is dysregulated in HPV-associated cancers. Here, we review the status of ion channels and their regulation in HPV-associated cancers and discuss the potential molecular mechanisms involved. Understanding the dynamics of ion channels in these cancers should help to improve early diagnosis, prognosis, and treatment in the benefit of HPV-associated cancer patients.
Collapse
Affiliation(s)
| | - Brenda Acosta
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ingrid Ogonaga-Borja
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Fernanda Villarruel-Melquiades
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Jaime de la Garza
- Unidad de Oncología Torácica y Laboratorio de Medicina Personalizada, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Rodolfo Ocádiz-Delgado
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ana Ramírez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Tijuana 22390, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Claudia M. García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Cecilia Bañuelos
- Programa Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| |
Collapse
|
6
|
Mazumder S, Basu B, Ray JG, Chatterjee R. MiRNAs as non-invasive biomarkers in the serum of Oral Squamous Cell Carcinoma (OSCC) and Oral Potentially Malignant Disorder (OPMD) patients. Arch Oral Biol 2023; 147:105627. [PMID: 36657275 DOI: 10.1016/j.archoralbio.2023.105627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Cell-free microRNAs have shown differential levels in the serum of individuals under disease conditions suggesting its potential to act as biomarkers. A population specific miRNA signature in oral cancer is reported in different studies. We aim to identify a set of serum specific miRNAs that may differentiate oral cancer, oral pre-malignant conditions from the healthy individuals. DESIGN We investigated the levels of 24 miRNAs in the serum of 47 Oral squamous cell carcinoma (OSCC) patients, 20 patients with Oral potentially malignant disorders (OPMD) and 42 healthy controls from Eastern India. Small RNAs were isolated from serum samples followed by cDNA synthesis. Levels of miRNAs were determined using qRT-PCR. The sources of serum specific miRNAs were evaluated using GTEx-RNAseq and TCGA-HNSCC database. RESULTS Five miRNAs, miR-483-5p, miR-31-5p, Let-7b-5p, miR-486-5p and miR-30e-5p showed significant elevation in OSCC patients. An Elastic-Net model with 4 miRNAs classified OSCC from healthy controls with 80 % sensitivity, 64.3 % specificity, and 72.4 % accuracy. Mir-483-5p and miR-31-5p was significantly overexpressed in OSCC tissues as well as significantly higher in the serum of Leukoplakia and Verrucous carcinoma patients suggesting their potential as early disease markers. MiR-483-5p showed a consistent elevated level in the serum/plasma of oral cancer patients across different population and was found to be tumour specific while, the rest of the miRNAs showed variable results across different studies. CONCLUSIONS Our study suggested that the serum miRNAs in oral cancer and pre-malignant disorder conditions can be used as a non-invasive marker for screening of these oral conditions.
Collapse
Affiliation(s)
- Sayani Mazumder
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, West Bengal, India
| | - Baidehi Basu
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, West Bengal, India
| | - Jay Gopal Ray
- Department of Oral Pathology, Dr. R. Ahmed Dental College & Hospital, Kolkata, India
| | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, West Bengal, India.
| |
Collapse
|
7
|
Wang J, Zhao N, Peng S, Zhang T. Circ_0003340 regulates the expression of ENAH to affect the development of esophageal cancer through miR-874-3p. Thorac Cancer 2023; 14:815-826. [PMID: 36737402 PMCID: PMC10040281 DOI: 10.1111/1759-7714.14812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Esophageal cancer is a malignant tumor with a poor prognosis and high incidence. Circular RNAs (circRNAs) have been shown to be involved in the pathogenesis of cancers, including esophageal cancer. Here, we explored the precise role of circ_0003340 in esophageal cancer development. METHODS The expression levels of circ_0003340, miR-874-3p and enabled homolog (ENAH) were detected by quantitative real-time polymerase chain reaction and western blot. Subcellular localization and RNase R assays were used to characterize circ_0003340. Cell Counting Kit 8, flow cytometry, transwell assays were used to analyze cell proliferation, apoptosis, migration and invasion. The effect of circ_0003340 on tumor growth was assessed by tumor experiments in vivo. Dual-luciferase reporter assay was used to analyze the relationship between miR-874-3p and circ_0003340 or ENAH. RESULTS Circ_0003340 was mainly located in the cytoplasm and was upregulated in esophageal cancer tissues and cells. Circ_0003340 knockdown inhibited cell proliferation, migration, invasion, glucose consumption, and lactate production and induced cell apoptosis in esophageal cancer cells. Moreover, circ_0003340 knockdown suppressed tumor growth in vivo. MiR-874-3p was reduced in esophageal cancer tissues and cells, and it was a molecular mediator of circ_0003340 function in esophageal cancer cells. ENAH was identified as a direct and functional target of miR-874-3p in esophageal cancer cells. The promotion effect of circ_0003340 on ENAH was ameliorated by miR-874-3p. CONCLUSION The data demonstrated that circ_0003340 promoted the progression of esophageal cancer through miR-874-3p/ENAH axis, which might provide novel therapeutic targets for esophageal cancer intervention.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Radiotherapy, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Ning Zhao
- Library and Information Office, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Shengzu Peng
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Tao Zhang
- Morphology Laboratory, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
8
|
Liu WJ, Zhao Y, Chen X, Miao ML, Zhang RQ. Epigenetic modifications in esophageal cancer: An evolving biomarker. Front Genet 2023; 13:1087479. [PMID: 36704345 PMCID: PMC9871503 DOI: 10.3389/fgene.2022.1087479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Esophageal cancer is a widespread cancer of the digestive system that has two main subtypes: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EA). In the diverse range of cancer therapy schemes, the side effects of conventional treatments remain an urgent challenge to be addressed. Therefore, the pursuit of novel drugs with multiple targets, good efficacy, low side effects, and low cost has become a hot research topic in anticancer therapy. Based on this, epigenetics offers an attractive target for the treatment of esophageal cancer, where major mechanisms such as DNA methylation, histone modifications, non-coding RNA regulation, chromatin remodelling and nucleosome localization offer new opportunities for the prevention and treatment of esophageal cancer. Recently, research on epigenetics has remained at a high level of enthusiasm, focusing mainly on translating the basic research into the clinical setting and transforming epigenetic alterations into targets for cancer screening and detection in the clinic. With the increasing emergence of tumour epigenetic markers and antitumor epigenetic drugs, there are also more possibilities for anti-esophageal cancer treatment. This paper focuses on esophageal cancer and epigenetic modifications, with the aim of unravelling the close link between them to facilitate precise and personalized treatment of esophageal cancer.
Collapse
Affiliation(s)
- Wen-Jian Liu
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuan Zhao
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xu Chen
- School of Basic Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Man-Li Miao
- School of Basic Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ren-Quan Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
9
|
Zhao J, Li M, Xu J, Cheng W. The modulation of ion channels in cancer chemo-resistance. Front Oncol 2022; 12:945896. [PMID: 36033489 PMCID: PMC9399684 DOI: 10.3389/fonc.2022.945896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Ion channels modulate the flow of ions into and out of a cell or intracellular organelle, leading to generation of electrical or chemical signals and regulating ion homeostasis. The abundance of ion channels in the plasma and intracellular membranes are subject to physiological and pathological regulations. Abnormal and dysregulated expressions of many ion channels are found to be linked to cancer and cancer chemo-resistance. Here, we will summarize ion channels distribution in multiple tumors. And the involvement of ion channels in cancer chemo-resistance will be highlighted.
Collapse
|
10
|
Detomas M, Pivonello C, Pellegrini B, Landwehr LS, Sbiera S, Pivonello R, Ronchi CL, Colao A, Altieri B, De Martino MC. MicroRNAs and Long Non-Coding RNAs in Adrenocortical Carcinoma. Cells 2022; 11:2234. [PMID: 35883677 PMCID: PMC9324008 DOI: 10.3390/cells11142234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a type of genetic material that do not encode proteins but regulate the gene expression at an epigenetic level, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). The role played by ncRNAs in many physiological and pathological processes has gained attention during the last few decades, as they might be useful in the diagnosis, treatment and management of several human disorders, including endocrine and oncological diseases. Adrenocortical carcinoma (ACC) is a rare and aggressive endocrine cancer, still characterized by high mortality and morbidity due to both endocrine and oncological complications. Despite the rarity of this disease, recently, the role of ncRNA has been quite extensively evaluated in ACC. In order to better explore the role of the ncRNA in human ACC, this review summarizes the current knowledge on ncRNA dysregulation in ACC and its potential role in the diagnosis, treatment, and management of this tumor.
Collapse
Affiliation(s)
- Mario Detomas
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (M.D.); (L.-S.L.); (S.S.); (C.L.R.); (B.A.)
| | - Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Università “Federico II” di Napoli, 80131 Naples, Italy; (C.P.); (B.P.); (R.P.); (A.C.)
| | - Bianca Pellegrini
- Dipartimento di Medicina Clinica e Chirurgia, Università “Federico II” di Napoli, 80131 Naples, Italy; (C.P.); (B.P.); (R.P.); (A.C.)
| | - Laura-Sophie Landwehr
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (M.D.); (L.-S.L.); (S.S.); (C.L.R.); (B.A.)
| | - Silviu Sbiera
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (M.D.); (L.-S.L.); (S.S.); (C.L.R.); (B.A.)
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Università “Federico II” di Napoli, 80131 Naples, Italy; (C.P.); (B.P.); (R.P.); (A.C.)
- Unesco Chair for Health Education and Sustainable Development, Federico II University, 80131 Naples, Italy
| | - Cristina L. Ronchi
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (M.D.); (L.-S.L.); (S.S.); (C.L.R.); (B.A.)
- Institute of Metabolism and System Research, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Università “Federico II” di Napoli, 80131 Naples, Italy; (C.P.); (B.P.); (R.P.); (A.C.)
- Unesco Chair for Health Education and Sustainable Development, Federico II University, 80131 Naples, Italy
| | - Barbara Altieri
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (M.D.); (L.-S.L.); (S.S.); (C.L.R.); (B.A.)
| | - Maria Cristina De Martino
- Dipartimento di Medicina Clinica e Chirurgia, Università “Federico II” di Napoli, 80131 Naples, Italy; (C.P.); (B.P.); (R.P.); (A.C.)
| |
Collapse
|
11
|
Jiang Q, Wang H, Yuan D, Qian X, Ma X, Yan M, Xing W. Circular_0086414 induces SPARC like 1 ( SPARCL1) production to inhibit esophageal cancer cell proliferation, invasion and glycolysis and induce cell apoptosis by sponging miR-1290. Bioengineered 2022; 13:12099-12114. [PMID: 35549806 PMCID: PMC9275914 DOI: 10.1080/21655979.2022.2073114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Circular RNA (circRNA) plays an important role in cancer progression. Here, we investigated the function of circ_0086414 in the malignant progression of esophageal cancer (EC). RNA expression of circ_0086414, microRNA-1290 (miR-1290), and SPARC like 1 (SPARCL1) was detected by quantitative real-time polymerase chain reaction. The protein levels of N-cadherin, E-cadherin, and SPARCL1 were checked by Western blotting analysis. Cell proliferation was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 5-Ethynyl-29-deoxyuridine (EdU), and cell colony formation assays. Cell invasion and apoptosis were analyzed by transwell invasion assay and flow cytometry analysis, respectively. Glycolysis was evaluated by analyzing glucose consumption and lactate production. In an xenograft mouse model, the effect of circ_0086414 on tumor tumorigenesis was investigated. The interactions among circ_0086414, miR-1290, and SPARCL1 were identified by dual-luciferase reporter and RNA pull-down assays. Results showed that circ_0086414 and SPARCL1 expression were significantly downregulated, while miR-1290 was upregulated in EC tissues and cells. EC patients with low circ_0086414 expression had a poor prognosis. Increasing circ_0086414 expression led to decreased EC cell proliferation, invasion and glycolysis and increased cell apoptosis, accompanied by a decrease of N-cadherin expression and an increase of E-cadherin expression. Also, the enforced expression of circ_0086414 delayed tumor tumorigenesis. Besides, circ_0086414 acted as a miR-1290 sponge and regulated EC cell processes by binding to the miRNA. MiR-1290 also participated in EC malignant progression through SPARCL1. Further, circ_0086414 stimulated SPARCL1 production by negatively regulating miR-1290. Thus, circ_0086414 inhibited EC cell malignancy through the miR-1290/SPARCL1 pathway, providing a reliable target for the therapy of EC.
Collapse
Affiliation(s)
- Qingfeng Jiang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haoran Wang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongfeng Yuan
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Qian
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaochao Ma
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ming Yan
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenqun Xing
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Lou Z, Cheng Z, Li H, Teng Z, Liu Y, Tian Z. Predicting miRNA-disease associations via learning multimodal networks and fusing mixed neighborhood information. Brief Bioinform 2022; 23:6582005. [PMID: 35524503 DOI: 10.1093/bib/bbac159] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/29/2022] [Accepted: 04/10/2022] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION In recent years, a large number of biological experiments have strongly shown that miRNAs play an important role in understanding disease pathogenesis. The discovery of miRNA-disease associations is beneficial for disease diagnosis and treatment. Since inferring these associations through biological experiments is time-consuming and expensive, researchers have sought to identify the associations utilizing computational approaches. Graph Convolutional Networks (GCNs), which exhibit excellent performance in link prediction problems, have been successfully used in miRNA-disease association prediction. However, GCNs only consider 1st-order neighborhood information at one layer but fail to capture information from high-order neighbors to learn miRNA and disease representations through information propagation. Therefore, how to aggregate information from high-order neighborhood effectively in an explicit way is still challenging. RESULTS To address such a challenge, we propose a novel method called mixed neighborhood information for miRNA-disease association (MINIMDA), which could fuse mixed high-order neighborhood information of miRNAs and diseases in multimodal networks. First, MINIMDA constructs the integrated miRNA similarity network and integrated disease similarity network respectively with their multisource information. Then, the embedding representations of miRNAs and diseases are obtained by fusing mixed high-order neighborhood information from multimodal network which are the integrated miRNA similarity network, integrated disease similarity network and the miRNA-disease association networks. Finally, we concentrate the multimodal embedding representations of miRNAs and diseases and feed them into the multilayer perceptron (MLP) to predict their underlying associations. Extensive experimental results show that MINIMDA is superior to other state-of-the-art methods overall. Moreover, the outstanding performance on case studies for esophageal cancer, colon tumor and lung cancer further demonstrates the effectiveness of MINIMDA. AVAILABILITY AND IMPLEMENTATION https://github.com/chengxu123/MINIMDA and http://120.79.173.96/.
Collapse
Affiliation(s)
- Zhengzheng Lou
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Zhaoxu Cheng
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Hui Li
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Zhixia Teng
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China
| | - Yang Liu
- Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Zhen Tian
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
13
|
Gu J, Wang M, Wang X, Li J, Liu H, Lin Z, Yang X, Zhang X, Liu H. Exosomal miR-483-5p in Bone Marrow Mesenchymal Stem Cells Promotes Malignant Progression of Multiple Myeloma by Targeting TIMP2. Front Cell Dev Biol 2022; 10:862524. [PMID: 35300408 PMCID: PMC8921260 DOI: 10.3389/fcell.2022.862524] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cell (BMSC) is one crucial component of the multiple myeloma (MM) microenvironment and supports the malignant progression of MM. Whether BMSCs act on MM cells via exosomes has not been well characterized. Herein, we used microarrays to screen out differentially expressed miRNAs in BMSCs from patients with MM (MM-MSCs) or benign diseases (BD-MSCs). We found that miR-483-5p was highly expressed in MM-MSCs, which may be transported through exosomes from MM-MSCs to MM cells to increase miR-483-5p expression in them. We then investigated the role and mechanism of miR-483-5p in the aggressive progression of MM in vitro. We verified that miR-483-5p promoted MM cell proliferation and reduced apoptosis. Then we predicted and validated that TIMP2, a tumor suppressor gene, is the downstream target of miR-483-5p in MM. In summary, our study indicated that MM-MSCs promote MM malignant progression via the release of exosomes and regulation of miR-483-5p/TIMP2 axis, suggesting an essential role of BMSCs derived exosomal miRNA in MM and a potential marker for MM diagnosis and therapy.
Collapse
Affiliation(s)
- Jianmei Gu
- Department of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Clinical Laboratory Medicine, Affiliated Cancer Hospital of Nantong University, Nantong, China
| | - Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinfeng Wang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiao Li
- Department of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiyan Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Zenghua Lin
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xi Yang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hong Liu
- Department of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
14
|
Ceci L, Zhou T, Lenci I, Meadows V, Kennedy L, Li P, Ekser B, Milana M, Zhang W, Wu C, Sato K, Chakraborty S, Glaser SS, Francis H, Alpini G, Baiocchi L. Molecular Mechanisms Linking Risk Factors to Cholangiocarcinoma Development. Cancers (Basel) 2022; 14:1442. [PMID: 35326593 PMCID: PMC8945938 DOI: 10.3390/cancers14061442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
The poor prognosis of cholangiocarcinoma in humans is related to several factors, such as (i) the heterogeneity of the disease, (ii) the late onset of symptoms and (iii) the limited comprehension of the carcinogenic pathways determining neoplastic changes, which all limit the pursuit of appropriate treatment. Several risk factors have been recognized, including different infective, immune-mediated, and dysmorphogenic disorders of the biliary tree. In this review, we report the details of possible mechanisms that lead a specific premalignant pathological condition to become cholangiocarcinoma. For instance, during liver fluke infection, factors secreted from the worms may play a major role in pathogenesis. In primary sclerosing cholangitis, deregulation of histamine and bile-acid signaling may determine important changes in cellular pathways. The study of these molecular events may also shed some light on the pathogenesis of sporadic (unrelated to risk factors) forms of cholangiocarcinoma, which represent the majority (nearly 75%) of cases.
Collapse
Affiliation(s)
- Ludovica Ceci
- Hepatology and Gastroenterology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.C.); (T.Z.); (V.M.); (L.K.); (K.S.); (H.F.)
| | - Tianhao Zhou
- Hepatology and Gastroenterology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.C.); (T.Z.); (V.M.); (L.K.); (K.S.); (H.F.)
| | - Ilaria Lenci
- Unit of Hepatology, Tor Vergata University, 00133 Rome, Italy; (I.L.); (M.M.)
| | - Vik Meadows
- Hepatology and Gastroenterology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.C.); (T.Z.); (V.M.); (L.K.); (K.S.); (H.F.)
| | - Lindsey Kennedy
- Hepatology and Gastroenterology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.C.); (T.Z.); (V.M.); (L.K.); (K.S.); (H.F.)
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Ping Li
- Department of Surgery, Division of Transplant Surgery, Indiana University, Indianapolis, IN 46202, USA; (P.L.); (B.E.); (W.Z.)
| | - Burcin Ekser
- Department of Surgery, Division of Transplant Surgery, Indiana University, Indianapolis, IN 46202, USA; (P.L.); (B.E.); (W.Z.)
| | - Martina Milana
- Unit of Hepatology, Tor Vergata University, 00133 Rome, Italy; (I.L.); (M.M.)
| | - Wenjun Zhang
- Department of Surgery, Division of Transplant Surgery, Indiana University, Indianapolis, IN 46202, USA; (P.L.); (B.E.); (W.Z.)
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA;
| | - Keisaku Sato
- Hepatology and Gastroenterology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.C.); (T.Z.); (V.M.); (L.K.); (K.S.); (H.F.)
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA; (S.C.); (S.S.G.)
| | - Shannon S. Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA; (S.C.); (S.S.G.)
| | - Heather Francis
- Hepatology and Gastroenterology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.C.); (T.Z.); (V.M.); (L.K.); (K.S.); (H.F.)
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Gianfranco Alpini
- Hepatology and Gastroenterology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.C.); (T.Z.); (V.M.); (L.K.); (K.S.); (H.F.)
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Leonardo Baiocchi
- Unit of Hepatology, Tor Vergata University, 00133 Rome, Italy; (I.L.); (M.M.)
| |
Collapse
|
15
|
Chang KT, Wu HJ, Liu CW, Li CY, Lin HY. A Novel Role of Arrhythmia-Related Gene KCNQ1 Revealed by Multi-Omic Analysis: Theragnostic Value and Potential Mechanisms in Lung Adenocarcinoma. Int J Mol Sci 2022; 23:ijms23042279. [PMID: 35216393 PMCID: PMC8874518 DOI: 10.3390/ijms23042279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
The early diagnosis, prognostic prediction, and personalized therapy of lung adenocarcinoma (LUAD) remains a challenging issue. KCNQ1 (potassium voltage-gated channel subfamily Q Member 1) is implicated in long QT syndrome (LQTS) and cardiac arrhythmia, while its significance in LUAD remains unclear. In this study, we aimed to explore the significance of KCNQ1 in terms of clinical value, tumor immunity, underlying mechanisms, and a precision medicine approach by means of multi-omics analysis. The association of KCNQ1 with LUAD was first explored. Both altered variants and high expression of KCNQ1 in a TCGA-LUAD cohort indicated a favorable outcome. KCNQ1 levels had a negative correlation with tumor proliferation index Ki67 levels. siRNA-knockdown of KCNQ1 promoted the migration ability of lung cancer cells. KCNQ1 levels were decreased in LUAD tissue compared to normal tissue. A receiver operating characteristic (ROC) curve indicated good diagnostic efficiency of KCNQ1. High KCNQ1 is associated with an immunoactive profile of immune infiltration and immunomodulators and is involved in the inhibition of the cell cycle and DNA replication. Lapatinib was identified as a potent drug for LUAD in the context of low KCNQ1. This study unveiled the significance of KCNQ1 in diagnosis and prognosis and provided a corresponding precision medicine strategy for LUAD.
Collapse
Affiliation(s)
- Kai-Tun Chang
- Department of Emergency Medicine, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
| | - Hsing-Ju Wu
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan
| | - Chien-Wei Liu
- Shueiduei Elementary School, Gukeng Township, Yulin 646, Taiwan;
| | - Chia-Ying Li
- Department of Surgery, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (C.-Y.L.); (H.-Y.L.)
| | - Hung-Yu Lin
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
- Correspondence: (C.-Y.L.); (H.-Y.L.)
| |
Collapse
|
16
|
Li XZ, Tu YJ, Zhou T, Zhang JB, Xiao RW, Yang DW, Zhang PF, You PT, Zheng XH. MicroRNA-483-5p Predicts Poor Prognosis and Promotes Cancer Metastasis by Targeting EGR3 in Nasopharyngeal Carcinoma. Front Oncol 2021; 11:720835. [PMID: 34722264 PMCID: PMC8554159 DOI: 10.3389/fonc.2021.720835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/28/2021] [Indexed: 12/08/2022] Open
Abstract
Background MicroRNAs, as small non-coding RNAs, play an important role in tumorigenesis. MiR-483-5p was found to have a significant increase as a diagnostic biomarker of nasopharyngeal carcinoma (NPC), not only in plasma from NPC patients but also in tumor cell lines and biopsy tissues in our previous study. However, its function and mechanism in NPC are still unclear. Methods Tissue microarray including 178 primary NPC and 35 adjacent non-cancerous nasopharyngeal mucosal tissues was used to further validate the overexpression of miR-483-5p. Wound healing and invasion assays were conducted to verify its biological function. RNA sequencing (RNA-seq) and dual-luciferase reporter assay was performed to explore its target, and it was verified in fresh biopsy tissues from 23 NPC patients and 9 patients with chronic nasopharyngitis. Results MiR-483-5p was highly expressed in NPC tissues than in adjacent non-cancerous tissues. It was found to have a significant correlation with poor overall survival (OS) [hazard ratio (HR) = 2.89, 95% confidence interval (CI) = 1.00-8.35, p = 0.041] and progression-free survival (PFS) (HR = 1.95, 95%CI = 1.06-3.60, p = 0.029) of NPC patients. Silencing of its expression inhibited the migratory and invasive capacities of NPC cells in vitro. EGR3 (early growth response 3) was identified as a direct target, and inhibiting miR-483-5p expression markedly enhanced the expression of EGR3 at both the mRNA and protein levels. Besides, a significant decrease of EGR3 expression was found in fresh biopsy tissues from NPC patients, in contrast to miR-483-5p expression. Furthermore, directly decreasing the expression of EGR3 could enhance the migration and invasion of NPC cells. Conclusion The newly identified miR-483-5p/EGR3 pathway provides further insights into the development and metastasis of NPC and may provide a potential therapeutic target for NPC treatment in order to improve survival of NPC patients.
Collapse
Affiliation(s)
- Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi-Jun Tu
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiang-Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ruo-Wen Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Da-Wei Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Pei-Fen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Peng-Tao You
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|